首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A diastereomeric mixture of the tripeptide Boc-Ala-Ile-Aib-OMe crystallized in the space group Pl from CH3OH/H2O. The unit cell parameters are a= 10.593(2) Å, b= 14.377(3) Å, c= 17.872(4) Å, α= 104.41(2)°, β= 90.55(2)°, γ= 106.91(2)°, V= 2512.4 Å3, Z=4. X-Ray crystallographic studies shows the presence of four molecules in the asymmetric unit consisting of two pairs of diastereomeric peptides, Boc-l -Ala-l -Ile-Aib-OMe and Boc-l -Ala-d -Ile-Aib-OMe. The four molecules in the asymmetric unit form a rarely found mixed antiparallel and parallel β-sheet hydrogen bond motif. The Ala and (l ,d )-Ile residues in all the four molecules adopt the extended conformations, while the φ, ψ values of the Aib residues are in the right-handed helical region. In one of the molecules the Ile sidechain adopts the unusual gauche conformation about the Cβ-Cγ bond. © Munksgaard 1996.  相似文献   

2.
The crystal structure of Boc-Pro-Val-Gly-NH2 has been determined: monoclinic; P21; a = 9.331 (3) Å, b = 9.532 (4), c = 23.080 (9), β= 91.33 (3)R, Z = 4; R = 0.053 for 3400 reflections with ˙Fo˙,>α(Fo). There are two independent but very similar molecules in the crystal. The peptide main chains are in an extended form, and packed in two kinds of antiparallel β sheets, the (φ, Φ) angles of the central Val residues are (-156°, 146°) and (-139°, 155°), and the mean length of the N- H . 0 hydrogen bonds in the sheets is 2.965 Å. A detailed study of the conformations of the Val residues in oligopeptide crystals shows that the preferred conformation of Val in peptides is: the (φ, Φ) angles close to those of the antiparallel β sheet, and Cγ1 and Cγ2, against N with respect to the Cα– Cβ bond, at either (trans, gauche) or (-gauche, gauche). The mean π(NCαC') angle of such Val residues is 107.9(9)°. A twisting in the β sheets is also discussed.  相似文献   

3.
The tripeptide, glycyl-glycyl-L-isoleucine, crystallizes as a monohydrate in the monoclinic space group P21, with a = 12.746(2), b = 6.172(1), c = 8.643(1) Å, β = 99.77(2)°, and Z = 2. The structure was solved by direct methods and refined to an R-value of 0.039 for 917 (I > 1°) reflections. The molecule exists as a zwitterion in the crystal. The peptide units are trans and show significant deviations from planarity. The plane of peptide units and of the carboxyl group are nearly mutually perpendicular to each other. The peptide backbone torsion angles are: ø1 = - 171.2°, ω1 = - 176.8°, ø2 = - 106.1°, ø2 = - 150.7°, ø2 = - 172.1°, ø3 = - 70.9°, ø3 = 136.5°. For the side-chain of isoleucine, ø1 = - 58.1°, ø2 = 169.7° and the system of bonds C′-Cα-Cβ-C γ1-Cδ is trans zig-zag. The packing arrangement involves spatial segregation of polar and nonpolar moieties.  相似文献   

4.
The crystal structure of the tripeptide t-Boc-L-Pro-D-Ala-D-Ala-NHCH3, monohydrate, (C17H30N4O5·H2O, molecular weight = 404.44) has been determined by single crystal X-ray diffraction. The crystals are mono-clinic, space group P21, a = 9.2585(4), b = 9.3541(5). c = 12.4529(4) Å, β= 96.449(3)°, Z = 2. The peptide units are in the trans and the tBoc-Pro bond in the cis orientation. The first and third peptide units show significant deviations from planarity (Δω=5.2° and Δω=3.7°, respectively). The backbone torsion angles are: φ1, = -60°, ψ1/= 143.3°, ω1= -174.8°, φ2= 148.4°, ψ2= -143.1°, ω2= -179.7°, φ3= 151.4°, ψ3= -151.9°, ω3= -176.3°. The pyrrolidine ring of the proline residue adopts the C2— Cγ conformation. The molecular packing gives rise to an antiparallel β-sheet structure formed of dimeric repeating units of the peptide. The surface of the dimeric β-sheet is hydrophobic. Water molecules are found systematically at the edges of the sheets interacting with the urethane oxygen and terminal amino groups. Surface catalysis of an L-Ala to D-Ala epimerization process by water molecules adsorbed on to an incipient β-sheet is suggested as a mechanism whereby crystals of the title peptide were obtained from a solution of tBoc-Pro-D-Ala-Ala-NHCH3.  相似文献   

5.
Boc-L-Asn-L-Pro-OBzl:C21H29O6N3·CH3OH, Mr= 419.48 + CH3OH, monoclinic, P21, a= 10.049(1), b= 10.399(2), c= 11.702(1)Åβ= 92.50(1)°, V = 1221.7(3)Å3, dx= 1.14g cm-3, Z = 2, CuKα (λ= 1.54178 Å), F(000) = 484 (with solvent), 23°, unique reflections (I > 3σ(I)) = 1745, R = 0.043, Rw= 0.062, S = 1.66. Boc-β-cyano-L-alanine-L-Pro-OBzl: C21H27O5N3, Mr= 401.46, orthorhombic, P212121, a= 15.741(3), b= 21.060(3), c= 6.496(3)ÅV= 2153(1)Å3, dx= 1.24g·cm-3, Z = 4, CuKα (λ= 1.54178 Å), F(000) = 856, 23°, unique reflections (I > 3σ(I)) = 1573, R = 0.055, Rw= 0.078, S = 1.86. The tert.-butyloxycarbonyl (Boc) protected dipeptide benzyl ester (OBzl), BOC-L-Asn-L-Pro-OBzl, prepared from a mixed anhydride reaction using isobutylchloroformate, BOC-L-asparagine, and HCI·L-proline-OBzl, crystallized with one methanol per asymmetric unit in an extended conformation with the Asn-Pro peptide bond trans. Intermolecular hydrogen bonding occurs between the methanol and the Asn side chain and between the peptide backbone and the Asn side chain. A minor impurity due to the dehydration of the Asn side chain to a β-CNaia crystallized with a similar extended conformation and a single intermolecular hydrogen bond.  相似文献   

6.
Abstract: The peptide Boc-l -Val-ΔPhe-ΔPhe-l -Ile-OCH3 was synthesized using the azlactone method in the solution phase, and its crystal and molecular structures were determined by X-ray diffraction. Single crystals were grown by slow evaporation from solution in methanol at 25°C. The crystals belong to an orthorhombic space group P212121 with a = 12.882(7) Å, b = 15.430(5) Å, c = 18.330(5) Å and Z = 4. The structure was determined by direct methods and refined by a least-squares procedure to an R-value of 0.073. The peptide adopts a right-handed 310-helical conformation with backbone torsion angles: φ1 = 56.0(6)°, ψ1 = –38.0(6)°, φ2 = –53.8(6)°, ψ2 = 23.6(6)°, φ3 = –82.9(6)°, ψ3 = –10.6(7)°, φ4 = 124.9(5)°. All the peptide bonds are trans. The conformation is stabilized by intramolecular 4→1 hydrogen bonds involving Boc carbonyl oxygen and NH of ΔPhe3 and CO of Val1 and NH of Ile4. It is noteworthy that the two other chemically very similar peptides: Boc-Val-ΔPhe-ΔPhe-Ala-OCH3 (i) and Boc-Val-ΔPhe-ΔPhe-Val-OCH3 (ii) with differences only at the fourth position have been found to adopt folded conformations with two overlapping β-turns of types II and III′, respectively, whereas the present peptide adopts two overlapping β-turns of type III. Thus the introduction of Ile at fourth position in a sequence Val-ΔPhe-ΔPhe-X results in the formation of a 310-helix. The crystal structure is stabilized by intermolecular hydrogen bonds involving NH of Val1 and carbonyl oxygen of a symmetry related (–x, y – 1/2, 1/2 + z) ΔPhe2 and NH of ΔPhe2 with carbonyl oxygen of a symmetry related (x, y1/2, 1/2 + z) Ile4. This gives rise to long columns of helical molecules linked head to tail running along [010] direction.  相似文献   

7.
The crystal structure of Ac-Pro-ΔVal-NHCH3 was examined to determine the influence of the α,β-dehydrovaline residue on the nature of peptide conformation. The peptide crystallizes from methanol-diethyl ether solution at 4° in needle-shaped form in orthorhombic space group P212121 with a= 11.384(2) Å, b = 13.277(2) Å, c = 9.942(1) Å. V = 1502.7(4) Å3 Z = 4, Dm= 1.17 g cm?3 and Dc=1.18 g cm?3 The structure was solved by direct methods using SHELXS-86 and refined to an R value of 0.057 for 1922 observed reflections. The peptide is found to adopt a β-bend between the type I and the type III conformation with φ1=?68.3(4)°, ψ1=? 20.1(4)°, φ2=?73.5(4)°= and Ψ2=?14.1(4)°=. An intramolecular hydrogen bond between the carbonyl oxygen of ith residue and the NH of (i+ 3)th residue stabilizes the β-bend. An additional intermolecular N.,.O hydrogen bond joins molecules into infinite chains. In the literature described crystal structures of peptides having a single α,β-dehydroamino acid residue in the (i+ 2) position and forming a β-bend reveal a type II conformation.  相似文献   

8.
Crystals of N-formyl-l -alanyl-l -aspartic acid (C8H11N2O6) grown from aqueous methanol solution are orthorhombic, space group, P212121 with cell parameters at 294 K of a = 13.619(2), b = 8.567(2), c = 9.583(3)Å, V = 1118.1Å3, M.W. = 232.2, Z = 4, Dm= 1.38g/cm3 and Dx= 1.378g/cm3. The crystal structure was solved by the application of direct methods and refined to an R value of 0.075 for 1244 reflections with I ≥ 3σ collected on a CAD-4 diffractometer. The structure contains two short inter-molecular hydrogen bonds: (i) between the C-terminal carboxyl OH and the N-acyl oxygen (2.624(3)Å), a characteristic feature found in many N-acyl peptides and (ii) between the aspartic carboxyl OH and the peptide oxygen OP1 (2.623(3)Å). The peptide is nonplanar (ω= 165.5(6)°). The molecule takes up a folded conformation in contrast to N-formyl peptides which form extended β-sheets; the values of ø1, Ψ1, ø2, Ψ12, and Ψ22 are, respectively –65.7(6), 152.0(5), –107.2(5), 30.9(5), and –150.3(6). The aspartic acid side chain conformation is g? with χ1= 73.1(5). The formyl group, as expected, is transplanar [OF-CF-N1-CA1 = -4.0(8)°]. The presence of the short O–H … O hydrogen bond emerges as a structural feature common to this peptide and several other N-formyl peptides. There are no C-H … O hydrogen bonds in this structure.  相似文献   

9.
An apolar helical decapeptide with different end groups, Boc- or Ac-, crystallizes in a completely parallel fashion for the Boc-analog and in an antiparallel fashion for the Ac-analog. In both crystals, the packing motif consists of rows of parallel molecules. In the Boc-crystals, adjacent rows assemble with the helix axes pointed in the same direction. In the Ac-crystals, adjacent rows assemble with the helix axes pointed in opposite directions. The conformations of the molecules in both crystals are quite similar, predominantly α-helical, except for the tryptophanyl side chain where χ1? 60° in the Boc- analog and ? 180° in the Ac-analog. As a result, there is one lateral hydrogen bond between helices, N(lε)…O(7), in the Ac-analog. The structures do not provide a ready rationalization of packing preference in terms of side-chain interactions and do not support a major role for helix dipole interactions in determining helix orientation in crystals. The crystal parameters are as follow. Boc-analog: C3H7,N11O13 C3H7OH, space group P1 with a = 10.250(3) Å, b = 12.451(4) Å, c = 15.077(6) Å, x= 96.55(3)°, β= 92.31(3)°, y= 106.37(3)°, Z = 1, R = 5.5% for 5581 data (|F| > 3.0a(F)), resolution 0.89 Å. Ac-analog: C57,H91,N11,O12, space group P21, with a = 9.965(1) Å, b = 19.707(3) Å, c = 16.648(3) Å, β= 94.08(1), Z = 2, R = 7.2% for 2530 data (|F| > 3.0σ(F)), resolution 1.00 Å.  相似文献   

10.
The tripeptide, L-valyl-glycyl-glycine (C9H17N3O4, molecular weight = 231), crystallizes in the monoclinic space group C2, with a = 24.058(3)Å, b = 4.801(1), c = 10.623(2), β = 110.02(1)° and Z = 4. The structure was determined by direct methods and refined to a final R-index of 0.043 for 830 reflections (sinθ/Λ ≤ 0.53 A-1) with I> 1.0s?. The molecule exists as a zwitterion. The peptide units are trans and one of them shows significant deviations from planarity (Δω2 = 9.3°). The peptide chain repeat distance, 1Cα-3Cα, is 7.23Å and the molecule displays a highly extended conformation with backbone torsion angles of ψ1 = 123.1°, ω1 = - 179.4°, ø2 = - 155.1°, ψ;2 = 154.7°, ω2 = 170.7°, ø3 = - 146.6° and ψ3 = 180.0°. For the valyl side chain, χ11 = - 52.5°, χ12 = 174.2°. The packing involves hydrogen-bonded interactions between successive molecules related by the β-translation of the lattice, giving rise to the familiar parallel β-sheet structure which appears to be the most extended one observed to date.  相似文献   

11.
The peptide N-Boc-L-Pro-dehydro-Leu-NHCH3 was synthesized to examine the nature of β-bend as a result of dehydro-Leu in the sequence. The peptide crystallizes from methanol-water mixture at 4° in orthorhombic space group P22121 with a = 5.726(1)Å, b = 14.989(4) Å, c = 24.131(9) Å, V = 2071(1) Å3, Z = 4, dm = 1.064(5)gcm-3 and dc = 1.0886(5)gcm-3. The structure was solved by direct methods using SHELXS 86 and it was refined by full-matrix least-squares procedure to an R value of 0.059 for 957 observed reflections. The peptide is found to adopt a β-bend type II conformation with φ1=– 51(1)°, ψ1= 133(1)°, φ2= 74(2)° and ψ2= 8(2)°. The β-bend is stabilized by an intra-chain hydrogen bond between the carbonyl oxygen of ith residue and the NH of (i + 3)th residue. The five-membered pyrrolidine ring of Pro-residue adopts an ideal Cγ-exo conformation with torsion angles of χ11=– 25(1)°, χ12= 38(1)°, χ2=– 34(1)°, χ14= 20(1)° and χ10= 2(1)°. The side chain conformation angles of dehydro-Leu residue are χ2= 12(2)°, χ22.1=– 112(2)° and χ22.2= 136(2)°. The crystal structure is stabilized by a network of hydrogen bonds and van der Waals interactions.  相似文献   

12.
The crystal structure of a tripeptide, glycyl-glycyl-L-phenylalanine HCl (C13H18N3O4 ± HCl, molecular weight = 316.5) has been determined. The crystals are orthorhombic, space group P212121, with a = 4.877 (2) Å, b = 9.956(3), c = 32.690(5) and Z = 4. The final R-index is 0.043 for 1325 reflections (sinØ/Λ ± 0.55 Å-1) with I > 2.0 s? (I). The N-terminal of the molecule is protonated and the C-terminal exists in an un-ionised state. The peptide units are trans and one of them shows significant deviations from planarity (¶Δω1¶ = 11.3°). The peptide backbone is folded with torsion angles of: ø1 = 165.5°, ω1 = — 168.7°, ø2 = 63.6°, ø2 = — 153.6°, ω2 = 176.5°, ø3 = — 72.2° and Φ3 = 166.5°. For the side chain of phenylalanine, X1 = — 79.5° and X2 = 86.8°. An intramolecular water bridge links the two ends of the molecule.  相似文献   

13.
A solid-state and solution conformation analyses of the cyclopentapeptide cyclo(Phe-Phe-Aib-Leu-Pro) has been carried out by X-ray diffraction and nuclear magnetic resonance techniques. The structure of the hexagonal crystals, grown from a methanol solution [a=b= 16.530(4) Å, c= 21.356(9) Å, space group P65, Z = 6], shows the presence of one intramolecular N-H?O=C hydrogen bond with the formation of a γ-turn (C7). The Aib3 residue, at the center of the γ-turn, presents unexpected values of the torsion angles [φ= 70.5° and ψ= -73.8°], which have been observed only once before for this helicogenic residue. A cis peptide bond occurs between Leu4 and Pro5; all other peptide bonds are trans. The overall conformation for the cyclopentapeptide with one cis-peptide bond on one side and an intramolecular γ-turn on the opposite side results in an equatorial topology of the side-chains of the Phe1, Phe2 and Leu4 residues. Indeed, the Cα-Cβand Cβ-Cγ bonds of these residues lie approximately in the mean plane of the cyclic ring system. The structure is compared with data in the literature on cyclic pentapeptides. In addition the Pro-Phe-Phe moiety shows a conformation similar to that observed in other larger cyclic bioactive peptides, which indicates a reduced number of conformations for this sequence. The solution study was carried out in three different solvent systems: chloroform, acetonitrile and methanol in the temperature interval 220–300 K. In all three solvents the room temperature spectra show that the peptide is conformationally nonhomogeneous. In acetonitrile at low temperatures it is possible to reduce the conformational equilibrium to two predominant conformers which differ for the cis-trans isomerism of the Leu4-Pro5 peptide bond.  相似文献   

14.
Abstract: The design, synthesis, characterization and self‐assembling properties of a new class of amphiphilic peptides, constructed from a bifunctional polar core attached to totally hydrophobic arms, are presented. The first series of this class, represented by the general structure Py(Aibn)2 (Py = 2,6‐pyridine dicarbonyl unit; Aib = α, α′‐dimethyl glycine; n = 1–4), is prepared in a single step by the condensation of commercially available 2,6‐pyridine dicarbonyl dichloride with the methyl ester of homo oligoAib peptide (Aibn‐OMe) in the presence of triethyl amine. 1H NMR VT and ROESY studies indicated the presence of a common structural feature of 2‐fold symmetry and an NH…N hydrogen bond for all the members. Whereas the Aib3 segment in Py(Aib3)2 showed only the onset of a 310‐helical structure, the presence of a well‐formed 310‐helix in both Aib4 arms of Py(Aib4)2 was evident in the 1H NMR of the bispeptide. X‐ray crystallographic studies have shown that in the solid state, whereas Py(Aib2)2 molecules organize into a sheet‐like structure and Py(Aib3)2 molecules form a double‐stranded string assembly, the tetra Aib bispeptide, Py(Aib4)2, is organized to form a tetrameric assembly which in turn extends into a continuous channel‐like structure. The channel is totally hydrophobic in the interior and can selectively encapsulate lipophilic ester (CH3COOR, R = C2H5, C5H11) molecules, as shown by the crystal structures of the encapsulating channel. The crystal structure parameters are: 1b , Py(Aib2)2, C25H37N5O8, sp. gr. P212121, a = 9.170(1) Å, b = 16.215(2) Å, c = 20.091(3) Å, R = 4.80; 1c , Py(Aib3)2, C33H51N7O10·H2O, sp. gr. P, a = 11.040(1) Å, b = 12.367(1) Å, c = 16.959(1) Å, α = 102.41°, β = 97.29°, γ = 110.83°, R1 = 6.94; 1 da, Py(Aib4)2?et ac, C41H65N9O12?1.5H2O·C4H8O2, sp. gr. P, a = 16.064(4) Å, b = 16.156 Å, c = 21.655(5) Å, α = 90.14(1)°, β = 101.38(2)°, γ = 97.07(1)°, Z = 4, R1 = 9.03; 1db, Py(Aib4)2?amylac,C41H65N9O12?H2O ·C7H14O2, P21/c, a = 16.890(1) Å, b = 17.523(1) Å, c = 20.411(1) Å, β = 98.18 °, Z = 4, R = 11.1 (with disorder).  相似文献   

15.
The dipeptide, L-prolyl-L-isoleucine monohydrate (C11 H20N2O3· H2O, molecular weight 246.3) crystallizes in the monoclinic space group P21, with a = 6.601(3)Å, b = 5.413(3) Å, c = 19.128(6) Å, β= 98.1(1)°, Z = 2, Do = 1.20g·cm-3 and Dc = 1.208g·cm-3. The structure was solved by MULTAN–80 and refined to a final R-factor of 0.081 for 594 reflections measured on a Enraf Nonius CAD-4 diffractometer. The peptide linkage exists in the trans conformation. The pyrrolidine ring is disordered with two alternate envelope conformations for the Cγ atom. The values of the sidechain torsion angles are: χ11=– 63.6(17)°, χ12= 171.1(16)° and χ2=– 59.6(21)° for isoleucine (C-terminal). The crystal structure is stabilized by a three-dimensional network of N—H ? O, O—H ? O and C—H ? O hydrogen bonds. The dipeptide exists in the extended Conformation.  相似文献   

16.
The conformation of a tetrapeptide containing a dehydro amino acid, ΔzPhe, in its sequence has been determined in the crystalline state using X-ray crystallographic techniques. The tetrapeptide, Boc-Leu-ΔzPhe-Ala-Leu-OCH3, crystallizes in the orthorhombic space group P212121 with four molecules in a unit cell of dimensions a = 11.655(1) Å, b = 15.698(6) Å and c = 18.651(3) Å V = 3414.9 Å and Dcalc =1.12 g/cm ?3. The asymmetric unit contains one tetrapeptide molecule, C30H46N4O7, a total of 41 nonhydrogen atoms. The structure was determined using the direct methods program SHELXS86 and refined to an R-factor of 0.049 for 3347 reflections (13.0(I). The linear tetrapeptide in the crystal exhibits a double bend of the Type III-I, with Leu1 (<φ=?54.1°, Ψ=?34.5°) and ΔzPhe2 (φ=?59.9°, Ψ=?17.1°) as the corner residues of Type III turn and ΔzPhe2 (φ=?59.9°, Ψ=?17.1°) and Ala3 (φ=?80.4°, Ψ= 0.5°) residues occupying the corners of Type I turn, with ΔzPhe as the common residue in the double bend. The turn structures are further stabilized by two intramolecular 4→1 type hydrogen bonds.  相似文献   

17.
The 10-membered cyclotripeptide cyclo(-βAla-Phe-Pro-) (III) has been synthesized by cyclizing under mild conditions the linear precursor βAla-Phe-Pro-Onp·TFA. Crystal and molecular structure of (III) is reported and compared with that of the related models cyclo-(-MeAnt-Phe-Pro-) (I) and cyclo(-Hyb-Phe-Pro-) (II). Crystals of (III) are orthorhombic, C2221, with a= 8.224(1), b= 14.056(2), c= 28.559(3)A and Z = 8. The backbone of (III) is characterized by a cis-cis-trans conformation. Both the βAla-Phe and Phe-Pro peptide bonds are cis with ω values of – 14.4° and –0.1°, whereas the Pro-βAla junction exhibits trans conformation with high deviation from planarity (ω= 158.6°). The pyrrolidine ring has C2-Cβ-endo-Cγ-exo conformation and the benzylic side chain is extended toward the Phe-CO group. The molecular conformation of (III) shows a striking resemblance to that of the heterodetic model (II) and strongly differs from the all-cis conformation shown by the homodetic analogue (I).  相似文献   

18.
The structures of two crystal forms of Boc-Trp-Ile-Ala-Aib-Ile-Val-Aib-Leu-Aib-Pro-OMe have been determined. The triclinic form (PI, Z= l) from DMSO/H2O crystallizes as a dihydrate (Karle, Sukumar & Balaram (1986) Proc. Natl. Acad. Sci. USA 83, 9284-9288). The monoclinic form (P21, Z = 2) crystallized from dioxane is anhydrous. The conformation of the peptide is essentially the same in both crystal systems, but small changes in conformational angles are associated with a shift of the helix from a predominantly α-type to a predominantly 310-type. The r.m.s. deviation of 33 atoms in the backbone and Cβ positions of residues 2-8 is only 0.29 Å between molecules in the two polymorphs. In both space groups, the helical molecules pack in a parallel fashion, rather than antiparallel. The only intermolecular hydrogen bonding is head-to-tail between helices. There are no lateral hydrogen bonds. In the P21 cell, a = 9.422(2)Å, b = 36.392(11)Å, c = 10.548(2)Å, β= 111.31(2)° and V = 3369.3Å3 For 2 molecules of C60H97N11O10 per cell.  相似文献   

19.
The structure of a dihydrated form of glycyl-L-tyrosyl-L-alanine (GYA) has been determined as part of a series of peptide structural investigations and development of microscale vapor diffusion experiments for peptide crystal growth. Crystals were grown by the hanging-drop method against sodium acetate. The tripeptide is a zwitterion in the crystal, adopting an extended conformation through glycine, a nearly perpendicular bend attyrosine and a reverse turn for the C-terminal carboxylate. Principal backbone torsion angles are ψ1 175(1)°, ω2 173(1)°, φ2 -119(1)°, ψ2 120(1)°, ω33 172(1)°, φ3 -73(1)°,ψ31 -9(1)°, ψ32 171(1)°. The tyrosyl side chain adopts an unusual orientation (χ1/2= -86(1)°). The relationship of the GYA.2H2O structure to GYA sequences in proteins is examined, particularly as regards its helix-forming potential. Crystal data: C14H19N3O4.2H2O, Mr = 345.36, orthorhombic, P212121, a = 4.810 (4), b= 11.400(7), c = 30.162(23)Å, V=1653.8(24)Å?3, Z = 4, Dx= 1.387 Mgm?3, λ(CuKα?)= 1.540 Åμ= 9.053 mm?1, F(000) = 736, T = 199K, R = 0.041 for 1458 observations with I ≥ 3σ(I).  相似文献   

20.
The crystal structure of the dipeptide L-prolyl-L-glutamic acid dihydrate, L-Pro-L-Glu · 2H2O, C10H20O7N2, has been determined from three-dimensional X-ray diffractometer data. The dipeptide crystallizes in the space group P21 of the monoclinic system with two formula units in a cell of dimensions a= 5.629(2), b= 11.832(5), c= 10.485(4)Å, and β= 103.06(3)°. The structure was solved by direct methods and refined by least squares techniques to a final value of the conventional R-factor (on F) of 0.039 based on 1798 independent intensities with I ≥ 3s?(I). The dipeptide occurs as a zwitterion in the crystal with the pyrrolidine nitrogen atom protonated and the main chain carboxyl group deprotonated. The conformation of the peptide linkage is trans, the ω torsional angle being 173.7°. The pyrrolidine ring adopts the Cs-Cβ endo conformation and the conformation of the glutamyl side chain is fully extended. There is considerable intermolecular hydrogen bonding in the crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号