首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Particulate matter can exacerbate respiratory diseases such as asthma. Diesel exhaust particles are the substantial portion of ambient particulate matter with a <2.5 µm diameter in urban areas. Epidemiological data indicate increased respiratory health effects of particulate matter in obese individuals; however, the association between obesity and diesel exhaust particle‐induced airway inflammation remains unclear. We aimed to investigate the differences in susceptibility to airway inflammation induced by exposure to diesel exhaust particles between obese mice (db/db) and lean mice (db/+m). Female db/db and db/+m mice were intratracheally administered diesel exhaust particles or vehicle every 2 weeks for a total of seven times. The cellular profile of bronchoalveolar lavage fluid and histological changes in the lungs were assessed and the lungs and serum were analyzed for the generation of cytokines, chemokines and soluble intercellular adhesion molecule 1. Diesel exhaust particle exposure‐induced eosinophilic infiltration in db/+m mice accompanied by T‐helper 2 cytokine, chemokine and soluble intercellular adhesion molecule 1 expression in the lungs. In contrast, it induced mild neutrophilic airway inflammation accompanied by elevated cytokines and chemokines in db/db mice. The lungs of db/db mice exhibited decreased expression of eosinophil activators/chemoattractants such as interleukin‐5, interleukin‐13 and eotaxin compared with those of db/+m mice. In addition, serum eotaxin and monocyte chemotactic protein‐1 levels were significantly higher in db/db mice than in db/+m mice. In conclusion, obesity can affect susceptibility to diesel exhaust particle‐induced airway inflammation, which is possibly due to differences in local and systemic inflammatory responses between lean and obese individuals. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Airway pollution can affect the central nervous system, but whether this causes glial activation and inflammation in the nucleus of solitary tract (NTS) remains unclear. We used a rat model with exposure to diesel exhaust particulate matter (DEP) at 200 μg/m3 (low exposure) and 1000 μg/m3 (high exposure) for 14 days. Activation of microglia and astrocytes in the NTS was assessed using Iba-1 and glial fibrillary acidic protein (GFAP) staining. The expression of neurotrophic factors including brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), and nerve growth factor (NGF) in the NTS were evaluated by immunofluorescence. Changes in the intracellular structure of NTS neurons were observed via electron microscopy. Inflammatory cytokines and oxidant stress levels in the medulla were also measured. Exposure to DEP can cause NTS inflammation as well as airway inflammation, especially in the H-exposure group. We showed that the numbers of microglia and astrocytes in the NTS, as well as NGF expression in the NTS, were significantly higher in both exposure groups than in controls, but BDNF or GDNF expression was not detected. Exposure to DEP induced ultrastructural changes in NTS neurons as reflected by endoplasmic reticulum dilation, ribosomal loss, mitochondrial vacuolization, and a sparse myelin sheath. Medulla inflammation and an imbalance of oxidants and antioxidants also resulted from exposure to DEP. The H-exposure group showed an imbalance of oxidants and antioxidants with decreased levels of SOD and GSH and increased levels of MDA and ROS compared to the control group (both p < 0.01) in the medulla. Inflammatory cytokines (IL-1β, IL-6, and TNF-α) were also significantly increased in the H-exposure group. Fourteen days of exposure to DEP can affect the NTS neurons in rat. Glial activation and inflammation may play important roles in the response of the NTS to DEP.  相似文献   

3.
Nanosized fraction of particulate air pollution has been reported to translocate from the airways into the bloodstream and act on different organs. However, the direct effect of these translocated particles is not well understood. In this study, we determined the time-course (6h, 18 h, 48 h and 168 h) effects of the systemic administration of 0.02 mg/kg diesel exhaust particles (DEP) on systolic blood pressure (SBP), systemic inflammation, oxidative status, and morphological alterations in lungs, heart, liver and kidneys in Wistar rats. SBP was significantly decreased at 6 h (P < 0.05) but no significant effects have been observed at later time points. The leukocyte numbers were increased at 6 h (P < 0.05) and 18 h (P < 0.05). However, the platelet numbers were significantly decreased (P < 0.05) 6 h following the systemic administration of DEP. The IL-6 concentrations in plasma was increased at 6 h (P < 0.05) and 18 h (P < 0.05). Similarly, superoxide dismutase activity was significantly increased at 6 (P = 0.01) and 18 h (P < 0.05) following DEP exposure. The direct addition of DEP (0.1–1 μg/ml) to untreated rat blood significantly induced in vitro platelet aggregation in a dose-dependent fashion. The activation of intravascular coagulation was confirmed by a dose-dependent shortening of activated partial thromboplastin time and the prothrombin time following in vitro exposure to DEP (0.25–1 μg/ml). Histological analysis revealed the presence of DEP in the lungs, heart, liver and kidneys. However, the morphological changes were only observed in the lungs, where the presence of infiltration of inflammatory cells was observed as early as 6 h, increased at 18 h, and decreased in intensity at 48 h and at 168 h. We conclude that the direct systemic administration of DEP caused acute effect on SBP (6 h) and systemic inflammation and oxidative stress mainly at 6 h and 18 h. Despite the presence of DEP in lungs, heart, liver and kidneys, the histopathological changes were only seen in the lung which suggests that, at the dose and time-points investigated, DEP cause inflammation and have a predilection for pulmonary tissue.  相似文献   

4.
Although several studies have demonstrated that airway exposure to diesel exhaust particles (DEP) induces lung inflammation, the signaling pathways involved in the pathogenesis remain unclear. Toll-like receptors (TLRs) are generally accepted to be pathogen recognition receptors in mammalians. In the present study, we investigated the role of TLR-4 in DEP-induced lung inflammation and cytokine expression in the lung in TLR-4 point mutant (C3H/HeJ) mice and corresponding control (C3H/HeN) mice. Both the types of mice were randomized into four experimental groups that received vehicle or DEP (12 mg/kg body weight) by intratracheal instillation (n=8–10 in each group). Cellular profile of bronchoalveolar lavage (BAL) fluid, expressions of cytokines and chemokines in the lung, and circulatory fibrinogen levels were evaluated 24 h after the instillation.DEP challenge revealed a significant increase in the numbers of total cells and neutrophils in the BAL fluid as compared to vehicle challenge, however, the numbers were less in C3H/HeJ mice than in C3H/HeN mice. DEP exposure significantly induced the lung expression of interleukin (IL)-1β, keratinocyte chemoattractant (KC), and macrophage inflammatory protein (MIP)-1α when compared to vehicle challenge in both genotypes of mice. In the presence of DEP, the level of MIP-1α was significantly lower in C3H/HeJ mice than in C3H/HeN mice, however, the levels of IL-1β, KC, and fibrinogen showed opposite findings. These results suggest that TLR-4 is one of recognition receptors against DEP in the airways.  相似文献   

5.
Epidemiologically, exposure to particulate air pollution is associated with increases in morbidity and mortality, and diabetics are especially vulnerable to effects of particles. This study was carried out to determine the respiratory effect of diesel exhaust particles (DEP; 0.4 mg/kg) on mice rendered diabetic by the injection of streptozotocin or vehicle (control). Four weeks following induction of diabetes, the animals were intratracheally instilled (i.t.) with DEP (0.4 mg/kg) or saline. 24 h later, the measurement of airway reactivity to methacholine in vivo by a forced oscillation technique showed a significant and dose-dependent increase in airway resistance in non-diabetic mice exposed to DEP versus non-diabetic mice exposed to saline. Similarly, the airway resistance was significantly increased in diabetic mice exposed to DEP versus diabetic mice exposed to saline. Nevertheless, there was no difference in the airway resistance between diabetic and non-diabetic mice after i.t. administration of DEP. Following DEP administration there were neutrophil polymorphs infiltration of pulmonary interalveolar septae and the alveolar spaces with many macrophages containing DEP in both diabetic and non-diabetic mice. Interestingly, apoptotic cells were only found in the examined lung sections from diabetic mice exposed to DEP. Total proteins and albumin concentrations in bronchoalveolar lavage (BAL) fluid, markers for increase of epithelial permeability, were significantly increased in diabetic mice exposed to DEP compared to saline-treated diabetic and DEP-treated non diabetic mice. Superoxide dismutase activity and reduced glutathione concentration in BAL were significantly decreased in diabetic mice exposed to DEP compared to saline-treated diabetic and DEP-treated non diabetic mice. Moreover, tumor necrosis factor α (TNFα) concentrations were significantly increased in diabetic mice exposed to DEP compared to saline-treated diabetic and DEP-treated non diabetic mice. We conclude that, at the dose and time point investigated, DEP equally increased airway resistance and caused infiltration of inflammatory cells in the lung of both diabetic and non-diabetic mice. However, the occurrence of oxidative stress, the presence lung apoptotic cells and the increase of total proteins, albumin and TNFα in BAL fluid were only seen in DEP-exposed diabetic mice suggesting an increased respiratory susceptibility to particulate air pollution.  相似文献   

6.
Diesel exhaust particles (DEPs), comprised mainly of particles less than 2.5 μm (PM 2.5) in aerodynamic diameter, have been assumed to enhance the response of asthma to allergen inhalation. Although eosinophilic infiltration is remarkable in the event of bronchial asthma induced by DEPs, the precise mechanisms leading to eosinophilia are unknown. To examine the effect of DEPs on eosinophils, we measured the cytokine products and activity of nuclear factor-kappa B (NF-κB) after addition of the proteasomal inhibitor MG132 in HL-60 clone 15 cells differentiated into eosinophils. We measured eotaxin-induced chemotaxis of cells and their activity of p38 mitogen-activated protein (MAP) kinase was analysed. Interleukin (IL)-8 and monocyte chemoattractant protein-1 (MCP-1) were increased markedly in DEPs-treated cells. The active form of NF-κB in cells treated with DEPs was increased, and this effect was significantly decreased by the administration of MG132. Cell migration in the presence of DEPs was significantly greater, and inhibited by adding N-acetyl l-cysteine. P38 MAP kinase activity was highly influenced by DEPs-treatment. DEPs induce MCP-1 and IL-8 production by up-regulating NF-κB activity, which is inhibited in the presence of an inhibitor of proteasomal degradation. DEP also promotes eotaxin-induced chemotaxis in a p38-dependent manner.  相似文献   

7.
Epidemiological studies show an association between particulate matter exposure and acute heart failure. However, underlying mechanisms remain unclear. In this study, we investigated acute cardiac hemodynamic effects and related mechanisms after 1 day exposure to diesel exhaust particles (DEPs). Male Sprague–Dawley rats were randomized and instilled with 250 μg (low dose) or 500 μg (high dose) of DEP or saline placebo intra-tracheally. The cardiac systolic function by dP/dt40 and diastolic functions by maximal negative dP/dt were both worse in DEP low dose and DEP high dose groups than the control group, respectively. In the heart rate variability analysis, SDNN in DEP low dose and DEP high dose groups were both lower than the control group. The low frequency heart rate variability was higher in the DEP groups compared to the control group. The cardiac IL-1β expression and circulating cardiac troponin I level were higher in the DEP group than the control group. Plasma IL-1β and IL-6 protein were significantly higher in the DEP groups than the control group. In conclusion, DEP exposure causes acute cardiac systolic and diastolic dysfunction. The changes may be related to decreased heart rate variability, increased cardiac inflammatory reaction and myocardial damage.  相似文献   

8.
Response differences by different strains of mice towards house dust mites (Dermatophagoides farinae) or diesel exhaust particles (DEP) were investigated. Mouse strains BALB/c, ICR and C3H/He received 1 micro g of D. farinae or 1 microg of D. farinae + 50 microg of DEP intratracheally four times at 2-week intervals. Dermatophagoides farinae treatment caused the recruitment of eosinophils and lymphocytes. The order of magnitude of the eosinophilic airway inflammation was BALB/c < ICR < C3H/He mice. The protein levels of eotaxin and IL-5 in lung tissues correlated with the manifestations of eosinophilic airway inflammation by D. farinae administration. Diesel exhaust particles aggravated the manifestation of the eosinophilic inflammation through goblet cell proliferation in the airway and enhanced the local expression of eotaxin and IL-5 in all three strains of mice. The levels of eotaxin and IL-5 in lung tissues corresponded to the pathological changes caused by D. farinae + DEP. The increasing order of production levels of antigen-specific IgG1 by D. farinae or D. farinae + DEP was BALB/c < ICR < C3H/He mice. The significant adjuvant effect of DEP on IgG1 production was observed in the C3H/He mice (P < 0.05). These results suggest that the murine strain differences in the production of eosinophilic airway inflammation by D. farinae + DEP are related to differences in local expression of IL-5 and eotaxin. The enhancing effects of DEP may be mediated by a cytokine increase in the local expression. Antigen-specific IgG1 may be an important immunoglobulin in the pathogenesis of allergic asthma enhanced by DEP.  相似文献   

9.
It was previously shown that pulmonary exposure of mice to diesel exhaust particles (DEP) enhances inflammatory conditions induced by allergens or bacterial endotoxin (lipopolysaccharide: LPS) via enhanced local expression of cytokines. However, resolution of the underlying mechanisms, in which DEP exaggerate inflammation, remains uncompleted. Investigation of the actions of DEP on mouse-derived mononuclear cells may provide a clue to the mechanisms, because mononuclear cells produce and release several types of cytokines. The present study elucidated the effects of DEP on mononuclear cell reactions stimulated with LPS in vitro. ICR mouse-derived mononuclear cells, isolated from splenocytes, one of the secondary lymphoid tissues, were co-cultured with LPS (1 microg ml(-1)) and DEP (1, 10 or 100 microg ml(-1)). The protein levels of interferon (IFN)-gamma, interleukin (IL)-2, IL-10, and IL-13 in the culture supernatants were measured 72 h after the co-culture. LPS significantly increased the protein levels of IFN-gamma, IL-2 and IL-10. In the presence of LPS, DEP decreased the protein levels in a concentration-dependent manner with an overall trend, whereas DEP (1, 10 microg ml(-1)) moderately elevated the IL-13 level. These results suggest that DEP suppress cytokine production from mononuclear cells stimulated with LPS and provide a possible hint for DEP facilitation on inflammatory conditions, especially related to Th2 response, in vivo.  相似文献   

10.
We have previously demonstrated that exposure to diesel exhaust particles (DEP) prior to ovalbumin (OVA) sensitization in rats reduced OVA-induced airway inflammation. In the present study, Brown Norway rats were first sensitized to OVA (42.3 +/- 5.7 mg/m3) for 30 min on days 1, 8, and 15, then exposed to filtered air or DEP (22.7 +/- 2.5 mg/m3) for 4 h/day on days 24-28, and challenged with OVA on day 29. Airway responsiveness was examined on day 30, and animals were sacrificed on day 31. Ovalbumin sensitization and challenge resulted in a significant infiltration of neutrophils, lymphocytes, and eosinophils into the lung, elevated presence of CD4+ and CD8+ T lymphocytes in lung draining lymph nodes, and increased production of serum OVA-specific immunoglobulin (Ig)E and IgG. Diesel exhaust particles pre-exposure augmented OVA-induced production of allergen-specific IgE and IgG and pulmonary inflammation characterized by marked increases in T lymphocytes and infiltration of eosinophils after OVA challenge, whereas DEP alone did not have these effects. Although OVA-sensitized rats showed modest response to methacholine challenge, it was the combined DEP and OVA exposure that produced significant airway hyperresponsiveness in this animal model. The effect of DEP pre-exposure on OVA-induced immune responses correlated with an interactive effect of DEP with OVA on increased production of reactive oxygen species (ROS) and nitric oxide (NO) by alveolar macrophages (AM) and alveolar type II (ATII) cells, NO levels in bronchoalveolar lavage fluid, the induction of inducible NO synthase expression in AM and ATII cells, and a depletion of total intracellular glutathione (GSH) in AM and lymphocytes. These results show that DEP pre-exposure exacerbates the allergic responses to the subsequent challenge with OVA in OVA-sensitized rats. This DEP effect may be, at least partially, attributed to the elevated generation of ROS in AM and ATII cells, a depletion of GSH in AM and lymphocytes, and an increase in AM and ATII cell production of NO.  相似文献   

11.
Recent data suggest that ultrafine pollutant particles (diameter <0.1 μm) may pass from the lung into the systemic circulation. However, the systemic and cardiorespiratory effects of translocated particles are not well known. In this study, we determined the direct acute (24 h) effect of the systemic administration of 0.01 mg/kg and 0.02 mg/kg diesel exhaust particles (DEP) on systolic blood pressure, heart rate, and both systemic and pulmonary inflammation in spontaneously hypertensive rats (SHR). Compared to the blood pressure in control group, rats exposed to DEP exhibited a dose-dependent increase in systolic blood pressure, at 0.01 mg/kg (P < 0.05) and 0.02 mg/kg (P < 0.01). Likewise, the heart rate was also dose-dependently increased at 0.01 mg/kg (P:NS) and 0.02 mg/kg (P < 0.01) compared to control SHR. DEP exposure (0.02 mg/kg) significantly elevated the number of leukocytes in blood (P < 0.05), interleukin-6 (IL-6, P < 0.005), tumor necrosis factor alpha (P < 0.05) and leukotriene B4 (LTB4, P < 0.005) concentrations in plasma. Moreover, in SHR given 0.02 mg/kg, the number of platelet was significantly reduced (P < 0.05), whereas the tail bleeding time was prolonged (P < 0.05). Pulmonary inflammations were confirmed by the presence of a significant increase in the number of macrophages (0.02 mg/kg) and neutrophils (0.01 and 0.02 mg/kg) and protein contents (0.02 mg/kg) in bronchoalveolar lavage (BAL) compared to saline-treated SHR. Also, IL-6 (0.01 mg/kg; P < 0.05 and 0.02 mg/kg; P < 0.01), LTB4 (0.02 mg/kg; P < 0.05) concentrations in BAL and the superoxide dismutase activity (0.02 mg/kg; P = 0.01) were significantly elevated compared to control group. We conclude that, in SHR, the presence of DEP in the systemic circulation leads not only to cardiac and systemic changes, but also triggers pulmonary inflammatory reaction involving IL-6, LTB4 and oxidative stress.  相似文献   

12.
《Inhalation toxicology》2013,25(12):724-735
Context: Inhalation of ambient fine particulate matter (PM2.5) is associated with adverse respiratory and cardiovascular effects. A major fraction of PM2.5 in urban settings is diesel exhaust particulate (DEP), and DEP-induced lung inflammation is likely a critical event mediating many of its adverse health effects. Oxidative stress has been proposed to be an important factor in PM2.5-induced lung inflammation, and the balance between pro- and antioxidants is an important regulator of this inflammation. An important intracellular antioxidant is the tripeptide thiol glutathione (GSH). Glutamate cysteine ligase (GCL) carries out the first step in GSH synthesis. In humans, relatively common genetic polymorphisms in both the catalytic (Gclc) and modifier (Gclm) subunits of GCL have been associated with increased risk for lung and cardiovascular diseases.

Objective: This study was aimed to determine the effects of Gclm expression on lung inflammation following DEP exposure in mice.

Materials and methods: We exposed Gclm wild type, heterozygous, and null mice to DEP via intranasal instillation and assessed lung inflammation as determined by neutrophils and inflammatory cytokines in lung lavage, inflammatory cytokine mRNA levels in lung tissue, as well as total lung GSH, Gclc, and Gclm protein levels.

Results: The Gclm heterozygosity was associated with a significant increase in DEP-induced lung inflammation when compared to that of wild type mice.

Discussion and conclusion: This finding indicates that GSH synthesis can mediate DEP-induced lung inflammation and suggests that polymorphisms in Gclm may be an important factor in determining adverse health outcomes in humans following inhalation of PM2.5.  相似文献   

13.
Three mouse strains (BALB/c, ICR, and C3H/He) were injected intratracheally with house dust mites (Der f) four times at 2-week intervals during exposure to diesel exhaust (DE) or clean air for 8 weeks. Der f treatment caused eosinophilic inflammation and proliferation of goblet cells in the airways of the three strains. DE + Der f caused a further increase of eosinophils in BALB/c and ICR mice, but not in C3H/He mice. DE + Der f significantly increased interleukin (IL)-5; regulated on activation, normal T cell expressed, and presumably secreted (RANTES); eotaxin, monocyte chemotactic protein-1 (MCP-1); and macrophage-inflammatory protein-1 alpha (MIP-1 alpha) in all three strains. However, the protein of IL-5 decreased more in C3H/He mice treated with DE + Der f than in mice treated with Air + Der f. The levels of IL-5 in lung tissues corresponded to the pathological changes by Der f and/or DE treatment. The levels of MCP-1 and MIP-1 alpha in the three strains corresponded to the accumulation of lymphocytes in the airway. The adjuvant effect of DE on IgG1 production was observed in the ICR and C3H/He mice. These results suggest that the murine strain differences in the production of eosinophilic airway inflammation by DE + Der f is related to differences in local expression of IL-5, eotaxin, and IgG1 production. The enhancing effects of DE exposure may be mediated mainly by local IL-5.  相似文献   

14.
A 4-nitrophenol (PNP) isolated from diesel exhaust particles (DEP) has been identified as a vasodilator. PNP is also a known degradation product of the insecticide parathion. We used uterotrophic and Hershberger assays to study the estrogenic and anti-androgenic activities of PNP in-vivo. In ovariectomized immature female rats injected subcutaneously with 1, 10, or 100 mg/kg PNP daily for 7 days, significant (P<0.05) increases in uterine weight were seen in only those receiving 10 or 100 mg/kg PNP. Furthermore, in castrated immature male rats implanted with a silastic tube (length, 5 mm) containing crystalline testosterone and injected subcutaneously with 0.01, 0.1, or 1 mg/kg PNP daily for 5 days, those receiving the doses of 0.1 mg/kg showed significant (P<0.05) weight decreases in seminal vesicles, ventral prostate, levator ani plus bulbocavernosus muscles, and glans penis. Plasma FSH and LH levels did not change in female rats but were significantly (P<0.05) increased in male rats treated with 0.1 mg/kg PNP. These results clearly demonstrated that PNP has estrogenic and anti-androgenic activities in-vivo. Our results therefore suggest that diesel exhaust emissions and the degradation of parathion can lead to accumulation of PNP in air, water, and soil and thus could have serious deleterious effects on wildlife and human health.  相似文献   

15.
To investigate the effects of nanoparticle-rich diesel exhaust (NR-DE) on adrenocortical function, seven-week-old male mice were divided into four groups and exposed to either whole NR-DE at low (41.73 μg/m3, 8.21 × 105 particles/cm3), high (152.01 μg/m3, 1.80 × 106 particles/cm3) concentrations, filtered diesel exhaust (F-DE) or clean air for 8 weeks (5 h/day, 5 days/week). After 8 weeks of exposure, the animals were euthanized under pentobarbital anesthesia and the blood samples were collected to detect serum progesterone and corticosterone. In addition, adrenal glands were excised, and adrenal cells were cultured in the absence or presence of rat adrenocorticotropic hormone (ACTH) (10−15 to 10−10 M) for 4 h. There were no significant differences in the body weight, absolute and relative adrenal gland weight among the groups. Serum concentration of corticosterone and progesterone was not changed significantly. Administration of ACTH resulted in a dose-dependent increase in corticosterone and progesterone release in mice-exposed to low-concentration NR-DE and clean air. Moreover, corticosterone and progesterone concentrations in adrenal cells increased significantly in mice-exposed to low-concentration NR-DE basal and administrated with ACTH (10−15 to 10−11 M for corticosterone; 10−14 to 10−11 M for progesterone) compared with the control mice. In contrast, the concentration of corticosterone and progesterone decreased significantly in mice-exposed to high-concentration NR-DE or F-DE basal and administrated with ACTH (10−12 to 10−10 M for corticosterone; 10−15 to 10−10 M for progesterone) compared with the control mice. These results suggest that exposure to NR-DE or F-DE may disrupt adrenocortical function in adult male mice.  相似文献   

16.
Exposure to diesel engine exhaust particles (DEPs), representing a complex and variable mixture of components, has been linked with cellular production and release of several types of mediators related to pulmonary inflammation. A key challenge is to identify the specific components, which may be responsible for these effects. The aim of this study was to compare the proinflammatory potential of two DEP‐samples with contrasting contents of polycyclic aromatic hydrocarbons (PAHs) and metals. The DEP‐samples were compared with respect to their ability to induce cytotoxicity, expression and release of proinflammatory mediators (IL‐6, IL‐8), activation of mitogen‐activated protein kinases (MAPKs) and expression of CYP1A1 and heme oxygenase‐1 (HO‐1) in human bronchial epithelial (BEAS‐2B) cells. In addition, dithiothreitol and ascorbic acid assays were performed in order to examine the oxidative potential of the PM samples. The DEP‐sample with the highest PAH and lowest metal content was more potent with respect to cytotoxicity and expression and release of proinflammatory mediators, CYP1A1 and HO‐1 expression and MAPK activation, than the DEP‐sample with lower PAH and higher metal content. The DEP‐sample with the highest PAH and lowest metal content also possessed a greater oxidative potential. The present results indicate that the content of organic components may be determinant for the proinflammatory effects of DEP. The findings underscore the importance of considering the chemical composition of particulate matter‐emissions, when evaluating the potential health impact and implementation of air pollution regulations. © 2013 Wiley Periodicals, Inc. Environ Toxicol 30: 188–196, 2015.  相似文献   

17.
Bioassay-directed fractionation was performed to identify causative chemical groups of DEPs with estrogenic and antiestrogenic activities. Bioassay-directed fractionation consists of a cell bioassay (E-SCREEN) in conjunction with acid-base partitoning (F1 and F2) and silica gel column fractionation of neutral fractions (F3-F7). Crude extract (CE) of DEPs in dichloromethane (DCM) exhibited both estrogenic and antiestrogenic activity. Estrogenic activity of CE and some fractions (F1, F2, F3, F5 and F6) was induced through estrogen receptor (ER)-mediated pathways. In particular, the acid polar fraction (F2) of DEPs, which contains phenols, induced high levels of estrogenic activity compared to other fractions. The estrogenic activity of F2 (610.80 pg-bio-EEQ/g-DEPs) was higher than that of the total estrogenic activity of CE (222.22 pg-bio-EEQ/g-DEPs). This result indicates that the estrogenic activity induced by causative estrogenic fraction (F2) may be antagonized by unidentified chemicals in DEPs. On the other hand, non-polar fractions (F3 and F4) of DEPs include aliphatic and chlorinated hydrocarbon, polyaromatic hydrocarbons, and their alkyl derivatives, which play an important role in the antiestrogenic activity of DEPs. In particular, F4, which contains PAH and its derivatives, showed the highest antiestrogenic activity. Since in our previous study, dibenzo(a, h)anthracene and chrysene were identified in F4, and these chemicals have antiestrogenic activity, we assume that these chemicals are the major causative chemicals with antiestrogenic activity in DEPs. In contrast to the estrogenic activity of DEPs, antiestrogenic activity of CE was stronger than that of antiestrogenic fractions (F3 and F4) at non-cytotoxic concentrations, indicating that additive or synergistic effects by unidentified chemicals contained in DEPs occurred.  相似文献   

18.
《Inhalation toxicology》2013,25(7):409-418
Abstract

Context: Mice are commonly used in studies investigating the effects of diesel exhaust exposure on respiratory health. A plethora of studies in this field has resulted in a range of exposure protocols, from inhalation of diesel exhaust, to the administration (via various routes) of diesel exhaust particles in solution.

Objective: In this study, we compared the physiological consequences of short-term exposure to diesel exhaust via inhalation to those due to exposure to the same diesel exhaust particles suspended in solution and delivered intranasally.

Materials and methods: Adult BALB/c mice were exposed to diesel exhaust via inhalation for 2 hours per day for 8 days. A representative, simultaneous sample of particles was collected and a second group of mice then exposed to them suspended in saline. A low and a high-dose were studied, with these matched based on respiratory parameters. Six and twenty-four hours after the last exposure we measured bronchoalveolar inflammation, lung volume, lung function and the amount of elemental carbon in alveolar macrophages.

Results: Exposure via either route elicited pulmonary inflammation and changes in lung function. We identified significant differences in response between the two routes of exposure, with mice exposed via inhalation generally displaying more realistic dose-response relationships. Mice exposed via intranasal instillation responded more variably, with little influence of dose.

Conclusions: Our results suggest that selection of the route of exposure is of critical importance in studies such as this. Further, inhalation exposure, while more methodologically difficult, resulted in responses more akin to those seen in humans.  相似文献   

19.
20.
Epidemiological studies have associated the increase of respiratory disorders with high levels of ambient particulate matter (PM) levels although the underlying biological mechanisms are unclear. PM are a complex mixture of particles with different origins but in urban areas, they mainly contain soots from transport like Diesel exhaust particles (DEP). In order to determine whether PM biological effects can be explained by the presence of DEP, the effects of urban PM, DEP and carbon black particles (CB) were compared on a human bronchial epithelial cell line (16-HBE14o-). Two types of PM were used : reference material (RPM) and PM with an aerodynamic diameter 2.5 μm collected in Paris with a high volume sampler (VPM). From 10 to 30 μg/cm2, cell viability was never modified whatever the particles. However, DEP and to a lower extent PM inhibited cell proliferation, induced the release of a pro-inflammatory cytokine, GM-CSF, and generated a pro-oxidant state as shown by the increased intracellular peroxides production. By contrast, CB never induced such effects. Nevertheless CB are more endocytosed than DEP whereas PM are the less endocytosed particles. In conclusion, PM induced to a lower extent the same biological effects than DEP in 16-HBE cells suggesting that particle characteristics should be thoroughly considered in order to clearly correlate adverse effects of PM to their composition and to clarify the role of DEP in PM effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号