首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In-vitro studies have shown that thrombin-mediated factor XI activation enhances thrombin and fibrin formation, rendering the clot more thrombogenic and protecting it from lysis by activation of thrombin activatable fibrinolysis inhibitor. These effects of factor XI are only observed when coagulation is initiated by a low concentration of soluble tissue factor. At high concentrations of soluble tissue factor no effects of factor XI are seen on coagulation and fibrinolysis. In vivo, tissue factor is present in large amounts in the vascular wall. This makes it difficult to extrapolate these in-vitro findings on factor XI to the in-vivo situation. To address the question of whether factor XI could play a role in coagulation initiated on a tissue factor-containing surface we devised a static in-vitro coagulation model in which clotting is initiated in recalcified citrated plasma by tissue factor coated on the bottom of microtiter plates. The effect of factor XI was studied with an antibody that blocked the activation of factor IX by activated factor XI. The tissue factor coating strategy produced clotting times similar to those obtained with cultured tissue factor-expressing vessel wall cells (smooth muscle cells, fibroblasts and activated endothelial cells) grown to confluence in the same wells. A factor XI-dependent effect on clot formation and clot lysis was observed depending on the plasma volume used. In clots formed from small amounts of plasma (100 microl) no effect of factor XI was detected. In larger clots (200-300 microl) factor XI not only increased prothrombin activation and the fibrin formation rate but also inhibited fibrinolysis. Effects of factor XI were observed at short clotting times (3-4 min) similar to the clotting times found on cultured tissue factor-expressing vessel wall cells. This is in contrast with earlier studies using soluble tissue factor, in which effects of factor XI were only observed at much longer clotting times using low soluble tissue factor concentrations. We conclude that factor XI not only enhances coagulation initiated by surface bound tissue factor but also protects the clot against lysis once it is formed. On the basis of these results, we propose a coagulation model in which initial clot formation in the proximity of the tissue factor surface is not factor XI dependent. Clot formation becomes dependent on factor XI in the propagation phase when the clot is increasing in size. These findings support a role for factor XI in the propagation of clot growth after tissue factor-dependent initiation.  相似文献   

2.
Factor XI is a component of the intrinsic pathway of coagulation. A deficiency of factor XI is associated with a mild to moderate bleeding disorder especially from tissues with a high local fibrinolytic activity. In contrast, high levels of factor XI are a risk factor for venous thrombosis. The recent finding that factor XI can be activated by thrombin led to a revised model of coagulation. In this model the primary thrombin generation that results in fibrin formation takes place via the extrinsic pathway. Additional thrombin generation takes place inside the fibrin clot via the intrinsic pathway after the activation of factor XI by thrombin. High concentrations of thrombin are formed that are necessary for the activation of thrombin activatable fibrinolysis inhibitor (TAFI). Activated TAFI protects the fibrin clot against lysis. The role of factor XI in hemostasis can therefore be seen as a combination of procoagulant and antifibrinolytic actions. The new insights in the role of factor XI in coagulation and fibrinolysis may lead to new strategies for the treatment of thrombotic disorders.  相似文献   

3.
Thrombin is a key hemostatic enzyme, which propagates its own generation by activating factors V, VIII, and XI. Sustained thrombin generation also activates thrombin-activatable fibrinolysis inhibitor (TAFI), which stabilizes fibrin clot against fibrinolysis. Recombinant activated factor VII (rFVIIa) is considered a novel hemostatic intervention for refractory bleeding, but rebleeding episodes related to fibrinolysis still occur. The present study aimed to investigate the antifibrinolytic effects of rFVIIa in relation to thrombin generation. Using thrombelastography, the effects of rFVIIa on thrombin-activated fibrin formation and on fibrinolysis induced by tissue plasminogen activator were evaluated in various factor-deficient plasma samples. A Thrombinoscope was used to quantitate thrombin generation. Thrombin increased antifibrinolytic activity in a concentration-dependent manner as demonstrated by a longer clot lysis time. In plasma deficient in factors V, VIII, IX, X, or XI, clot lysis occurred early (< 20 min), and rFVIIa addition had minimal effect, except for improved antifibrinolytic effect in factor-XI-deficient plasma. A normal clot lysis time was observed in factor-XIII-deficient or dual antithrombin/factor-VIII-deficient plasma. Inhibition of TAFI increased the rate of fibrinolysis. Thrombin generation was delayed or decreased in single factor-deficient plasma except for factor XIII deficiency. After rFVIIa addition, the peak thrombin generation reached over 100 nmol/l in factor-XI-deficient plasma, but not in plasma deficient in factors V, VIII, IX, or X. Thrombin generation and subsequent activation of TAFI were important for clot stability. We conclude that rFVIIa therapy does not compensate for increased susceptibility to fibrinolysis due to lack of factor(s) necessary for the formation of tenase and prothrombinase.  相似文献   

4.
Hypofibrinolysis plays a role in thrombophilic states, and a thrombelastography-based method incorporating tissue-type plasminogen activator to determine vulnerability to fibrinolytic stress has recently been developed. This study proposed to kinetically define fibrinolytic vulnerability and the contribution of thrombin activatable fibrinolysis inhibitor to fibrinolytic defenses in normal subjects. Plasma from 30 normal subjects was exposed to tissue factor/kaolin and tissue-type plasminogen activator (100 IU/ml). Prior to activation of coagulation, samples were either not exposed or exposed to potato carboxypeptidase inhibitor (25 microg/ml, a thrombin activatable fibrinolysis inhibitor). Data were collected until clot lysis time was observed. In plasma, time to onset of maximum rate of fibrinolysis was 200-1125 s (95% confidence interval), maximum rate of lysis was -2.0--0.8 dynes/cm2 per s, and clot lysis time was 555-1595 s. Thrombin activatable fibrinolysis inhibitor's inhibition decreased the time to onset of maximum fibrinolysis by 45%, increased the rate of maximum lysis by 50%, and decreased clot lysis time by 45%. The study established a range of fibrinolytic kinetic values and the contribution of thrombin activatable fibrinolysis inhibitor in normal subjects. Study of disease states involving potential hypofibrinolysis (e.g., in-situ ventricular assist device, cancer) could be conducted using this system to link fibrinolytic vulnerability and thrombophilia.  相似文献   

5.
Tissue factor-induced coagulation leads to the generation of a small amount of thrombin, resulting in the formation of a fibrin clot. After clot formation, thrombin generation continues resulting in the activation of thrombin activatable fibrinolysis inhibitor, leading to downregulation of fibrinolysis. In this study, the effect of anticoagulant drugs targeting different steps in the coagulation cascade on clot formation and subsequent breakdown was investigated using a plasma-based clot lysis assay. All drugs tested significantly delayed clot formation; only those drugs targeting activated factor X (FXa) (tissue factor pathway inhibitor, fondaparinux, and low molecular weight heparin) accelerated fibrinolysis. Anticoagulant drugs targeting tissue factor (active site-inactivated recombinant activated factor VII) or thrombin (hirudin and d-phenylalanyl-l-prolyl-l-arginyl chloromethyl ketone) did not affect clot lysis time. In accordance with these findings, it was shown that total thrombin generation, as quantified by the endogenous thrombin potential, was only affected by anticoagulant drugs targeting FXa when all drugs were used in a concentration resulting in doubling of clotting time. Induction of hyperfibrinolysis by anticoagulant drugs directed against FXa might be beneficial as increased clot breakdown might facilitate thrombolysis or prevent re-occlusion. On the other hand, the induction of hyperfibrinolysis by these compounds might increase the risk of bleeding complications.  相似文献   

6.
Thrombin activatable fibrinolysis inhibitor (TAFI) also named procarboxypeptidase U (CPU), procarboxypeptidase R (CPR) and plasma procarboxypeptidase B (CPB) provides an important link between fibrinolysis and coagulation cascade. Activated TAFI (TAFIa) reduces a generation of plasmin because it cleaves off the carboxy-terminal lysine residues from partially degraded fibrin and thereby abrogates the fibrin cofactor function in the tPA-mediated catalysis of plasminogen to plasmin. TAFI is activated by thrombin-thrombomodulin complex. TAFI transformation to the activated TAFI (TAFIa) induced by thrombin supports the important role of coagulation cascade in regulation of fibrinolysis. This can be proved by a fact that the patients with a factor XI (FXI) deficiency are prone to bleeding from tissues with a high local fibrinolytic activity (urinary tract, nose, oral cavity, tonsils) that can be explained by a decreased thrombin-mediated TAFI activation. On the other hand the prothrombotic mutation of factor V (FV Leiden) associated with a resistance to activated protein C (APC-resistance) possess both mechanisms-an increased thrombin generation in coagulation cascade and a down regulation of fibrinolysis by a way of the thrombin-induced TAFI activation. For the future an inhibition of TAFI (e.g. by FXI inhibitors) offers the therapeutic possibilities to improve the decreased fibrinolysis and increase the efficiency of fibrinolytic therapy in thrombotic disorders. In bleeding disorders (hemophilia A, B) the drugs with a higher efficiency of TAFI for down regulation of an increased fibrinolysis could be used.  相似文献   

7.
Factor IX (FIX) deficiency results in haemophilia B and high dose recombinant activated factor VII (rFVIIa) can decrease bleeding. Previously, we showed that FIX deficiency results in a reduced rate and peak of thrombin generation. We have now used plasma and an in vitro coagulation model to examine the effect of these changes in thrombin generation on fibrin clot structure and stability. Low FIX delayed the clot formation onset and reduced the fibrin polymerisation rate. Clots formed without FIX were composed of thicker fibrin fibres than normal. rFVIIa shortened the clot formation onset time and improved the fibre structure of haemophilic clots. We also examined clot formation in the presence of a fibrinolytic challenge by including tissue plasminogen activator or plasmin in the reaction milieu. In these assays, normal FIX levels supported clot formation; however, clots did not form in the absence of FIX. rFVIIa partially restored haemophilic clot formation. These results were independent of the effects of the thrombin-activatable fibrinolysis inhibitor. Our data suggest that rFVIIa enhances haemostasis in haemophiliacs by increasing the thrombin generation rate to both promote formation of a structurally normal clot and improve clot formation and stability at sites with high endogenous fibrinolytic activities.  相似文献   

8.
N Aoki  Y Sakata  A Ichinose 《Blood》1983,62(5):1118-1122
The clot formed from the plasma of a patient with congenital deficiency of alpha 2-plasmin inhibitor underwent a spontaneous extensive fibrinolysis. Radiolabeled fibrinogen was added to the plasma before clotting, and the whole process of the fibrinolysis was followed by measuring the release of radiolabels. Plasminogen activation was also followed by measuring the amidolytic activity that developed. There was an initial latent period, followed by an exponential increase of fibrinolytic activity. During the latent period, there was little or no release of radiolabels and no development of amidolytic activity. During the latent period, the clot was washed thoroughly to remove unbound proteins from fibrin and was incubated in buffered saline. The washed clot still underwent fibrinolysis, similar to the original plasma clot, suggesting that the plasminogen/plasminogen activators bound to fibrin during the initial latent period are responsible for fibrinolysis. The amount of plasminogen bound to fibrin during the latent period was close to the amount of plasminogen activated during the whole process of fibrinolysis. When the amount of plasminogen bound to fibrin was decreased by epsilon aminocaproic acid, the extent of fibrinolysis was decreased in parallel with the decrease of the amount of the bound plasminogen. This suggests that the amount of plasminogen bound to fibrin is one of the determinants of the rate of the fibrinolytic process.  相似文献   

9.
The prothrombin gene mutation G20210A is a common risk factor for thrombosis and is associated with increased prothrombin levels. However, the mechanism whereby hyperprothrombinemia predisposes to thrombosis remains unclear. Because thrombin is the physiologic activator of TAFI (thrombin activatable fibrinolysis inhibitor), the precursor of an antifibrinolytic carboxypeptidase (TAFIa), we evaluated the influence of hyperprothrombinemia on fibrinolysis. Thirty-two heterozygous carriers of the G20210A mutation and 30 noncarriers were studied. Plasma fibrinolytic factors and TAFI levels were similar in the 2 groups. Mean lysis time of tissue factor-induced plasma clots exposed to 25 ng/mL exogenous tissue-type plasminogen activator (t-PA) was significantly longer in 20210A carriers than in control donors. This difference disappeared on addition of a specific inhibitor of TAFIa. Determination of thrombin and TAFIa activity, generated during clot lysis, revealed that G20210A mutation was associated with a significant enhancement of late thrombin formation and an increase in TAFI activation. Plasma prothrombin level was highly significantly correlated with both clot lysis time and TAFI activation. The addition of purified prothrombin, but not of factors X or VIIa, to normal plasma caused a concentration-dependent, TAFI-mediated inhibition of fibrinolysis. These findings provide a new mechanism that might contribute to the thrombotic risk in prothrombin 20210A carriers.  相似文献   

10.
Polyphosphate enhances fibrin clot structure   总被引:1,自引:0,他引:1  
Smith SA  Morrissey JH 《Blood》2008,112(7):2810-2816
Polyphosphate, a linear polymer of inorganic phosphate, is present in platelet dense granules and is secreted on platelet activation. We recently reported that polyphosphate is a potent hemostatic regulator, serving to activate the contact pathway of blood clotting and accelerate factor V activation. Because polyphosphate did not alter thrombin clotting times, it appeared to exert all its procoagulant actions upstream of thrombin. We now report that polyphosphate enhances fibrin clot structure in a calcium-dependent manner. Fibrin clots formed in the presence of polyphosphate had up to 3-fold higher turbidity, had higher mass-length ratios, and exhibited thicker fibers in scanning electron micrographs. The ability of polyphosphate to enhance fibrin clot turbidity was independent of factor XIIIa activity. When plasmin or a combination of plasminogen and tissue plasminogen activators were included in clotting reactions, fibrin clots formed in the presence of polyphosphate exhibited prolonged clot lysis times. Release of polyphosphate from activated platelets or infectious microorganisms may play an important role in modulating fibrin clot structure and increasing its resistance to fibrinolysis. Polyphosphate may also be useful in enhancing the structure of surgical fibrin sealants.  相似文献   

11.
The key enzyme for fibrinolysis is plasmin, which is converted from plasminogen by plasminogen activator. Activated plasmin lyses fibrinogen and fibrin to make fibrin degradation products(FDPs) and plasmin is inactivated immediately by alpha 2 plasmin inhibitor. As FDP.D dimer is derived solely from insoluble fibrin, FDP.D dimer is thought of as an index for clot lysis. We measured plasmin-alpha 2 plasmin inhibitor complex(PIC) and FDP.D dimer plasma levels in 3 patients with acute pulmonary thromboembolism treated with recombinant tissue plasminogen activator(tPA). Fifteen million units of tPA(TD-2061) were infused in one hour on the first, second and third hospital days. PIC and FDP.D dimer before tPA infusion showed slightly elevated values as compared to normal ranges. They increased markedly after tPA infusion. These findings suggest that the fibrinolytic system is slightly activated in the acute phase of pulmonary thromboembolism and also strongly activated by tPA infusion. Increased FDP D dimer suggests that fibrin clots are dissolved by activated plasmin. Improvement of arterial oxygen tension was observed after tPA infusion. As sustained higher FDP.D dimer means the existence of fibrin clots, heparin treatment should be continued for prevention of clot formation as long as FDP.D dimer shows higher value. In conclusion, PIC and FDP.D dimer are useful indices not only to detect the activated state of the fibrinolytic system but also to know clot lysis in tPA treatment.  相似文献   

12.

Background

Thrombin is the main activator of the fibrinolysis inhibitor TAFI (thrombin activatable fibrinolysis inhibitor) and heightened clotting activation is believed to impair fibrinolysis through the increase of thrombin activatable fibrinolysis inhibitor activation. However, the enhancement of thrombin generation by soluble tissue factor was reported to have no effect on plasma fibrinolysis and it is not known whether the same is true for cell-associated tissue factor. The aim of this study was to evaluate the effect of tissue factor-expressing monocytes on plasma fibrinolysis in vitro.

Design and Methods

Tissue factor expression by human blood mononuclear cells (MNC) and monocytes was induced by LPS stimulation. Fibrinolysis was spectrophotometrically evaluated by measuring the lysis time of plasma clots containing LPS-stimulated or control cells and a low concentration of exogenous tissue plasminogen activator.

Results

LPS-stimulated MNC (LPS-MNC) prolonged fibrinolysis time as compared to unstimulated MNC (C-MNC) in contact-inhibited but not in normal citrated plasma. A significantly prolonged lysis time was observed using as few as 30 activated cells/μL. Fibrinolysis was also impaired when clots were generated on adherent LPS-stimulated monocytes. The antifibrinolytic effect of LPS-MNC or LPS-monocytes was abolished by an anti-tissue factor antibody, by an antibody preventing thrombin-mediated thrombin activatable fibrinolysis inhibitor activation, and by a TAFIa inhibitor (PTCI). Assays of thrombin and TAFIa in contact-inhibited plasma confirmed the greater generation of these enzymes in the presence of LPS-MNC. Finally, the profibrinolytic effect of unfractionated heparin and enoxaparin was markedly lower (~50%) in the presence of LPS-MNC than in the presence of a thromboplastin preparation displaying an identical tissue factor activity.

Conclusions

Our data indicate that LPS-stimulated monocytes inhibit fibrinolysis through a tissue factor-mediated enhancement of thrombin activatable fibrinolysis inhibitor activation and make clots resistant to the profibrinolytic activity of heparins, thus providing an additional mechanism whereby tissue factor-expressing monocytes/macrophages may favor fibrin accumulation and diminish the antithrombotic efficacy of heparins.  相似文献   

13.
Background: Radiographic contrast agents inhibit fibrinolysis, although by poorly defined pathways. The purpose of this study was to define specific mechanisms by which contrast agents inhibit clot lysis. Methods and Results: Diatrizoate (high osmolar ionic agent), ioxaglate (low osmolar ionic), and ioversol (nonionic) were studied in vitro. Diatrizoate inhibited clot lysis by 81.3±0.6% vs. control (p<0.001). Ioxaglate inhibited clot lysis by 41.7±11.9%, which was of borderline significance (p=0.07). Ioversol did not significantly inhibit clot lysis (14.9±11.5% decrease vs. control; p>0.3). Inhibition of fibrinolysis was not explained by the high osmolarities of contrast agents, by their iodine content, or by their effects on the amidolytic activities of t-PA, urokinase, or plasmin. However, plasminogen activation by t-PA, urokinase, or streptokinase was significantly inhibited by contrast agents. Diatrizoate, ioxaglate, and ioversol inhibited plasminogen binding to plasma clots by 51±4% (p<0.001), 30.1±4% (p<0.01), and 19.4±7% (p=0.07), respectively. Plasma clots formed in the presence of contrast agents were resistant to lysis by plasmin. Diatrizoate produced the most potent effect, inhibiting clot lysis by 40±5.7% (p<0.03). Contrast agents did not inhibit plasminogen binding to fibrin or plasmin-mediated fibrinolysis if they were added after clot formation. Contrast agents altered clot turbidity, an index of fibrin structure, if present during clot formation, but not if added to preformed clots. Contrast agents did not affect plasminogen activator inhibitor-1 or 2-antiplasmin function. Conclusions: Contrast agents inhibit clot lysis by inhibiting plasminogen activation and by disrupting interactions of plasminogen and plasmin with fibrin by altering fibrin structure. Significant variation in antifibrinolytic properties exists between different contrast agents. Abbreviated Abstract. The purpose of this study was to define specific mechanisms by which contrast agents inhibit clot lysis. In both a purified clot lysis system and a plasma clot lysis system, diatrizoate, an ionic agent, produced the most potent inhibition of fibrinolysis. Contrast agents did not inhibit the active sites of plasminogen activators or plasmin, but did inhibit plasminogen activation. Binding of plasminogen to fibrin and lysis of fibrin by plasmin were inhibited by contrast agents if they were present during clot formation, but not if they were added after clot formation was complete. Contrast agents altered clot turbidity, an index of fibrin structure, if present during clot formation, but not if added to preformed clots. Contrast agents did not affect plasminogen activator inhibitor-1 or 2-antiplasmin function. The effects of contrast agents on fibrinolytic parameters were not explained by their high osmolarities. These results suggest that contrast agents inhibit clot lysis by inhibiting plasminogen activation and by disrupting interactions of plasminogen and plasmin with fibrin by altering fibrin structure.  相似文献   

14.
Broze  GJ Jr; Higuchi  DA 《Blood》1996,88(10):3815-3823
Coagulation is initiated by the binding of factor VIIa to tissue factor, with resultant limited factor IX and X activation and thrombin production. Owing to the feedback inhibition of the factor VIIa/tissue factor complex by tissue factor pathway inhibitor (TFPI), additional factor X activation and thrombin generation must proceed through a pathway involving factors VIII, IX, and XI. Experiments designed to elucidate the requirement for amplified factor Xa and thrombin generation in normal hemostasis show that the resistance of plasma clots to tissue plasminogen activator (tPA)- and urokinase-induced fibrinolysis is related to the extent of thrombin generation. Inhibition of fibrinolysis is mediated in part by plasma carboxypeptidase-U ([CPU] carboxypeptidase-R, procarboxypeptidase-B, thrombin-activatable fibrinolysis inhibitor), a proenzyme that is proteolytically activated by thrombin in a process enhanced dramatically by the cofactor thrombomodulin. A clot induced in factor IX-deficient plasma with limited amounts of tissue factor in the presence of urokinase (100 U/mL) lyses prematurely, and this defect is corrected by supplementation of the deficient plasma with factor IX (5 micrograms/mL) or thrombomodulin (20 ng/mL). These additions enhance the rate and extent of CPU activation: in the case of factor IX, presumably by permitting amplified generation of factor Xa and thrombin, and in the case of thrombomodulin, presumably by increasing the degree of CPU activation produced by the low levels of thrombin generated in the absence of factor IX. Pretreatment of the factor IX- deficient plasma with specific anti-CPU antibodies prevents the increased resistance to fibrinolysis produced by addition of factor IX and thrombomodulin. Likewise, when coagulation is induced by thrombin (2 U/mL) in the presence of tPA (60 U/mL), clots formed from plasmas deficient in factors VIII, IX, X, or XI lyse prematurely unless the missing factor is replaced or thrombomodulin (20 ng/mL) is added.  相似文献   

15.
Y Sakata  Y Eguchi  J Mimuro  M Matsuda  Y Sumi 《Blood》1989,74(8):2692-2697
A monoclonal antibody (MoAb) to alpha 2-plasmin inhibitor designated JTPI-1 inhibited antiplasmin activity by interfering with formation of alpha 2-plasmin inhibitor (alpha 2-PI)-plasmin complex. With this MoAb, we observed plasma clot lysis in vitro and evaluated the potential of JTPI-1 to serve as a new therapeutic agent for thrombolysis. After adding 125I-labeled fibrinogen to plasma, clots were made by adding thrombin and calcium and were then resuspended in normal plasma containing various concentrations of JTPI-1. The presence of JTPI-1 enhanced release of the soluble 125I-labeled fibrin degradation fragment from the clots in a dose-dependent manner. With tissue plasminogen activator (t-PA)-depleted plasma, we showed that induction of clot lysis by JTPI-1 was dependent on fibrin-bound endogenous t-PA. Regulation of fibrinolysis initiated on the fibrin surface by fibrin-bound t-PA and plasminogen is mediated by alpha 2-PI cross-linked to fibrin by activated factor XIII. JTPI-1 bound to this cross-linked alpha 2-PI neutralized its activity and induced partial digestion of fibrin by plasmin. This resulted in additional binding of Glu-plasminogen to fibrin during the incubation. When 1.2 mumol/L JTPI-1 and 5 U/mL exogenous t-PA were present in the suspending plasma, the rate of clot lysis was essentially the same as that induced by 60 U/mL exogenous t-PA alone. These results suggest that JTPI-1 may be useful in reducing the amount of t-PA administered for thrombolytic therapy.  相似文献   

16.
Sakata  Y; Loskutoff  DJ; Gladson  CL; Hekman  CM; Griffin  JH 《Blood》1986,68(6):1218-1223
The mechanism by which activated protein C stimulates fibrinolysis was studied in a simple radiolabeled clot lysis assay system containing purified tissue-type plasminogen activator, bovine endothelial plasminogen activator inhibitor (PAI), plasminogen, 125I-fibrinogen and thrombin. Fibrinolysis was greatly enhanced by the addition of purified bovine activated protein C; however, in the absence of PAI, activated protein C did not stimulate clot lysis, thus implicating this inhibitor in the mechanism. In clot lysis assay systems containing washed human platelets as a source of PAI, bovine-activated protein C-dependent fibrinolysis was associated with a marked decrease in PAI activity as detected using reverse fibrin autography. Bovine-activated protein C also decreased PAI activity of whole blood and of serum. In contrast to the bovine molecule, human-activated protein C was much less profibrinolytic in these clot lysis assay systems and much less potent in causing the neutralization of PAI. This species specificity of activated protein C in clot lysis assays reflect the known in vivo profibrinolytic species specificity. When purified bovine-activated protein C was mixed with purified PAI, complex formation was demonstrated using immunoblotting techniques after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. These observations suggest that a major mechanism for bovine protein C- dependent fibrinolysis in in vitro clot lysis assays involves a direct neutralization of PAI by activated protein C.  相似文献   

17.
Simultaneous evaluation of coagulation and fibrinolysis facilitates an overall understanding of normal and pathological haemostasis. We established an assay for assessing clot formation and fibrinolysis simultaneously using clot waveform analysis by the trigger of a mixture of activated partial thromboplastin time reagent and an optimized concentration of tissue-type plasminogen activator (0·63 μg/ml) to examine the temporal reactions in a short monitoring time (<500 s). The interplay between clot formation and fibrinolysis was confirmed by analysing the effects of argatroban, tranexamic acid and thrombomodulin. Fibrinogen levels positively correlated with coagulation and fibrinolytic potential and initial fibrin clot formation was independent of plasminogen concentration. Plasminogen activator inhibitor-1-deficient (-def) and α2-antiplasmin-def plasmas demonstrated different characteristic hyper-fibrinolytic patterns. For the specificity of individual clotting factor-def plasmas, factor (F)VIII-def and FIX-def plasmas in particular demonstrated shortened fibrinolysis lag-times (FLT) and enhanced endogenous fibrinolysis potential in addition to decreased maximum coagulation velocity, possibly reflecting the fragile formation of fibrin clots. Tranexamic acid depressed fibrinolysis to a similar extent in FVIII-def and FIX-def plasmas. We concluded that the clot-fibrinolysis waveform analysis technique could sensitively monitor both sides of fibrin clot formation and fibrinolysis, and could provide an easy-to-use assay to help clarify the underlying pathogenesis of bleeding disorders in routine clinical practice.  相似文献   

18.
New Concepts in Activation of the Clotting Cascade in Sepsis   总被引:1,自引:0,他引:1  
Meijers  Joost C.M.  Bouma  Bonno N. 《Sepsis》1999,3(2):87-91
Systemic infection leads to activation of the coagulation system. The presence of endotoxins results in exposure of tissue factor. Tissue factor-mediated initiation of coagulation results in the generation of thrombin for fibrin formation. Thrombin formation continues after fibrin formation via feedback activation of factor XI, thereby propagating the intrinsic pathway of coagulation. The extra thrombin that is formed can lead to additional fibrin formation and protection of the fibrin clot from fibrinolysis. The activation of the coagulation system, with at the same time not fully working control mechanisms, induces a severe procoagulant state in sepsis.  相似文献   

19.
Thrombelastographic detection of fibrinolysis has been critical in the identification and treatment of coagulopathy in many perioperative settings. However, the fibrinolytic assessments have been at best non-parametric, amplitude-based determinations (e.g. estimated % lysis, clot lysis time or clot lysis rate). Recognizing this limitation, a methodology was developed to measure the onset, speed and extent of clot disintegration by changes in elastic modulus derived from the amplitude. Using this approach, our goal was to characterize the clot disintegration kinetics of progressive plasminogen activation with tissue plasminogen activator (tPA) and to determine the extent of inhibition of fibrinolysis mediated by tPA with aprotinin and activated factor XIII. While the estimated % lysis and clot lysis time were significantly affected by tPA (0-300 U/ml), elastic modulus-based analyses in a more activity-specific fashion demonstrated significantly decreased onset, increased rate and increased extent of fibrinolysis. Furthermore, aprotinin was found to inhibit the onset, rate and extent of fibrinolysis in an activity-dependent fashion, whereas activated factor XIII was noted to enhance the speed of onset of clot growth and delay the onset of fibrinolysis. In summary, our results serve as the rational basis to utilize this elastic modulus-based approach to quantify the extent of fibrinolysis in clinical and laboratory settings, as well as potentially guiding antifibrinolytic therapy.  相似文献   

20.
Hyperhomocysteinemia (HHcy) affects haemostasis and shifts its balance in favour of thrombosis. In vitro and in vivo studies suggested that HHcy may impair fibrinolysis either by influencing the plasma levels of fibrinolytic factors or by altering the fibrinogen structure. We investigated the influence of mild HHcy levels on plasma fibrinolytic potential by using clot lysis time (CLT) and fibrin susceptibility to plasmin-induced lysis in 94 patients with previous pulmonary embolism and no pulmonary hypertension. CLT was measured as lysis time of tissue factor induced clots exposed to exogenous tissue plasminogen activator (t-PA). The rate of in vitro plasmin-mediated cleavage of fibrin β-chain was assessed over a 6-h period on fibrin clots, which were obtained by exposition to thrombin of purified fibrinogen. Homocysteine plasma levels were measured by Abbott Imx immunoassay and we considered as altered the values above 15 μmol/L according to the literature. In 68 patients homocysteine levels were below 15 μmol/L (NHcy) and in 26 they were above (HHcy). Significant differences were observed between the two groups regarding plasma fibrinolytic potential (p = 0.016), TAFIact (expressed as clot lysis ratio) (p = 0.02), t-PA (0.008) and PLG (0.037), but not for the other assessed components. The HHcy-patients had a threefold higher risk to have an impaired fibrinolysis. Instead, a multivariate logistic regression analysis adjusted for significances of univariate showed that HHcy (OR 5.2 95 % CI 1.7–15.9; p = 0.003) and BMI (OR 5.0 95 % CI 1.6–15.9; p = 0.006) resulted independently associated with impaired fibrinolytic activity. HHcy affects TAFI-mediated hypofibrinolysis but not fibrin(ogen) structure or function as documented by fibrin degradation analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号