首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The clinical use of opioids is limited by the development of tolerance and physical dependence. Opioid tolerance and dependence are believed to result from complex adaptations in the CNS, representing a form of neural plasticity. Extracellular signal-regulated kinases (ERKs) are involved in many forms of neural plasticity, and therefore could also be involved in the development of opioid tolerance and dependence. In this study, we investigated the effect of a systemically bioavailable MEK (ERK kinase) inhibitor, SL327, upon the development and the expression of tolerance to and dependence on morphine in mice. In tolerance and dependence development studies, two strains of mice were treated daily for 8 or 9 days with 5mg/kg morphine s.c. Tolerance development was assessed by tail flick latency. Withdrawal was then precipitated by subcutaneous injection of 2mg/kg naloxone s.c. and signs recorded. Co-administration of 50mg/kg SL327 i.p. prior to morphine administration had no effect on the development of tolerance or withdrawal signs. To study possible effects of ERK inhibition on the expression of tolerance and dependence, mice were implanted with 75mg morphine pellets s.c. Tolerance and dependence were assessed as previously described. An acute i.p. injection of 50mg/kg SL327 after 4 days of morphine exposure had no effect on the expression of either morphine tolerance or physical dependence. To verify that this dose of SL327 inhibited morphine-induced ERK modulation, mice received an acute i.p. injection of 50mg/kg SL327 prior to morphine administration, and sacrificed 30min later. Western blots demonstrated that SL327 did inhibit morphine-induced ERK modulation. Taken together, these data suggest that unlike many other observed forms of neural plasticity, the ERK signaling cascade is not involved in the development or expression of opioid tolerance and dependence.  相似文献   

2.
《General pharmacology》1994,25(4):623-629
1. In mice withdrawn from 3 days of morphine, dopamine depletion was significantly (P < 0.01) retarded in the “rest of the forebrain and midbrain” and tended to be retarded in the striatum.2. In control mice withdrawn from 3 days of saline treatment a 10 mg/kg test dose of morphine significantly enhanced noradrenaline depletion in all selected brain areas. This did not occur in test mice withdrawn from 1–3 days of morphine, indicating development of tolerance.3. These results suggest that dopamine depletion is retarded in the “rest of the forebrain and midbrain” of mice withdrawn from 3 days of repeated morphine and that noradrenaline depletion is unchanged in all selected brain areas of mice withdrawn from morphine.4. Tolerance develops to the enhancing effect of morphine on noradrenaline depletion in mice withdrawn from 3 days of repeated morphine but not in those withdrawn from 1 day of treatment only.  相似文献   

3.
The effect of D-Phenylalanine (D-Phe), putative carboxypeptidase A inhibitor and its four derivatives (T1-T4) on analgesia, development of tolerance and physical dependence to morphine, and on degradation of both exogenous and endogenous enkephalins was investigated. Systemic administration of either D-Phe or its derivatives produced naloxone-reversible analgesia in the hot-plate test in mice. Naloxone-precipitated morphine withdrawal syndrome was attenuated in mice after systemic subacute administration (7 days, 1.2 mmol/kg, sc) of D-phe derivatives, the development of tolerance to morphine being unchanged. In the presence of either D-Phe or its derivatives in incubation mixture (up to 10(-3) mol/l) the hydrolysis of exogenous 3H-Met5-and 3H-Leu5-enkephalin in striatal homogenates was slightly inhibited. Moreover, the addition of D-Phe or its derivatives seemed to increase the per cent of recovered endogenous Met5-enkephalin released from veratridine-depolarized striatal particles. In contrast, bestatin, an amino-peptidase inhibitor, and a mixture of dipeptides (Tyr-Tyr, Leu-Leu, Leu-Gly) markedly inhibited degradation of both endogenous and exogenous enkephalins in vitro. The results obtained in this study suggest that that pharmacological activity of D-Phe is not directly related to the endogenous opiate system.  相似文献   

4.
The efficacy of opioids is limited in chronic pain treatment, as a result of development of opioid tolerance. Based on previous demonstration of the effect of anticonvulsant drugs on morphine antinociception, the present study investigated the effects of vigabatrin (VGB) on the development and expression of morphine tolerance in mice. 101 male NMRI mice weighing 20-25 g were used in these experiments. To evaluate the VGB effects on the development or expression of morphine tolerance, animals received VGB (5, 10 or 20 mg/kg; i.p.), 30 min before morphine (50 mg/kg; s.c.) during induction period once daily for 3 days; or 30 min before challenge dose of morphine (5 mg/kg) before and after morphine-induced tolerance, respectively. The analgesic effect of VGB was evaluated at 30-time intervals (30, 60, 90 and 120 min) by tail-flick analgesiometer. The results showed that VGB at the dose of 20 mg/kg significantly attenuated the development and expression of morphine tolerance. Additionally, VGB alone did not affect the tail-flick latency times. Therefore, while VGB alone has no antinociceptive effect, it can prevent the development of morphine tolerance in mice.  相似文献   

5.
The effects of a highly selective kappa antagonist, nor-binaltorphimine (nor-BNI), on the development of tolerance to morphine analgesia and physical dependence on morphine were examined. Pretreatment with nor-BNI (5 mg/kg s.c.) 2 h prior to injection of morphine or a selective kappa agonist, U-50,488H, significantly antagonized the analgesic effect of U-50,488H, but not morphine analgesia in mice. The development of tolerance to morphine analgesia was significantly potentiated by pretreatment of mice with nor-BNI 2 h prior to morphine treatment during chronic morphine treatment for 5 days. Additionally, the pretreatment with nor-BNI during chronic treatment with the high dose of morphine for 5 days significantly potentiated the naloxone-induced body weight loss in morphine-dependent mice and rats. These findings suggest that inactivation of the kappa opioid system may potentiate the development of tolerance to morphine analgesia in mice and may aggravate the naloxone-precipitated body weight loss in morphine-dependent mice and rats.  相似文献   

6.
The tail-flick test was used to investigate the effects of chronic administration of the N-methyl-D-aspartate (NMDA) receptor antagonists, dextromethorphan, memantine and MRZ 2/579, on the development and reversal of morphine tolerance in mice in three separate experiments. Experiment 1 investigated the effects of NMDA receptor antagonists on the development of tolerance. Morphine (10 mg/kg for 6 days, twice daily) produced a 5.9-fold rightward shift of the cumulative dose-response curves. Co-administration of dextromethorphan, memantine or MRZ 2/579 between tests 1 and 2 dose-dependently (5-10 mg/kg) inhibited the development of morphine tolerance. In experiment 2, in which the effects on the reversal were investigated, morphine-tolerant mice were treated b.i.d. for an additional 6 days (between tests 2 and 3) with vehicle+vehicle, NMDA receptor antagonist+vehicle, vehicle+morphine or NMDA receptor antagonist+morphine. Morphine-tolerant mice treated with vehicle+vehicle remained morphine tolerant, whereas this residual morphine tolerance was inhibited by administration of all three NMDA antagonists (each 10 mg/kg). Morphine-tolerant mice receiving vehicle+morphine injections demonstrated an unchanged degree of antinociceptive tolerance. In these mice, the co-administration of memantine and MRZ 2/579, but not dextromethorphan, resulted in the reversal of morphine tolerance. In experiment 3, memantine and MRZ 2/579 (10 mg/kg) inhibited the acute antinociceptive effect of morphine, but dextromethorphan did not. These data indicate that low-affinity, clinically available and/or therapeutically promising NMDA receptor antagonists may be used to inhibit ongoing morphine tolerance.  相似文献   

7.
Inhibition of glutamate carboxypeptidase II (GCP II; NAALADase) produces a variety of effects on glutamatergic neurotransmission. The aim of this study was to investigate effects of GCP II inhibition with the selective inhibitor, 2-PMPA, on: (a) development of tolerance to the antinociceptive effects, (b) withdrawal, and (c) conditioned reward produced by morphine in C57/Bl mice. The degree of tolerance was assessed using the tail-flick test before and after 6 days of twice daily (b.i.d.) administration of 2-PMPA and 10 mg/kg of morphine. Opioid withdrawal was measured 3 days after twice daily morphine (30 or 10 mg/kg) administration, followed by naloxone challenge. Conditioned morphine reward was investigated using conditioned place preference with a single morphine dose (10 mg/kg). High doses of 2-PMPA inhibited the development of morphine tolerance (resembling the effect of 7.5 mg/kg of the NMDA receptor antagonist, memantine) while not affecting the severity of withdrawal. A high dose of 2-PMPA (100 mg/kg) also significantly potentiated morphine withdrawal, but inhibited both acquisition and expression of morphine-induced conditioned place preference. Memantine inhibited the intensity of morphine withdrawal as well as acquisition and expression of morphine-induced conditioned place preference. In addition, 2-PMPA did not affect learning or memory retrieval in a simple two-trial test, nor did it produce withdrawal symptoms in morphine-dependent, placebo-challenged mice. Results suggest involvement of GCP II (NAALADase) in phenomena related to opioid addiction.  相似文献   

8.
Glycyrrhizin, a biological active compound isolated from the liquorice root, has been used as a treatment for chronic hepatitis. We have examined the involvement of matrix metalloproteinase (MMP)9 in the development of lipopolysaccharide (LPS) and D-galactosamine (GalN)-induced liver injury in mice. We also investigated the effect of glycyrrhizin on expression of MMP-9 in this model. Levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) increased after LPS/ GalN treatment. Expression of MMP-9 mRNA and protein was markedly up-regulated in liver tissues 6-8 h after LPS/GalN treatment. Pretreatment with glycyrrhizin (50 mg kg(-1)) and the MMP inhibitor (5 mg kg(-1)) suppressed increases in serum levels of ALT and AST in mice treated with LPS/GalN. Furthermore, glycyrrhizin inhibited levels of both mRNA and protein for MMP-9. Immunohistochemical reaction for MMP-9 was observed in macrophages/monocytes infiltrated in the inflammatory area of liver injury. Glycyrrhizin reduced the infiltration of inflammatory cells and immunoreactive MMP- 9 in liver injury. The results indicated that MMP-9 played a role in the development of LPS/GalN- induced mouse liver injury, and suggested that an inhibition by glycyrrhizin of the acute liver injury may have been due to a down-regulation of MMP-9.  相似文献   

9.
The chronic i.c.v. infusion of morphine has been reported for rats but not for mice. In the current report, the antinociceptive tolerance to both i.c.v. morphine infusion and s.c. implantation of morphine pellets in mice was compared. Physical dependence after i.c.v. morphine infusion was also evaluated. Osmotic minipumps were filled with morphine (50 mM), connected to i.c.v. cannulae, and implanted s.c. to deliver 50 nmol/h for 3 days (i.e., 3.6 micromol total). Robust jumping precipitated by naloxone (1 mg/kg, s.c.) indicated the development of physical dependence. Tolerance to i.c.v., i.t., and i.v. morphine (6.3-, 2.0-, and 4.4-fold, respectively) was observed using the tail flick test. Mice implanted with pellets containing 75 mg morphine for 3 days (i.e., approximately 260 micromol total) were also tolerant to morphine (6.5-, 7.5- and 18-fold, respectively). Thus, the tolerance developed using the two methods was not identical. These results allow comparison of morphine tested by 3 different routes (i.c.v., i.t., and i.v.) after chronic morphine treatment by two routes (i.c.v. and s.c.) in a single study.  相似文献   

10.
Vesicular Zn2+, released in the brain and from small dorsal root ganglion neurons, interacts with opioid as well as N-methyl-D-aspartate (NMDA) receptors. We investigated the effect of Zn2+ on morphine antinociception in mice (tail flick assay), as well as acute tolerance and dependence, phenomena associated with NMDA activity. Administered intrathecally (i.t.), Zn2+ inhibited morphine antinociception in a dose-related fashion. Zn2+ also inhibited acute tolerance to morphine antinociception (5 h after 100 mg/kg of morphine). Injection i.t. of di-sodium calcium ethylenediamine tetra acetic acid (Na+Ca2+ EDTA), a chelator of divalent cations, had no effect on analgesia, acute tolerance or acute dependence. However, withdrawal jumps produced by naloxone (1 mg/kg s.c.) in morphine-pellet implanted mice (3 days) were potentiated by injections twice daily of 10 nmol of Na+Ca2+ EDTA, suggesting that endogenous Zn2+ tends to inhibit long-term development of withdrawal. These data suggest that the availability of Zn2+ is an important factor in opioid activity.  相似文献   

11.
We investigated the effects of (R)-(-)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153), which is reported to accelerate glutamate uptake, on the development of morphine tolerance and physical dependence in mice. For the induction of morphine tolerance and dependence, mice were twice daily treated with morphine (10-45 mg/kg, s.c.) for 5 days. First, co-administration of MS-153 (12.5 mg/kg, s.c.) did not affect the morphine's potency for its acute antinociceptive effect (1 and 3 mg/kg, s.c.). Next, co-administrations of MS-153 (1, 3 and 12.5 mg/kg, s.c.) during repeated morphine treatments significantly attenuated the development of tolerance to the antinociceptive effect of morphine (3 mg/kg, s.c.) and suppressed the naloxone (10 mg/kg, i.p.)-precipitated withdrawal signs (jumps and body weight loss). The inhibitory effect of MS-153 on the withdrawal signs was due to the attenuation of the development of dependence rather than that of expression of withdrawal signs. These results suggest that MS-153, a glutamate transporter activator, has an inhibitory effect on the development of morphine tolerance and physical dependence.  相似文献   

12.
The effects of chronic treatment with morphine and cholinergic compounds on the development of morphine tolerance, physical dependence and increased naloxone potency were studied. Using the abdominal constriction method, it was shown that morphine tolerance was apparent after s.c. administration of morphine 20.0 mg/kg three times a day for four days. It was found that, in animals which showed a low degree of morphine tolerance, the naloxone potency was similar to that determined in mice which had been pretreated with only a single dose of morphine which causes no measurable tolerance. Thus, the development of increased naloxone potency and tolerance to morphine do not parallel each other. In addition, while atropine inhibited, and anti-cholinesterase drugs enhanced, the development of increased naloxone potency caused by morphine treatment they had no or little effect on the development of morphine tolerance. Futhermore, chronic treatment with cholinergic agonists reduced, while muscarinic antagonist enhanced, the development of physical dependendence on morphine as assessed by withdrawal jumping and body weight loss. It is concluded that the increased potency of naloxone in antagonising the antinociceptive effect of morphine can be dissociated from the development of tolerance to, and physical dependen on, morphine in mice.  相似文献   

13.
The effects of glycine on morphine-induced hyperactivity, reverse tolerance and postsynaptic dopamine receptor supersensitivity in mice was examined. A single administration of morphine (10 mg/kg, s.c.) induced hyperactivity as measured in mice. The morphine-induced hyperactivity was inhibited by pretreatment with glycine (100, 200 and 400 mg/kg, i.p.). In addition, it was found repeated administration of morphine (10 mg/kg, s.c.) to mice daily for 6 days caused an increase in motor activity which could be induced by a subsequent morphine dose, an effect known as reverse tolerance or sensitization. Glycine (100, 200 and 400 mg/kg, i.p.) also inhibited morphine-induced reverse tolerance. Mice that had received 7 daily repeated administrations of morphine also developed postsynaptic dopamine receptor supersensitivity, as shown by enhanced ambulatory activity after administration of apomorphine (2 mg/kg, s.c.). Glycine inhibited the development of postsynaptic dopamine receptor supersensitivity induced by repeated administration of morphine. It is suggested that the inhibitory effects of glycine might be mediated by dopaminergic (DAergic) transmission. Accordingly, the inhibition by glycine of the morphine-induced hyperactivity, reverse tolerance and dopamine receptor supersensitivity suggests that glycine might be useful for the treatment of morphine addiction.  相似文献   

14.
In the present study, the contribution of pertussis toxin (PTX)-sensitive G(i/o)-proteins to opioid tolerance and mu-opioid receptor down-regulation in the mouse were examined. Mice were injected once intracerebroventricularly and intrathecally with PTX (0.1 microg/site). Controls were treated with saline. On the 10th day following PTX treatment, continuous subcutaneous infusion of etorphine (150 or 200 microg/kg/day) or morphine (40 mg/kg/day+25 mg slow-release pellet) was begun. Control mice were implanted with inert placebo pellets. Pumps and pellets were removed 3 days later, and mice were tested for morphine analgesia or mu-opioid receptor density was determined in the whole brain, spinal cord, and midbrain. Both infusion doses of etorphine produced significant tolerance (ED50 shift=approximately 4-6-fold) and down-regulation of mu-opioid receptors (approximately 20-35%). Morphine treatment also produced significant tolerance (ED50 shift= approximately 5-8-fold), but no mu-opioid receptor down-regulation. PTX dramatically reduced the acute potency of morphine and blocked the further development of tolerance by both etorphine and morphine treatments. However, PTX had no effect on etorphine-induced mu-opioid receptor down-regulation in brain, cord, or midbrain. These results suggest that PTX-sensitive G-proteins have a minimal role in agonist-induced mu-opioid receptor density regulation in vivo, but are critical in mediating acute and chronic functional effects of opioids such as analgesia and tolerance.  相似文献   

15.
Possible reversal of morphine-induced tolerance and dependence by bupropion was studied in mice. A 10-day repeated injection regimen was followed to induce morphine tolerance and dependence. Bupropion (2 and 5 mg/kg) per se, when chronically administered for 9 days, failed to produce any significant change in tail-flick latency compared with the control mice. Chronic administration of bupropion (2 or 5 mg/kg) during the induction phase (days 1-9) delayed the development of tolerance to the antinociceptive action of morphine and also reversed naloxone- (2 mg/kg) precipitated withdrawal jumps. On the other hand, acute administration of bupropion (2 or 5 mg/kg) on day 10, i.e., during the expression phase of morphine dependence, reduced the incidence of naloxone-precipitated withdrawal jumps without affecting tolerance to the analgesic effect. In conclusion, results of the present study suggest the potential use of bupropion in tolerance and dependence.  相似文献   

16.
Clinical use of morphine in pain management is a controversial issue. Both nicotine and morphine are widely abused. So, investigating the interaction between nicotinic and opioid receptors is of great interest to both basic mechanistic and clinical view. We investigated the influence of repeated administration of nicotine on the development of morphine tolerance and dependence. Adult male albino mice were rendered dependent on morphine by subcutaneous (s.c.) injections three times daily for 3 days. Repeated intraperitoneal (i.p.) injection of nicotine (0.001-2 mg/kg) or saline (1 ml/kg) was performed 15 min prior to each morphine injection. Maximal possible effect (MPE%) of morphine (50 mg/kg; s.c.) was used on the fourth day as an index for the development of tolerance. Likewise, to assess the occurrence of dependence in drug-treated mice, naloxone (5 mg/kg; i.p.) was injected 2 h after the last dose of morphine. Repeated nicotine administration significantly attenuated the development of tolerance in a dose-dependent manner whereas it significantly decreased withdrawal jumping behavior in a biphasic profile (V-shape) manner. Furthermore, the central nicotinic receptor antagonist mecamylamine (0.01-0.1 mg/kg; i.p.) neither the peripheral nicotinic receptor antagonist hexamethonium (0.01 and 0.1 mg/kg; i.p.) nor the muscarinic receptor antagonist atropine (2.5-10 mg/kg; i.p.), dose-dependently antagonized both the inhibition of withdrawal jumping as well as increase in MPE% which was produced by repeated nicotine administration (0.1 mg/kg; i.p.). On the other hand, 3 days of solely nicotine treatment resulted in significant jumping behavior precipitated by naloxone after single morphine injection on the test day. The data suggests that the inhibitory effect of nicotine on the morphine tolerance and dependence is mediated by central nicotinic receptors and there is a cross-dependence between nicotine and morphine.  相似文献   

17.
Previous studies had shown that pretreatment with midazolam inhibited morphine-induced tolerance and dependence. The present study was to investigate the role of spinal nitric oxide (NO) in the inhibitory effect of midazolam on the development of morphine-induced analgesia tolerance. Subcutaneous injection of 100 mg/kg morphine to mice caused an acute morphine-induced analgesia tolerance model. To develop chronic morphine tolerance in mice, morphine was injected for three consecutive days (10, 20, 50 mg/kg sc on Day 1, 2, 3, respectively). In order to develop chronic tolerance model in rats, 10 mg/kg of morphine was given twice daily at 12 h intervals for 10 days. Midazolam was intraperitoneally injected 30 min prior to administration of morphine. Tail-flick test, hot-plate and formalin test were conducted to assess the nociceptive response. Immunocytochemistry, histochemistry and western blot were performed to determine the effect of midazolam on formalin-induced expression of Fos protein, nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) and nitric oxide synthase (NOS) in chronic morphine-tolerant rats, respectively. The results showed that pretreatment with midazolam significantly inhibited the development of acute and chronic morphine tolerance in mice, which could be partially reversed by intrathecal injection of NO precursor L-arginine (L-Arg). In chronic morphine-tolerant rats, pretreatment with midazolam significantly decreased the formalin-induced expression of Fos and Fos/NADPH-d double-labeled neurons in the contralateral spinal cord and NADPH-d positive neurons in the bilateral spinal cord. Both inducible NOS (iNOS) and neuronal NOS (nNOS) protein levels in the spinal cord were significantly increased after injection of formalin, which could be inhibited by pretreatment with midazolam. The above results suggested that the decrease of the activity and expression of NOS contributed to the inhibitory effect of midazolam on the development of morphine tolerance.  相似文献   

18.
Yoon IS  Kim HS  Hong JT  Lee MK  Oh KW 《Pharmacology》2002,65(4):204-209
This study was performed to investigate the effect of muscimol on morphine-induced hyperactivity, reverse tolerance and postsynaptic dopamine receptor supersensitivity in mice. A single administration of morphine induced hyperactivity as measured in mice, and the morphine-induced hyperactivity was inhibited dose-dependently by the administration of the GABA(A) agonist, muscimol (0.3, 0.5 and 1.0 mg kg(-1) i.p.). However, daily repeated administration of morphine caused the development of reverse tolerance against morphine hyperactivity (10 mg kg(-1) s.c.). The administration of muscimol inhibited the development of reverse tolerance against morphine hyperactivity (10 mg kg(-1) s.c.) in mice that had received chronic administration of morphine. Postsynaptic dopamine receptor supersensitivity, as shown by the enhanced ambulatory activity after administration of apomorphine (2 mg kg(-1) s.c.), also developed in reverse-tolerant mice. Muscimol also inhibited the development of postsynaptic dopamine receptor supersensitivity induced by the chronic administration of morphine. These results suggest that the hyperactivity, reverse tolerance and postsynaptic dopamine receptor supersensitivity induced by morphine can be inhibited via the activation of GABA(A) receptors.  相似文献   

19.
The effect of theophylline on reward properties of morphine was examined in the present study. A biased conditioned place preference paradigm was used to study the effects of theophylline on the development of conditioned place preference by morphine in sensitized and tolerant female mice. Subcutaneous injection of morphine (0.5-10 mg/kg) induced conditioned place preference in mice, while intraperitoneal administration of theophylline (2.5-100 mg/kg) did not induce conditioned place preference or conditioned place aversion. Theophylline (2.5-100 mg/kg) in combination with morphine (5 mg/kg), during conditioning sessions, decreased the acquisition of morphine conditioned place preference dose independently. Administration of theophylline (2.5-100 mg/kg) before testing also caused a significant reduction of the expression of morphine-induced conditioned place preference in a dose-independent manner. Administration of morphine (12.5, 25 or 50 mg/kg) daily, for 3 days, produced tolerance to conditioned place preference induced by the drug (5 mg/kg). Administration of theophylline (2.5 and 10 mg/kg) 1 h before morphine (12.5, 25 mg/kg), during development of tolerance, abolished morphine tolerance. A higher dose of theophylline (100 mg/kg), however, did not alter morphine tolerance. In addition, theophylline (2.5, 10 and 100 mg/kg) failed to reduce tolerance to a higher dose of morphine (50 mg/kg). Daily administration of morphine (5 mg/kg) for 3 days followed by a 5-day interval caused sensitization to morphine place conditioning. When theophylline was administered (2.5, 10 and 100 mg/kg) 1 h before morphine (5 mg/kg), during development of sensitization, inhibition of morphine-induced sensitization was demonstrated. The effect of theophylline was dose independent. It is concluded that while theophylline has no effect by itself, it reduced both the acquisition and expression of morphine conditioned place preference. In addition, theophylline reduced the acquisition of morphine conditioned place preference in morphine-sensitized and morphine-tolerant mice.  相似文献   

20.
FK506 is an immunophilin-binding ligand that inhibits calcineurin and decreases nitric oxide (NO) production in the nervous tissues. We examined the effects in mice of systemic treatment with FK506 on the induction and expression of morphine (s.c.) tolerance and dependence and compared them with the effects of the non-specific NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), and specific inducible NO synthase inhibitor, aminoguanidine. FK506 (0.5-10 mg/kg, s.c.) exerted inhibitory effects on both development and expression of tolerance to morphine-induced antinociception. FK506 also significantly decreased the expression of morphine dependence, as assessed by naloxone-precipitated (2 mg/kg, i.p.) withdrawal syndrome, but a similar effect was not found for the development of morphine dependence. A similar pattern of effects was observed with L-NAME (3-20 mg/kg, i.p.), while aminoguanidine (50-100 mg/kg, i.p.) did not alter tolerance or dependence. Examining the possible interaction between their inhibitory effects on tolerance and dependence, we combined the subeffective doses of FK506 (0.5 or 1 mg/kg) with L-NAME (3 mg/kg) or aminoguanidine (100 mg/kg). The combination of FK506 with L-NAME, but not with aminoguanidine, significantly decreased the development and expression of tolerance and expression of dependence. These data show the effectiveness of FK506 on morphine tolerance and dependence and suggest an additive effect between FK506 and the inhibition of constitutive NO synthesis in this regard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号