首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 381 毫秒
1.
2.
The permeability properties of kainate/AMPA receptors are determined by subunit composition. The GluR1 and GluR3 subunits form Ca(2+)-permeable channels and exhibit inward rectification; heteromeric receptors containing the GluR2 subunit are Ca(2+)-impermeable and electrically linear. These observations raise the possibility of a developmental 'switch' in which turning on or off of GluR2 expression regulates the level of Ca2+ permeable kainate/AMPA receptors. We examined the ratio of GluR1 and GluR3 to GluR2 gene expression in developing and adult rat brain by in situ hybridization. A larger value of this ratio is likely to be associated with greater Ca2+ permeability. Our data suggest that in neocortex, striatum and cerebellum the number of Ca(2+)-permeable kainate/AMPA receptors is high at P4 and declines monotonically with age. In hippocampus, the number increases from P7 to P21, after which it declines. These findings provide evidence for a developmental 'switch' in which Ca2+ permeable glutamate receptors are turned off following early developmental events.  相似文献   

3.
Recent evidence suggests that Ca(2+)-permeable AMPA receptors display rapid, short-lasting current facilitation. In this study, we investigated the properties of AMPA receptor-mediated synaptic currents in medial septal neurons of the rat in an in vitro slice preparation. Immunocytochemistry with a selective antibody to the GluR2 subunit revealed that both choline acetyltransferase-containing and parvalbumin-containing neurons of the medial septum express no detectable GluR2 subunit immunoreactivity. We used whole cell voltage-clamp recordings to measure synaptically evoked AMPA receptor-mediated currents from medial septal neurons following stimulation of midline afferents. The GYKI 52466 (50 microM)- and 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) (20 microM)-sensitive AMPA receptor-mediated component of the synaptic response was isolated by blocking GABA(A)- and N-methyl-D-aspartate receptor-mediated currents with 30 microM bicuculline and 100 microM 2-amino-5-phosphonovaleric acid, respectively. In some cases, patched cells were filled with Lucifer yellow (0.1%) and imaged using 2-photon laser scanning microscopy. AMPA receptor-mediated currents that were observed in large medial septal neurons (20--30 microm) displayed rectification. These currents were sensitive to external application of philanthotoxin-343 (PhTx-343, 50 microM), a potent, high-affinity antagonist of Ca(2+)-permeable, GluR2-lacking AMPA receptors. Rectifying AMPA receptor-mediated currents also displayed a rapid increase in amplitude when evoked five times at low frequency such as 6 Hz. In contrast to currents observed in large medial septal neurons, AMPA-receptor mediated currents evoked in the remaining small (8--11 microm) neurons were nonrectifying and displayed rapid synaptic depression when stimulated five times at 6 Hz. The currents evoked in these cells were unaffected by external application of PhTx-343 and were therefore GluR2-containing AMPA receptors. The results of the present study demonstrate that the principal projection neurons of the medial septum contain PhTx-343-sensitive, GluR2-lacking AMPA receptors that display rapid current facilitation when stimulated at low frequencies.  相似文献   

4.
Local inhibition within the spinal cord dorsal horn is mediated by the neurotransmitters GABA and glycine and strongly influences nociceptive and temperature signaling. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are expressed by inhibitory interneurons and have been shown to modulate GABA release in other regions of the CNS. In the spinal cord, there is morphological evidence for presynaptic AMPA receptor subunits in GABAergic dorsal horn neurons, but functional data are lacking. To determine if AMPA receptors are indeed functional at presynaptic terminals of inhibitory neurons, we recorded evoked and miniature inhibitory postsynaptic currents (mIPSPs) in the superficial dorsal horn of the rat spinal cord. We show that AMPA receptor activation enhances spontaneous release of inhibitory amino acids in the presence of tetrodotoxin onto both lamina II neurons and NK1 receptor-expressing (NK1R+) lamina I neurons. This effect is sensitive to the concentration of extracellular Ca2+, yet is not fully blocked in most neurons in the presence of Cd2+, suggesting possible Ca2+ entry through AMPA receptors. Postsynaptic Ca2+ elevation is not required for these changes. AMPA-induced increases in mIPSP frequency are also seen in more mature dorsal horn neurons, indicating that these receptors may play a role in nociceptive processing in the adult. In addition, we have observed AMPA-induced depression of evoked release of GABA and glycine onto lamina I NK1R+ neurons. Taken together these data support a role for presynaptic AMPA receptors in modulating release of GABA and glycine in the superficial dorsal horn. Because inhibition in the dorsal horn is important for controlling pain signaling, presynaptic AMPA receptors acting to modulate the inhibitory inputs onto dorsal horn neurons would be expected to impact upon pain signaling in the spinal cord dorsal horn.  相似文献   

5.
The pathogenetic mechanisms leading to progressive neurodegeneration in amyotrophic lateral sclerosis (ALS) have not been fully elucidated. One possible factor responsible for the selective motor neuron loss in the motor cortex, brain stem and spinal cord is glutamate-induced excitotoxicity particularly mediated via alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) type glutamate receptors. Data about the expression pattern of AMPA receptors in the primary motor cortex are lacking so far. The pharmacological and physiological properties of AMPA receptors are defined by the heteromeric composition of the four different receptor subunits. Different expression patterns of these subunits at motor neurons may provide a molecular basis for increased vulnerability to excitotoxic damage. Using in situ hybridization histochemistry we did not detect any significant differences in the distribution of AMPA receptor mRNA in the motor cortex of ALS patients compared to controls.  相似文献   

6.
The properties of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors were examined in various cell types isolated from young rat hippocampus, striatum and cerebellum using patch-clamp and fast application techniques. A dicationic adamantane derivative, IEM-1460, reversibly inhibited kainate-induced currents. In the presence of 100 microM IEM-1460, kainate currents in striatal giant cholinergic interneurons and hippocampal non-pyramidal neurons were inhibited by 95% and 81%, respectively, at Vh = - 70 mV. Striatal GABAergic principal cells, hippocampal pyramidal neurons and cerebellar Purkinje cells had low sensitivity to IEM-1460 (inhibition by 4-15%). Analysis of averaged data from the cell types studied revealed a highly significant positive correlation (r= 0.93, P < 0.01) between percentage inhibition by 100 microM IEM-1460 and relative calcium permeability of AMPA receptors, P(Ca)/P(Na). Also, within each brain structure, the sensitivity of IEM-1460 block was lower the stronger the outward rectification of kainate currents. Some hippocampal neurons exhibited intermediate sensitivity to IEM-1460. Kainate currents were suppressed by 40% in the presence of 100 microM IEM-1460. Meanwhile, AMPA receptors in this cell type had low calcium permeability (P(Ca)/P(Na) = 0.13) and demonstrated outwardly rectifying kainate currents. The interrelation of different properties of AMPA receptors considering their assembly is discussed. The data obtained suggest that IEM-1460 may be a convenient and promising marker of native AMPA receptor assembly: it selectively inhibits Ca(2+)-permeable, GluR2-lacking AMPA receptors.  相似文献   

7.
To examine the role of Ca(2+) entry through AMPA receptors in the pathogenesis of the ischemia-induced cell death of hippocampal neurons, we delivered cDNA of Q/R site-unedited form (GluR2Q) of AMPA receptor subunit GluR2 in the hippocampus by using an HVJ-liposome-mediated gene transfer technique. Two days prior to transient forebrain ischemia, we injected an HVJ-liposome containing cDNA of the GluR2Q-myc fusion gene into a rat unilateral hippocampus. In the absence of ischemic insult, overexpression of Ca(2+)-permeable GluR2Q did not cause any neurodegeneration in the cDNA-injected hippocampus. In ischemic rats, overexpression of Ca(2+)-permeable GluR2Q markedly promoted ischemic cell death of CA1 pyramidal neurons, while complete rescue of CA1 pyramidal neurons from ischemic damage occurred in the hippocampal hemisphere opposite the GluR2Q expression. Overexpression of the Q/R-site edited form (GluR2R) of subunit GluR2 did not affect the ischemia-induced damage of CA1 pyramidal neurons. From these results, we suggest that the Ca(2+)-permeability of AMPA receptors does not have a direct contribution to glutamate receptor-mediated neurotoxicity but has a promotive action in the evolution of ischemia-induced neurodegeneration of vulnerable neurons.  相似文献   

8.
Amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) type glutamate receptors are ligand gated ion channels made up of various combinations of four subunits termed GluR1-4. The GluR2 subunit controls several key features of the receptor including calcium permeability and inward rectification. In the present study, we analysed by immunocytochemistry the cellular and subcellular distribution of the GluR2 subunit in neurons of the dorsal vagal complex of the rat. GluR2 immunoreactivity was found both in the neuropile and in neuronal cell bodies. Perikaryal staining was strong in the dorsal motor nucleus of the vagus nerve and moderate in the medial part of the nucleus tractus solitarii as well as in the area postrema. The lateral part of the nucleus tractus solitarii was almost devoid of immunoreactivity except for the interstitial subnucleus which was filled with numerous strongly immunoreactive perikarya and large cell processes. Ultrastructural examination was carried out in the interstitial subnucleus. Peroxidase staining indicative of GluR2 immunoreactivity was observed in neuronal cell bodies and dendrites. No labeled axon terminal or glial cell body was found. Additional experiments performed using pre-embedding immunogold showed that most of the labeling in immunoreactive dendrites was intracytoplasmic.These results indicate that GluR2 immunoreactivity is differentially distributed among neurons in the dorsal vagal complex, thereby suggesting differences in the functional properties of AMPA receptors between neuronal populations. These results also suggest that AMPA receptors, at least those containing the GluR2 subunit, have no major role as presynaptic receptors within this region. Finally, they indicate the existence of large intracellular pools of GluR2 subunits within dendrites of immunoreactive neurons.  相似文献   

9.
The subunit composition of the AMPA receptor is critical to its function. AMPA receptors that display very low calcium permeability include the GluR2 subunit, while AMPA receptors that contain other subunits, such as GluR1, display high calcium permeability. We have studied the distribution and morphology of neurons containing GluR1 in the hamster visual cortex with antibody immunocytochemistry. We compared this labeling to that for calbindin D28K, parvalbumin, and GABA. Anti-GluR1-immunoreactive (IR) neurons were located in all layers. The highest density of GluR1-IR neurons was found in layers II/III. The labeled neurons were non-pyramidal neurons, but were varied in morphology. The majority of the labeled neurons were round or oval cells. However, stellate, vertical fusiform, pyriform, and horizontal neurons were also labeled with the anti-GluR1 antibody. Two-color immunofluorescence revealed that many of the GluR1-IR neurons in the hamster visual cortex were double-labeled with either calbindin D28K (31.50%), or parvalbumin (22.91%), or GABA (63.89%). These results indicate that neurons in the hamster visual cortex express GluR1 differently according to different layers and selective cell types, and that many of the GluR1-IR neurons are limited to neurons that express calbindin D28K, parvalbumin, or GABA. The present study elucidates the neurochemical structure of GluR1, a useful clue in understanding the differential vulnerability of GluR1-containing neurons with regard to calcium-dependent excitotoxic mechanisms.  相似文献   

10.
T Endo  T Isa 《Neuroscience》2001,108(1):129-141
In the superficial superior colliculus, a center of sensory processing related to visual salience, glutamate is used as a major excitatory neurotransmitter. alpha-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors include a Ca(2+)-impermeable, outwardly rectifying type (type I) and a Ca(2+)-permeable, inwardly rectifying type (type II). To study the contribution of these AMPA receptor subtypes to visual sensory processing in the superior colliculus, we investigated the expression of these two types of AMPA receptors in six morphologically identified subgroups of neurons in the superficial superior colliculus by whole-cell recording using slice preparations of young (17-23 days old) and adult (60-68 days old) rats. Both outwardly and inwardly rectifying current responses were observed to pressure applied 10 mM kainate, a non-desensitizing AMPA receptor agonist. These currents were completely abolished by the selective AMPA receptor antagonist 1-(4-aminophenyl)-3-methylcarbamyl-4-methyl-7,8-methylenedioxy-3,4-dihydro-5H-2,3-benzodiazepine (100 microM). The type II receptor antagonist spermine (1 mM) suppressed inwardly rectifying responses. The degree of inward rectification was correlated with the ratio of suppression by spermine, and inversely correlated with estimated Ca(2+) permeability, indicating that the degree of rectification reflects the relative amount of co-expressed type I and type II receptors. An inwardly rectifying and spermine-sensitive AMPA component of excitatory postsynaptic currents was observed, suggesting involvement of type II receptors in synaptic transmission. Morphological analysis revealed that a substantial population of horizontal cells in both young and adult rats (n=31/53 and 15/17, respectively) and all wide field multipolar cells in adult rats (n=6) showed inwardly rectifying AMPA receptor responses.From these results we suggest that type I and type II AMPA receptors are co-expressed with varying ratios in individual neurons in the rat superficial superior colliculus, and that type II receptors are abundantly expressed in most horizontal cells and wide field multipolar cells. Since these neurons are putatively GABAergic inhibitory neurons and have wide dendritic trees, type II receptors may contribute to the regulation of remote inhibitory interaction in the visual field map in the the superficial superior colliculus.  相似文献   

11.
AMPA receptor-PDZ interactions in facilitation of spinal sensory synapses.   总被引:6,自引:0,他引:6  
Silent synapses form between some primary sensory afferents and dorsal horn neurons in the spinal cord. Molecular mechanisms for activation or conversion of silent synapses to conducting synapses are unknown. Serotonin can trigger activation of silent synapses in dorsal horn neurons by recruiting AMPA receptors. AMPA-receptor subunits GluR2 and GluR3 interact via their cytoplasmic C termini with PDZ-domain-containing proteins such as GRIP (glutamate receptor interacting protein), but the functional significance of these interactions is unclear. Here we demonstrate that protein interactions involving the GluR2/3 C terminus are important for serotonin-induced activation of silent synapses in the spinal cord. Furthermore, PKC is a necessary and sufficient trigger for this activation. These results implicate AMPA receptor-PDZ interactions in mechanisms underlying sensory synaptic potentiation and provide insights into the pathogenesis of chronic pain.  相似文献   

12.
There are many evidences implicating glutamatergic toxicity as a contributory factor in the selective neuronal injury occurring in amyotrophic lateral sclerosis (ALS). This neurodegenerative disorder is characterized by the progressive loss of motor neurons, whose pathogenesis is thought to involve Ca(2+) influx mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate receptors (AMPARs). In the present study we report alterations in the AMPARs function in a transgenic mouse-model of the human SOD1(G93A) familial ALS. Compared with those expressed in motor neurons carrying the human wild type gene, AMPAR-gated channels expressed in motor neurons carrying the human mutant gene exhibited modified permeability, altered agonist cooperativity between the sites involved in the process of channel opening and were responsible for slower spontaneous synaptic events. These observations demonstrate that the SOD1(G93A) mutation induces changes in AMPAR functions which may underlie the increased vulnerability of motor neurons to glutamatergic excitotoxicity in ALS.  相似文献   

13.
AMPA receptors (AMPARs) are the principal glutamate receptors mediating fast excitatory synaptic transmission in neurons. Aberrant extracellular glutamate has long been recognized as a hallmark phenomenon during neuronal excitotoxicity. Excessive glutamate triggers massive Ca2+ influx through NMDA receptors (NMDARs), which in turn can activate Ca2+-dependent protease, calpain. In the present study, we found that prolonged NMDA treatment (100 μ m , 10 min) caused a sustained and irreversible suppression of AMPAR-mediated currents in cortical pyramidal neurons, which was largely blocked by selective calpain inhibitors. Biochemical and immunocytochemical studies demonstrated that in cortical cultures, prolonged glutamate or NMDA treatment reduced the level of surface and total GluR1, but not GluR2, subunits in a calpain-dependent manner. Consistent with the in vitro data, in animals exposed to transient ischaemic insults, calpain was strongly activated, and the AMPAR current density and GluR1 expression level were substantially reduced. Moreover, calpain inhibitors blocked the ischaemia-induced depression of AMPAR currents, and the NMDAR-induced, calpain-mediated depression of AMPA responses was occluded in ischaemic animals. Taken together, our studies show that overstimulation of NMDARs reduces AMPAR functions in cortical pyramidal neurons through activation of endogenous calpain, and calpain mediates the ischaemia-induced synaptic depression. The down-regulation of AMPARs by calpain provides a negative feedback to dampen neuronal excitability in excitotoxic conditions like ischaemia and epilepsy.  相似文献   

14.
The role of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and kainate receptors in spinal nociceptive transmission in both normal animals and animals with carrageenan inflammation was investigated using the AMPA/kainate receptor antagonist 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2,3-dione (NBQX) and the selective GluR5 kainate receptor antagonist LY382884 [3S,4aR,6S,8aR-6-(4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8, 8a-deca-hydroisoquinoline-3-carboxylic acid]. In normal animals, spinal administration of 100 microg of LY382884 produced a significant inhibition of both the C-fibre-evoked response and post-discharge of dorsal horn neurons, with the wind-up of the neurons being reduced by both 50 and 100 microg of LY382884. The spinal actions of LY382884 were enhanced following 3 h of carrageenan inflammation, such that doses of 20 microg and above were able to produce significant inhibitions of the noxious-evoked response of the neurons. Spinal administration of NBQX in normal animals (5-50 microg) inhibited the C-fibre-evoked response of the dorsal horn neurons, but only 50 microg of NBQX was able to inhibit the wind-up and post-discharge of the neurons. Following 3 h of carrageenan inflammation, the ability of NBQX to inhibit the wind-up and post-discharge of the neurons was markedly enhanced. These data suggest that both AMPA and kainate GluR5 receptors play an enhanced role in spinal nociceptive processing following the development of peripheral inflammation, as antagonists at both receptors are more effective against nociceptive responses, including wind-up under these inflammatory conditions.  相似文献   

15.
Differences among the various striatal projection neuron and interneuron types in cortical input, function, and vulnerability to degenerative insults may be related to differences among them in AMPA-type glutamate receptor abundance and subunit configuration. We therefore used immunolabeling to assess the frequency and abundance of GluR1 and GluR2, the most common AMPA subunits in striatum, in the main striatal neuron types. All neurons projecting to the external pallidum (GPe), internal pallidum (GPi) or substantia nigra, as identified by retrograde labeling, possessed perikaryal GluR2, while GluR1 was more common in striato-GPe than striato-GPi perikarya. The frequency and intensity of immunostaining indicated the rank order of their perikaryal GluR1:GluR2 ratio to be striato-GPe > striatonigral > striato-GPi. Ultrastructural studies suggested a differential localization of GluR1 and GluR2 to striatal projection neuron dendritic spines as well, with GluR1 seemingly more common in striato-GPe spines and GluR2 more common in striato-GPi and/or striatonigral spines. Comparisons among projection neurons and interneurons revealed GluR1 to be most common and abundant in parvalbuminergic interneurons, and GluR2 most common and abundant in projection neurons, with the rank order for the GluR1:GluR2 ratio being parvalbuminergic interneurons > calretinergic interneurons > cholinergic interneurons > projection neurons > somatostatinergic interneurons. Striosomal projection neurons had a higher GluR1:GluR2 ratio than did matrix projection neurons. The abundance of both GluR1 and GluR2 in striatal parvalbuminergic interneurons and projection neurons is consistent with their prominent cortical input and susceptibility to excitotoxic insult, while differences in GluR1:GluR2 ratio among projection neurons are likely to yield differences in Ca2+ permeability, desensitization, and single channel current, which may contribute to differences among them in plasticity, synaptic integration, and excitotoxic vulnerability. The apparent association of the GluR1 subunit with synaptic plasticity, in particular, suggests striato-GPe neuron spines as a particular site of corticostriatal synaptic plasticity, presumably associated with motor learning.  相似文献   

16.
Activity-dependent insertion of AMPA-type glutamate receptors is thought to underlie long-term potentiation (LTP) at Schaffer collateral fiber synapses on pyramidal cells in the hippocampal CA1 region. Although it is widely accepted that the AMPA receptors at these synapses contain glutamate receptor type 2 (GluR2) subunits, recent findings suggest that LTP in hippocampal slices obtained from 2- to 3-wk-old rodents is dependent on the transient postsynaptic insertion and activation of Ca(2+)-permeable, GluR2-lacking AMPA receptors. Here we examined whether LTP in slices prepared from adult animals exhibits similar properties. In contrast to previously reported findings, pausing synaptic stimulation for as long as 30 min post LTP induction had no effect on LTP maintenance in slices from 2- to 3-mo-old mice. LTP was also not disrupted by postinduction application of a selective blocker of GluR2-lacking AMPA receptors or the broad-spectrum glutamate receptor antagonist kynurenate. Although these results suggest that the role of GluR2-lacking AMPA receptors in LTP might be regulated during postnatal development, LTP in slices obtained from 15- to 21-day-old mice also did not require postinduction synaptic stimulation or activation of GluR2-lacking AMPA receptors. Thus the insertion and activation of GluR2-lacking AMPA receptors do not appear to be fundamental processes involved in LTP at excitatory synapses in the hippocampal CA1 region.  相似文献   

17.
Previous evidence has suggested that glutamate-driving neurotransmission and glutamate-excitotoxicity are modulated by substance P in the basal ganglia, but the assembly of glutamate receptors mediating this process remains to be delineated. By using a double immunofluorescence, cellular expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunits (GluR1-4) in substance P receptor (SPR)-containing neurons was examined in the striatum of rats. It revealed that distribution of SPR-immunoreactive neurons completely overlapped with that of GluR1, 2, 3 or 4-immunoreactive neurons in the caudate-putamen. Neurons showing both SPR and AMPA receptor subunits (except of GluR3)-immunoreactivity were observed: all (100%) of SPR-positive neurons displayed GluR1-, GluR2- or GluR4-immunoreactivity, and the double-labeled neurons constituted about 33, 3 or 29% of total GluR-positive ones. In contrast, the neurons exhibiting both SPR- and GluR3-immunoreactivity were not detected, though numerous GluR3-positive neurons were still distributed in the caudate-putamen regions. Co-localization of SPR and distinct AMPA receptor subunits in the striatal neurons has provided a basis for functional modulation of neuronal APMA receptors by substance P in the caudate-putamen of rodents. Taken together with previous observations, this study has also suggested that, through interaction with AMPA receptors composed of subunits 1, 2 and 4, substance P or neurokinin peptides may play important roles in regulating neuronal properties and protecting neurons from excitotoxicity in the basal ganglia of mammals.  相似文献   

18.
It has been recognized for some years that a prolonged Ca(2+) elevation that is predictive of impending cell death develops in cultured neurons following excitotoxic insult. In addition, neurons exhibit enhanced sensitivity to excitotoxic insult with increasing age in culture. However, little is known about the processes that selectively regulate the post-insult Ca(2+) elevation and therefore, it remains unclear whether it is associated specifically with age-dependent toxicity.Here, we tested the hypothesis that a group I metabotropic glutamate receptor antagonist selectively modulates the prolonged Ca(2+) elevation in direct association with its protective effects against excitotoxicity. Rat hippocampal cultures of two ages (8-9 and 21-28 days in vitro) were exposed to a 5-min glutamate insult (400 microM in younger and 10 microM in older cultures) sufficient to kill >50% of the neurons, and were treated with vehicle or the specific group I metabotropic glutamate receptor antagonist 1-aminoindan-1,5-dicarboxylic acid (AIDA; 1 mM), throughout and following the insult. Neuronal survival was quantified 24 h after insult. In parallel studies, neurons of similar age in culture were imaged ratiometrically with a confocal microscope during and for 60 min after the glutamate insult. A large post-insult Ca(2+) elevation was present in older but not most younger neurons. The N-methyl-D-aspartate receptor antagonist, MK-801, blocked the Ca(2+) elevation both during and following the insult. In contrast, AIDA blocked only the post-insult prolonged Ca(2+) elevation in older neurons. Moreover, AIDA was neuroprotective in older but not younger cultures.From these results we suggest that the post-insult Ca(2+) elevation is regulated differently from the Ca(2+) elevation during glutamate insult and is modulated by group I metabotropic glutamate receptors. Further, the prolonged Ca(2+) elevation appears to be directly linked to an age-dependent component of vulnerability.  相似文献   

19.
It has been observed that motor neuron death is induced in adult rats by ventral root avulsion which involves pulling out the spinal cord root. Since motor neurons are reported to be selectively vulnerable to alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor-mediated injury in vitro, we investigated changes in the expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-receptor subunits in rat spinal motor neurons after ventral root avulsion. The L4-L5 ventral roots of adult Sprague-Dawley rats were avulsed by an extravertebral extraction procedure. After an appropriate survival time, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-receptor subunits were detected immunohistochemically in the L4-L5 segments. Ventral root avulsion resulted in a 60% loss of motor neurons by 14 days after surgery. GluR2 labeling in motor neurons was markedly decreased after avulsion, but before the onset of motor neuron death, while the GluR1 and GluR4 labeling of motor neurons remained unchanged. Intrathecal administration of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-receptor antagonists rescued a significant number of injured motor neurons from cell death. In contrast, N-methyl-D-aspartate-receptor antagonists did not prevent motor neuron death. Since the presence of GluR2 subunit renders heteromeric alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors Ca(2+)-impermeable, the downregulation of GluR2 may result in increased formation of GluR2-lacking, Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors in motor neurons and could contribute to motor neuron death after ventral root avulsion.  相似文献   

20.
A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by direct retinal ganglion cell projection to the suprachiasmatic nucleus (SCN). This synaptic connection is glutamatergic and the release of glutamate is detected by both N-methyl-D-asparate (NMDA) and amino-methyl proprionic acid/kainate (AMPA/KA) iontotropic glutamate receptors (GluRs). It is well established that NMDA GluRs play a critical role in mediating the effects of light on the circadian system; however, the role of AMPA/KA GluRs has received less attention. In the present study, we sought to better understand the contribution of AMPA/KA-mediated currents in the circadian system based in the SCN. First, whole cell patch-clamp electrophysiological techniques were utilized to measure spontaneous excitatory postsynaptic currents (sEPSCs) from SCN neurons. These currents were widespread in the SCN and not just restricted to the retino-recipient region. The sEPSC frequency and amplitude did not vary with the daily cycle. Similarly, currents evoked by the exogenous application of AMPA onto SCN neurons were widespread within the SCN and did not exhibit a diurnal rhythm in their magnitude. Fluorometric techniques were utilized to estimate AMPA-induced calcium (Ca(2+)) concentration changes in SCN neurons. The resulting data indicate that AMPA-evoked Ca(2+) transients were widespread in the SCN and that there was a daily rhythm in the magnitude of AMPA-induced Ca(2+) transients that peaked during the night. By itself, blocking AMPA/KA GluRs with a receptor blocker decreased the spontaneous firing of some SCN neurons as well as reduced resting Ca(2+) levels, suggesting tonic glutamatergic excitation. Finally, immunohistochemical techniques were used to describe expression of the AMPA-preferring GluR subunits GluR1 and GluR2/3s within the SCN. Overall, our data suggest that glutamatergic synaptic transmission mediated by AMPA/KA GluRs play an important role throughout the SCN synaptic circuitry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号