首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regional CMRglc (rCMRglc) values were determined with positron emission tomography (PET) in 10 patients with mild to moderate clinically diagnosed Alzheimer's disease (AD) and in 26 healthy controls. rCMRglc in frontal, parietal, and temporal association cortices were significantly more laterally asymmetrical in AD patients than in controls (p less than 0.05). Furthermore, lateral asymmetry of rCMRglc in AD patients but not in the control subjects correlated significantly with asymmetry of language and visuospatial functions such that lower left than right rCMRglc was associated with relatively greater impairment of language and vice versa. The results demonstrate that discrepancies between language and visuospatial deficits in patients with early AD are related to asymmetrical reductions in cerebral cortical glucose metabolism.  相似文献   

2.
Lyoo CH  Ryu YH  Lee MS 《Journal of neurology》2011,258(10):1871-1876
The pathology of Parkinson’s disease (PD) is not confined to the nigrostriatal dopaminergic pathway, but also involves widespread cerebral cortical areas. Such non-nigrostriatal lesions may contribute to disabling dopa-resistant parkinsonian motor deficits. We performed cortical thickness analysis to identify cerebral cortical brain areas in which thickness correlates with the severity of parkinsonian motor deficits. We performed T1-weighted brain magnetic resonance imaging studies in 142 PD patients. Motor scores on the Unified Parkinson’s Disease Rating Scale (UPDRS) were measured, and subscores were calculated for bradykinesia, rigidity, tremor, and axial motor deficits. Using FreeSurfer software, we studied cortical areas in which thickness correlates with disease duration or the severity of parkinsonian motor deficits. The cortical thickness of the parieto-temporal association cortex, including the inferior parietal and posterior parietal cortices, showed a negative correlation with disease duration, total UPDRS motor score, and UPDRS subscores for bradykinesia and axial motor deficits. We found no cortical areas in which thickness correlated with subscores for tremor and rigidity. In addition to nigrostriatal dopaminergic deficit, progressive thinning of the parieto-temporal sensory association cortices related to disease duration seems to be related in part to the exacerbation of bradykinesia and the axial motor symptoms of PD.  相似文献   

3.
Imaging studies have reported marked reductions in brain glucose metabolism in Alzheimer's Disease (AD). However, less is known about disruptions in the patterns of brain metabolic activity. Here we questioned whether AD affects the patterns of homogeneity/heterogeneity in brain metabolism. PET images of 35 AD subjects were compared with those of 35 controls. A template was applied to extract a cortical rim, which was partitioned into 990 contiguous regions. Estimates of metabolic homogeneity were obtained using the coefficient of variation (CV). The CV of the entire cortex was found to be significantly larger in AD, suggesting increased heterogeneity at the whole brain level. In contrast, regional CV was significantly lower in AD in temporal and parietal cortices, which were the regions that along with the precuneus had the largest metabolic decrements, though the precuneus had increased CV. The enhanced heterogeneity for the global cortical pattern most likely reflects variability in the degree of pathology among brain regions as well as neuroanatomical disconnection. The enhanced homogeneity in parietal and temporal cortices is likely to reflect loss of regional differentiation (i.e. macrocolumnar disorganization). The enhanced CV in precuneus, despite its marked reductions in metabolism, suggests that increases in regional homogeneity in parietal and temporal cortices are not a mere reflection of the decrement in metabolism.  相似文献   

4.
Data concerning 7 patients with a diagnosis of presumptive Alzheimer's disease (mean age, 65.6 years) are presented in detail in relation to the patients' regional cerebral metabolic rates for glucose. Rates were measured by positron emission tomography with fluorine 18-labeled fluoro-2-deoxy-D-glucose under conditions of reduced visual and auditory stimulation. A relationship was found between severity of dementia and brain metabolism. In patients with mild to moderate Alzheimer's disease, memory and intellectual deficits were evident without major reductions in absolute metabolic rates, while ratios of regional to whole brain metabolism revealed reductions in regions of the parietal lobes. In the late, severe form of the disease, brain metabolic rates were consistently and significantly reduced. The findings suggest that memory and intellectual deficits are reflected in reductions of brain metabolism in some brain regions in mild to moderate forms of Alzheimer's disease and that, in the late, severe form of the disease, reductions occur consistently throughout the brain.  相似文献   

5.
The effects of D,L-2-amino-7-phosphonoheptanoic acid (AP7), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, and MK-801, a non-competitive NMDA receptor antagonist, on regional brain metabolism were studied in unanesthetized, freely moving rats by using the quantitative [14C]2-deoxyglucose autoradiographic procedure. AP7 (338 or 901 mg/kg) produced a dose-dependent decrease of metabolic activity throughout most of the regions studied including sensory, motor, and limbic cortices. In contrast, MK-801 (0.1 or 1.0 mg/kg) resulted in a dose-dependent decrease of metabolic activity in sensory cortices, and an increase in limbic regions such as the hippocampal stratum lacunosum moleculare and entorhinal cortex. MK-801 also produced a biphasic response in agranular motor cortex, whereby the low dose increased while the high dose decreased labeling. In addition, MK-801 produced heterogeneous effects on regional cerebral metabolism in sensory cortices. Metabolic activity decreased in layer IV relative to layer Va following MK-801 treatment in primary somatosensory (SI) and visual (VI) cortices, suggesting a shift in activity from afferent fibers innervating layer IV to those innervating layer Va. MK-801 administration also decreased metabolic activity in granular SI relative to dysgranular SI, and in VI relative to secondary visual cortex (VII), thus providing a relative sparing of activity in dysgranular SI and VII. Thus, the non-competitive NMDA receptor antagonist suppressed activity from extrinsic neocortical sources, enhancing relative intracortical activity and stimulating limbic regions, while the competitive NMDA antagonist depressed metabolic activity in all cortical regions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In Alzheimer's disease (AD), brain atrophy has been proposed to be left lateralized. Here, we reinvestigated the asymmetry and lateralization (i.e., asymmetry directed toward one hemisphere) of grey-matter (GM) distribution in 35 patients with AD, 24 patients with amnestic mild cognitive impairment (aMCI, a state of increased risk for AD), and 30 age-matched healthy controls (HC). We analyzed GM distribution by applying voxel-based morphometry (VBM) including analyses for asymmetry and lateralization. When comparing MCI with AD patients, VBM revealed GM loss in the entorhinal, temporoparietal, dorsofrontal, and occipital cortices as well as in the precuneus; when comparing HCs with MCI patients, we found similar differences, which were less pronounced especially within the temporoparietal cortex and precuneus. Analyses of regional asymmetry and regional lateralization as well as global lateralization did not yield significant results. However, lobar asymmetry of the temporal, parietal, and occipital lobes increased from HC to AD. Moreover, in aMCI and AD patients, performance of language-based neuropsychological tests correlated with lateralization of GM loss to the left hemisphere. We conclude that, in principle, brain atrophy in AD is asymmetric rather than lateralized. At the individual level however, asymmetry contributes to cognitive deficits.  相似文献   

7.
BACKGROUND: Methamphetamine (MA) abusers have cognitive deficits, abnormal metabolic activity and structural deficits in limbic and paralimbic cortices, and reduced hippocampal volume. The links between cognitive impairment and these cerebral abnormalities are not established. METHODS: We assessed cerebral glucose metabolism with [F-18]fluorodeoxyglucose positron emission tomography in 17 abstinent (4 to 7 days) methamphetamine users and 16 control subjects performing an auditory vigilance task and obtained structural magnetic resonance brain scans. Regional brain radioactivity served as a marker for relative glucose metabolism. Error rates on the task were related to regional radioactivity and hippocampal morphology. RESULTS: Methamphetamine users had higher error rates than control subjects on the vigilance task. The groups showed different relationships between error rates and relative activity in the anterior and middle cingulate gyrus and the insula. Whereas the MA user group showed negative correlations involving these regions, the control group showed positive correlations involving the cingulate cortex. Across groups, hippocampal metabolic and structural measures were negatively correlated with error rates. CONCLUSIONS: Dysfunction in the cingulate and insular cortices of recently abstinent MA abusers contribute to impaired vigilance and other cognitive functions requiring sustained attention. Hippocampal integrity predicts task performance in methamphetamine users as well as control subjects.  相似文献   

8.
OBJECTIVES: To discuss whether there are similarities between the functional brain abnormalities detectable in association with the diagnoses of heart failure (HF) and Alzheimer's disease (AD), focusing particularly on neuroimaging findings in vivo. METHODS: Using an electronic database (Medline), we reviewed imaging studies that have evaluated resting cerebral blood flow (CBF), resting glucose metabolism or amyloid deposition in groups of subjects suffering AD or HF compared with healthy controls. RESULTS: Single photon emission computed tomography (SPECT) investigations have reported global CBF reductions in HF groups compared with controls. In one recent SPECT study using modern voxel-based methods for image analysis, regional CBF deficits in the pre-cuneus and posterior cingulate gyrus were detected in a sample of HF sufferers relative to controls. The regional distribution of functional deficits in the latter study was similar to that found in many positron emission tomography (PET) investigations of glucose metabolism at early AD stages, as well as in recent PET investigations of amyloid deposition in AD. DISCUSSION: Imaging studies have rarely investigated whether there are localized functional brain deficits in association with HF. Recent regional CBF SPECT data provide preliminary anatomic support to a view that AD-like brain changes may develop in HF patients, possibly as a consequence of chronic CBF reductions. Additional studies of larger HF samples are needed to confirm this possibility, preferably using PET measures that have afforded greater sensitivity and specificity to identify brain functional abnormalities associated with the diagnosis of AD, such as indices of glucose metabolism and amyloid deposition.  相似文献   

9.
Seeking antemortem markers to distinguish Dementia with Lewy bodies (DLB) and Alzheimer's disease (AD), we examined brain glucose metabolism of DLB and AD. Eleven DLB patients (7 Lewy body variant of AD [LBVAD] and 4 pure diffuse Lewy body disease [DLBD]) who had antemortem position emission tomography imaging and autopsy confirmation were compared to 10 autopsy-confirmed pure AD patients. In addition, 53 patients with clinically-diagnosed probable AD, 13 of whom later fulfilled clinical diagnoses of DLB, were examined. Autopsy-confirmed AD and DLB patients showed significant metabolic reductions involving parietotemporal association, posterior cingulate, and frontal association cortices. Only DLB patients showed significant metabolic reductions in the occipital cortex, particularly in the primary visual cortex (LBVAD -23% and DLBD -29% vs AD -8%), which distinguished DLB versus AD with 90% sensitivity and 80% specificity. Multivariate analysis revealed that occipital metabolic changes in DLB were independent from those in the adjacent parietotemporal cortices. Analysis of clinically diagnosed probable AD patients showed a significantly higher frequency of primary visual metabolic reduction among patients who fulfilled later dinical criteria for DLB. In these patients, occipital hypometabolism preceded some clinical features of DLB. Occipital hypometabolism is a potential antemortem marker to distinguish DLB versus AD.  相似文献   

10.
Structures of the medial temporal lobes are recognized to play a central role in memory processing and to be the primary sites of deterioration in Alzheimer disease (AD). Mild cognitive impairment (MCI) represents potentially an intermediate state between normal aging and AD. Proton magnetic resonance spectroscopy (MRS) was used to examine brain metabolic changes in patients with AD and MCI in the medial temporal lobes (MTLs), parietotemporal cortices (PTCs) and prefrontal cortices (PFCs). Fourteen patients with MCI, 14 patients with mild AD and 14 age- and sex-matched control subjects were studied. Patients with AD and MCI demonstrated significant reductions of NAA/H(2)O and Cho/H(2)O in the left MTL relative to control subjects. Patients with AD showed mI/H(2)O increases relative to patients with MCI and control subjects in all six regions investigated, and a statistically significant mI/H(2)O increase was measured in the right PTC. Patients with AD and MCI demonstrated the same metabolic pattern in the left MTL, suggesting a similar pathological process underlying memory impairment. Increased mI signal appears to be a neurochemical abnormality associated mostly with AD and the dementia process. Some interhemispheric metabolite asymmetries were increased in AD patients.  相似文献   

11.
Chromosome 22q11.2 deletion syndrome (22q11DS) is associated with cognitive deficits and morphometric brain abnormalities in childhood and a markedly elevated risk of schizophrenia in adolescence/early adulthood. Determining the relationship between neurocognition and neuroimaging findings would yield crucial information about childhood neurodevelopment and provide a basis for the study of the trajectory that occurs on the pathway to psychosis. We compared morphometric brain findings between non-psychotic children with 22q11DS (n = 22) and healthy controls (n = 16), and examined the association between neurocognitive functioning and morphometric brain findings. Volumetric regional gray matter differences between the 22q11DS and control subjects were measured, and correlations of the regional gray matter volumes and neurocognition were performed. Children with 22q11DS demonstrated reductions in gray matter in several brain regions, chiefly the frontal cortices, the cingulate gyrus and the cerebellum. The volumetric reductions in these salient areas were associated with poor performance in sustained attention, executive function and verbal memory; however, the relation of brain volume with cognitive performance did not differ between the patient and control groups. Thus, children with 22q11DS demonstrate gray matter reductions in multiple brain regions that are thought to be relevant to schizophrenia. The correlation of these volumetric reductions with poor neurocognition indicates that these brain regions may mediate higher neurocognitive functions implicated in schizophrenia.  相似文献   

12.
OBJECTIVE: Because neuroleptic treatment may cause long-lasting changes in brain structure and function, a group of patients with schizophrenia who had never been medicated was recruited to examine regional glucose metabolic rates in the frontal-striato-thalamic circuit. METHOD: Twelve never medicated patients with schizophrenia (seven men, five women; mean age=29 years) and 13 normal volunteers (eight men and five women; mean age=28.5 years) underwent (18)F-fluorodeoxyglucose (FDG) positron emission tomography, and coregistered anatomical magnetic resonance imaging scans were also obtained. During FDG uptake, subjects performed a spatial attention task previously shown to activate the pulvinar region of the thalamus. RESULTS: Diminished regional glucose metabolism was found in the medial dorsal nucleus, posterior thalamus, and prefrontal cortex of patients with schizophrenia relative to normal volunteers, extending earlier results from studies of medicated and previously medicated patients. CONCLUSIONS: The finding of lower relative metabolic rates in the frontothalamic circuits of patients with schizophrenia is consistent with extended circuit deficits involving interactions of frontal executive areas with thalamic sensory and association processes.  相似文献   

13.
Corpus callosum (CC) atrophy by magnetic resonance imaging (MRI) is a common finding in multiple sclerosis (MS). In order to examine the relationship between CC atrophy and cortical brain metabolism, we compared the cerebral metabolic rates for glucose (CMRglc), measured by positron emission tomography (PET), of 8 MS patients with evidence of CC atrophy on midsagittal MRI, 8 MS patients without CC atrophy and 10 healthy controls. Results showed no significant differences in supratentorial CMRglc absolute values between the three groups, although a slight metabolic reduction was observed in both MS groups compared with normal controls. By contrast, only patients with CC atrophy showed greater directional metabolic asymmetry than normals, the left frontal, temporal and parietal association cortices being significantly lower than the right. Predominant left hemispheric metabolic reductions were not accompanied by a corresponding left-sided predominance in the extent of MRI-detected demyelinating lesions. Therefore our data suggest that CC atrophy interfers more with left than with right metabolic function.  相似文献   

14.
Idiopathic torsion dystonia and Huntington’s disease represent autosomal dominant inherited hyperkinetic disorders that vary considerably with regard to pathologic mechanisms and clinical penetrance. To study these mechanisms, non-manifesting DYT1 mutation carriers (nmDYT1) and presymptomatic HD gene carriers (p-HD), as well as age-matched controls were scanned with (i) FDG PET in the resting state, and (ii) 15O-labeled water PET while performing a motor sequence learning task and motor execution task. We used voxel-based principal components analysis (PCA) to isolate the effects of genotype on regional metabolism in the resting state and on patterns of activation during motor performance.We detected two specific genotype-related metabolic patterns in the resting state. The torsion dystonia-related pattern was characterized by hypermetabolism of the basal ganglia, cerebellum and the supplementary motor area (SMA). By contrast, the voxel-based HD-related pattern displayed reductions in caudate and putamen metabolic activity associated with relative increases in the thalamus, the calcarine cortex, and primary motor cortex.Both mutations were associated with sequence learning deficits compared to controls. Carriers of each genotype activated different networks while performing the sequence learning task. In nmDYT1, learning was associated with activation of a specific network involving the cerebellar hemispheres, the left pre-SMA and anterior cingulate region, as well as inferior prefrontal and occipital association cortices. In p-HD, the learning network involved activation of the orbitofrontal and occipital association regions bilaterally, the left mediodorsal thalamus, and the right cerebellar hemisphere.These topographies illustrate the utility of PCA in identifying functional abnormalities in fronto-striatal loops and related pathways.  相似文献   

15.
BACKGROUND: Studies in abstinent methamphetamine (METH) users have demonstrated reductions in brain dopamine transporter (DAT) binding potential (BP), as well as cognitive and motor deficits, but it is not yet clear whether cognitive deficits and brain DAT reductions fully reverse with sustained abstinence, or whether behavioral deficits in METH users are related to dopamine (DA) deficits. This study was conducted to further investigate potential persistent psychomotor deficits secondary to METH abuse, and their relationship to brain DAT availability, as measured using quantitative PET methods with [(11)C]WIN 35428. METHODS: Twenty-two abstinent METH users and 17 healthy non-METH using controls underwent psychometric testing to test the hypothesis that METH users would demonstrate selective deficits in neuropsychiatric domains known to involve DA neurons (e.g., working memory, executive function, motor function). A subset of subjects also underwent PET scanning with [(11)C]WIN 35428. RESULTS: METH users were found to have modest deficits in short-term memory, executive function, and manual dexterity. Exploratory correlational analyses revealed that deficits in memory, but not those in executive or motor function, were associated with decreases in striatal DAT BP. CONCLUSIONS: These results suggest a possible relationship between DAT BP and memory deficits in abstinent METH users, and lend support to the notion that METH produces lasting effects on central DA neurons in humans. As METH can also produce toxic effects on serotonin (5-HT) neurons, further study is needed to address the potential role of brain 5-HT depletion in cognitive deficits in abstinent METH users.  相似文献   

16.
Regional cerebral metabolic rates for glucose (rCMRglc), as measured with positron emission tomography, and neuropsychological function were studied longitudinally (range, 15 to 48 months) in 11 mildly impaired patients with dementia of the Alzheimer type (DAT) and compared with results from patients with moderate and severe DAT and from controls. At initial evaluation, association cortex metabolic asymmetries were greater in patients with DAT than in controls for all dementia severities and correlated significantly with neuropsychological discrepancies between visuospatial and language abilities in patients with moderate dementia. In mildly impaired patients, right-left metabolic asymmetries in the association cortices were directionally stable and became more pronounced over time. At initial evaluation, these patients had significant impairment, relative to controls, on tests of memory and attention to complex tasks but not on tests of language and visuospatial function. Memory, attention, language, and visuospatial impairments, however, all worsened significantly over time. In mildly impaired patients, correlations between right-left metabolic asymmetries and neuropsychological discrepancies were insignificant initially but were significant at last evaluation. These results demonstrate that heterogeneous nonmemory language and visuospatial impairments in early DAT are related to and predicted by the earlier-appearing distribution of metabolic reductions in the association neocortex.  相似文献   

17.
CONTEXT: The staging of Alzheimer disease (AD) dementia could be improved by a neurometabolic analysis using magnetic resonance spectroscopy. OBJECTIVE: To examine the correlation between regional cerebral metabolic alterations measured by proton magnetic resonance spectroscopy and neuropsychological dysfunctions in patients with early AD. DESIGN: A case-control study. SETTING: University hospital neurology clinic and radiology department. PARTICIPANTS: A cohort of 14 patients with mild AD and 14 control subjects paired for age and sex. INTERVENTIONS: Single-voxel proton magnetic resonance spectroscopic brain examination (60 minutes) and a comprehensive battery of psychometric tests (2 hours). MAIN OUTCOME MEASURES: Metabolite ratios relative to unsuppressed water were calculated for magnetic resonance spectroscopic metabolites (N-acetylaspartate, choline, creatine-phosphocreatine, and myo-inositol) in the medial temporal lobes (MTLs), parietotemporal cortices (PTCs), and frontal cortices of both hemispheres. Correlations were examined between metabolic changes in an area and psychometric scores of its known regional function: MTL and verbal memory, PTC and language and visuoconstructional abilities, and frontal cortices and executive functions. RESULTS: A significant reduction of N-acetylaspartate/water (H2O) in the left MTL and of choline/H2O in both MTLs, as well as a significant increase of myo-inositol/H2O in the right PTC were observed. Metabolic alterations in the left MTL were correlated with a loss of verbal memory, in the left PTC with language impairment, and in the right PTC with a loss of visuoconstructional abilities in the group with AD. CONCLUSION: These findings are consistent with regional distribution of neuropathologic changes and cognitive symptoms characterizing early phases of AD, and with the pattern of lateralization of normal brain function.  相似文献   

18.
The relation between dementia severity and regional cerebral metabolic rate of glucose was studied in 28 patients with vascular dementia (VD) in comparison with 20 age-matched patients who were suffering from Alzheimer's disease (AD) and 24 normal subjects by using positron emission tomography with fludeoxyglucose F 18. Similar metabolic impairment was found in the temporoparietal and frontal association cortex in patients with VD and in those with AD. Metabolism of the basal ganglia, thalamus, and cerebellum was reduced significantly in patients with VD only. The total volume of regions with metabolism below the 95% confidence interval of control values was significantly related to the severity of dementia but did not differ between patients with VD and those with AD. A metabolic ratio of regional cerebral glucose metabolism of association areas divided by regional cerebral glucose metabolism of structures that were typically not affected by AD was significantly lower in patients with AD than in those with VD. This ratio was also related to dementia severity in both types of dementia.  相似文献   

19.
BACKGROUND: As a test of plausibility for the hypothesis that schizophrenia can result from abnormal brain, especially cerebral cortical, development, these studies examined whether, in the rat, disruption of brain development initiated on embryonic day (E) 17, using the methylating agent methylazoxymethanol acetate (MAM), leads to a schizophrenia-relevant pattern of neural and behavioral pathology. Specifically, we tested whether this manipulation leads to disruptions of frontal and limbic corticostriatal circuit function, while producing schizophrenia-like, region-dependent reductions in gray matter in cortex and thalamus. METHODS: In offspring of rats administered MAM (22 mg/kg) on E17 or earlier (E15), regional size, neuron number and neuron density were determined in multiple brain regions. Spontaneous synaptic activity at prefrontal cortical (PFC) and ventral striatal (vSTR) neurons was recorded in vivio. Finally, cognitive and sensorimotor processes mediated by frontal and limbic corticostriatal circuits were assessed. RESULTS: Adult MAM-E17-exposed offspring showed selective histopathology: size reductions in mediodorsal thalamus, hippocampus, and parahippocampal, prefrontal, and occipital cortices, but not in sensory midbrain, cerebellum, or sensorimotor cortex. The prefrontal, perirhinal, and occipital cortices showed increased neuron density with no neuron loss. The histopathology was accompanied by a disruption of synaptically-driven "bistable membrane states" in PFC and vSTR neurons, and, at the behavioral level, cognitive inflexibility, orofacial dyskinesias, sensorimotor gating deficits and a post-pubertal-emerging hyper-responsiveness to amphetamine. Earlier embryonic MAM exposure led to microcephaly and a motor phenotype. CONCLUSIONS: The "MAM-E17" rodent models key aspects of neuropathology in circuits that are highly relevant to schizophrenia.  相似文献   

20.
Inconsistent response in freezing of gait (FOG) with levodopa treatment or STN DBS makes the pathogenesis difficult to understand. We studied brain areas associated with the expression of STN DBS effect on parkinsonian motor deficits and FOG. Ten Parkinson's disease patients with typical FOG were included. One month before STN DBS, we performed [(18)F]-deoxyglucose PET scans and measured the UPDRS motor and modified FOG (mFOG) scores during levodopa off and on periods. At two months after STN DBS, same rating scores were measured. The percentage improvement of mFOG and UPDRS motor scores by STN DBS during levodopa off period was calculated. We searched for brain areas in which glucose metabolism correlated with the improvement of mFOG and UPDRS motor scores by DBS. During levodopa off period, STN DBS improved the UPDRS motor scores by 32.3% and the mFOG scores by 56.6%. There was no correlation between the improvements of both scores. The improvement of UPDRS motor score by DBS correlated with the metabolic activities of rostral supplementary motor area (Brodmann's area 8; BA8), anterior cingulate cortex (BA32), and prefrontal cortex (BA9). On the other hand, there was a positive correlation between the improvement of mFOG score by DBS and the metabolic activity of the parietal, occipital, and temporal sensory association cortices. In conclusion, dysfunction of different cerebral cortical areas limits the beneficial effects of DBS on parkinsonian motor deficits and FOG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号