首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Congenital ataxias are nonprogressive neurological disorders characterized by neonatal hypotonia, developmental delay and ataxia, variably associated with intellectual disability and other neurological or extraneurological features. We performed trio‐based whole‐exome sequencing of 12 families with congenital cerebellar and/or vermis atrophy in parallel with targeted next‐generation sequencing of known ataxia genes (CACNA1A, ITPR1, KCNC3, ATP2B3 and GRM1) in 12 additional patients with a similar phenotype. Novel pathological mutations of ITPR1 (inositol 1,4,5‐trisphosphate receptor, type 1) were found in seven patients from four families (4/24, ~16.8%) all localized in the IRBIT (inositol triphosphate receptor binding protein) domain which plays an essential role in the regulation of neuronal plasticity and development. Our study expands the mutational spectrum of ITPR1‐related congenital ataxia and indicates that ITPR1 gene screening should be implemented in this subgroup of ataxias.  相似文献   

2.
3.
VPS35 mutations have been identified as a cause of autosomal dominantly inherited Parkinson's disease (PD). VPS35 interacts with VPS26A in the retromer complex that links mitochondrial and lysosomal pathways, which have both been shown to be dysfunctional in PD. Thus, mutations in VPS26A may be associated with PD. To test this hypothesis, we screened 245 idiopathic PD patients and 185 control subjects for mutations in the retromer subunit VPS26A. We found 2 novel missense variants in patients and 2 known missense variants in control subjects. The missense variants were unlikely to be disease causing, suggesting that VPS26A mutations are not a frequent cause of PD.  相似文献   

4.
Congenital cataracts (CCs) are clinically and genetically heterogeneous. Mutations in the same gene may lead to CCs differing in inheritance, morphology and severity. Loci for autosomal dominant posterior polar CC and total CC have both been mapped to the chromosomal 1p36 region harboring the EPHA2 receptor tyrosine kinase gene. Here, we report mutations of EPHA2 in three CC families from different ancestral groups. In a Chinese family with posterior polar CC, we identified a missense mutation, c.2819C>T (p.T940I), replacing a critical amino acid that functions at the receptor oligomerization interface. In a British family with posterior polar CC and an Australian family with total CC, we found a frameshift mutation (c.2915_2916delTG) and a splicing mutation (c.2826‐9G>A), respectively. These two mutations are predicted to produce novel C‐terminal polypeptides with 39 identical amino acids. Yeast two‐hybrid analysis showed stronger interaction between the total CC‐associated mutant EPHA2 and low molecular weight protein‐tyrosine phosphatase, a negative regulator of EPHA2 signaling. Our results implicate the Eph‐ephrin signaling system in development of human cataract and provide a novel insight into the molecular mechanism underlying the pathogenesis of human CCs. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Recently, deletions encompassing the nuclear receptor binding SET-Domain 1 (NSD1) gene have been described as the major cause of Japanese patients with the Sotos syndrome, whereas point mutations have been identified in the majority of European Sotos syndrome patients. In order to investigate a possible phenotype-genotype correlation and to further define the predictive value of NSD1 mutations, we performed mutational analysis of the NSD1 gene in 20 patients and one familial case with Sotos syndrome, five patients with Weaver syndrome, six patients with unclassified overgrowth/mental retardation, and six patients with macrocephaly/mental retardation. We were able to identify mutations within the NSD1 gene in 18 patients and the familial case with Sotos syndrome (90%). The mutations (six nonsense, eight frame shifts, three splice site, one missense, one in-frame deletion) are expected to result in an impairment of NSD1 function. The best correlation between clinical assessment and molecular results was obtained for the Sotos facial gestalt in conjunction with overgrowth, macrocephaly, and developmental delay. In contrast to the high mutation detection rate in Sotos syndrome, none of the patients with Weaver syndrome, unclassified overgrowth/mental retardation and macrocephaly/mental retardation, harbored NSD1 mutations. We tested for large deletions by FISH analysis but were not able to identify any deletion cases. The results indicate that the great majority of patients with Sotos syndrome are caused by mutations in NSD1. Deletions covering the NSD1 locus were not found in the patients analyzed here.  相似文献   

6.
Parathyroid hormone secretion is negatively regulated by a 7- transmembrane domain, G-protein coupled Ca(2+)-sensing receptor. We hypothesized that activating mutations in this receptor might cause autosomal dominant hypoparathyroidism (ADHP). Consistent with this hypothesis, we identified, in two families with ADHP, heterozygous missense mutations in the Ca(2+)-sensing receptor gene that cosegregated with the disorder. None of 50 normal controls had either mutation. We also identified a de novo, missense Ca(2+)-sensing receptor mutation in a child with severe sporadic hypoparathyroidism. The amino acid substitution in one ADHP family affected the N-terminal, extracellular domain of the receptor. The other mutations involved the transmembrane region. Unlike patients with acquired hypoparathyroidism, patients with these mutations had hypercalciuria even at low serum calcium concentrations. Their greater hypercalciuria presumably reflected activation of Ca(2+)-sensing receptors in kidney cells, where the receptor negatively regulates calcium reabsorption. This augmented hypercalciuria increases the risk of renal complications and thus has implications for the choice of therapy.   相似文献   

7.
Mutations in WFS1 are reported to be responsible for two conditions with distinct phenotypes; DFNA6/14/38 and autosomal recessive Wolfram syndrome. They differ in their associated symptoms and inheritance mode, and although their most common clinical symptom is hearing loss, it is of different types. While DNFA6/14/38 is characterized by low frequency sensorineural hearing loss (LFSNHL), in contrast, Wolfram syndrome is associated with various hearing severities ranging from normal to profound hearing loss that is dissimilar to LFSNHL (Pennings et al. 2002). To confirm whether within non-syndromic hearing loss patients WFS1 mutations are found restrictively in patients with LFSNHL and to summarize the mutation spectrum of WFS1 found in Japanese, we screened 206 Japanese autosomal dominant and 64 autosomal recessive (sporadic) non-syndromic hearing loss probands with various severities of hearing loss. We found three independent autosomal dominant families associated with two different WFS1 mutations, A716T and E864K, previously detected in families with European ancestry. Identification of the same mutations in independent families with different racial backgrounds suggests that both sites are likely to be mutational hot spots. All three families with WFS1 mutations in this study showed a similar phenotype, LFSNHL, as in previous reports. In this study, one-third (three out of nine) autosomal dominant LFSNHL families had mutations in the WFS1 gene, indicating that in non-syndromic hearing loss WFS1 is restrictively and commonly found within autosomal dominant LFSNHL families.  相似文献   

8.
9.
Nonsyndromic hearing loss (NSHL), a common sensory disorder, is characterized by high clinical and genetic heterogeneity (i.e., approximately 115 genes and 170 loci so far identified). Nevertheless, almost half of patients submitted for genetic testing fail to receive a conclusive molecular diagnosis. We used next‐generation sequencing to identify causal variants in PLS1 (c.805G>A, p.[E269K]; c.713G>T, p.[L238R], and c.383T>C, p.[F128S]) in three unrelated families of European ancestry with autosomal dominant NSHL. PLS1 encodes Plastin 1 (also called fimbrin), one of the most abundant actin‐bundling proteins of the stereocilia. In silico protein modeling suggests that all variants destabilize the structure of the actin‐binding domain 1, likely reducing the protein's ability to bind F actin. The role of PLS1 gene in hearing function is further supported by the recent demonstration that Pls1?/? mice show a hearing loss phenotype similar to that of our patients. In summary, we report PLS1 as a novel gene for autosomal dominant NSHL, suggesting that this gene is required for normal hearing in humans and mice.  相似文献   

10.
Dysfunctional mitochondria and the mitochondrial chaperone mortalin (HSPA9, GRP75) have been implicated in the pathogenesis of Parkinson disease (PD). We screened 139 early-onset PD (EOPD) patients for mutations in mortalin revealing one missense change (p.L358P) that was absent in 279 control individuals. We also found one additional missense variant among the controls (p.T333K). Although both missense changes were predicted to be disease causing, we detected no differences in subcellular localization, mitochondrial morphology, or respiratory function between wild-type and mutant mortalin. These findings suggest that variants in mortalin (1) are not a major cause of EOPD; (2) occur in patients and controls; and (3) do not lead to functional impairment of mitochondria.  相似文献   

11.
We analysed a Dutch family with autosomal dominant non-syndromic progressive sensorineural hearing loss and mapped the underlying gene defect by genetic linkage analysis to a 11.0 cM region overlapping the DFNA9 interval on chromosome 14q12-q13. Clinically, the Dutch family differs from the original DFNA9 family by a later age at onset and a more clearly established vestibular impairment. A gene that is highly and specifically expressed in the human fetal cochlea and vestibule, COCH (previously described as Coch5B2 ), was mapped to the DFNA9 critical region. Sequence analysis revealed a 208C-->T mutation in the COCH gene, resulting in a Pro51Ser substitution in the predicted protein in all affected individuals of the family but not in unaffected family members and 200 control individuals. The same mutation was also identified in three apparently unrelated families with a similar phenotype, suggesting the presence of a Dutch founder mutation. The function of COCH is unknown but several characteristics of the protein point to a structural role in the extracellular matrix. The mutant serine at position 51 is situated between cysteines and possibly interferes with proper COCH protein folding or its interaction with extracellular matrix proteins.   相似文献   

12.
Autosomal dominant lateral temporal epilepsy (EPT; OMIM 600512) is a form of epilepsy characterized by partial seizures, usually preceded by auditory signs. The gene for this disorder has been mapped by linkage studies to chromosomal region 10q24. Here we show that mutations in the LGI1 gene segregate with EPT in two families affected by this disorder. Both mutations introduce premature stop codons and thus prevent the production of the full-length protein from the affected allele. By immunohistochemical studies, we demonstrate that the LGI1 protein, which contains several leucine-rich repeats, is expressed ubiquitously in the neuronal cell compartment of the brain. Moreover, we provide evidence for genetic heterogeneity within this disorder, since several other families with a phenotype consistent with this type of epilepsy lack mutations in the LGI1 gene.  相似文献   

13.
14.
Although it is generally thought that spermatogenic failure has a genetic background, to date only a limited percentage of men with non-obstructive azoospermia (NOA) are diagnosed with a genetic defect. The only common and well-established genetic causes of NOA in humans are numerical and structural chromosomal abnormalities and Y-chromosome deletions. In addition, some infrequent mutations have been identified in the ubiquitin-specific protease 9, Y-linked (USP9Y) and the synaptonemal complex protein 3 (SYCP3) gene that cause azoospermia. FK506-binding protein 6 (Fkbp6) is a newly discovered component of the synaptonemal complex (SC), which is essential for proper chromosome pairing and meiotic division. A null mutation of the Fkbp6 gene causes azoospermia in mice as well as in rats. We tested the hypothesis whether mutations in this gene can also cause azoospermia in humans. We performed a mutation screen in 51 men with NOA through direct sequencing methods. No homozygous mutations were identified. Two heterozygous mutations (T173T and R183C) were identified, which are likely to disrupt FKBP6 protein function. However, both mutations were also found in a group of 218 normospermic controls indicating that one FKBP6 allele appears to be sufficient for normal spermatogenesis. In conclusion, our results suggest that genetic defects in FKBP6 can be excluded as a common cause of azoospermia in humans.  相似文献   

15.
Mutations in the RP1 gene causing autosomal dominant retinitis pigmentosa.   总被引:7,自引:0,他引:7  
Retinitis pigmentosa is a genetically heterogeneous form of retinal degeneration that affects approximately 1 in 3500 people worldwide. Recently we identified the gene responsible for the RP1 form of autosomal dominant retinitis pigmentosa (adRP) at 8q11-12 and found two different nonsense mutations in three families previously mapped to 8q. The RP1 gene is an unusually large protein, 2156 amino acids in length, but is comprised of four exons only. To determine the frequency and range of mutations in RP1 we screened probands from 56 large adRP families for mutations in the entire gene. After preliminary results indicated that mutations seem to cluster in a 442 nucleotide segment of exon 4, an additional 194 probands with adRP and 409 probands with other degenerative retinal diseases were tested for mutations in this region alone. We identified eight different disease-causing mutations in 17 of the 250 adRP probands tested. All of these mutations are either nonsense or frameshift mutations and lead to a severely truncated protein. Two of the eight different mutations, Arg677X and a 5 bp deletion of nucleotides 2280-2284, were reported previously, while the remaining six mutations are novel. We also identified two rare missense changes in two other families, one new polymorphic amino acid substitution, one silent substitution and a rare variant in the 5'-untranslated region that is not associated with disease. Based on this study, mutations in RP1 appear to cause at least 7% (17/250) of adRP. The 5 bp deletion of nucleotides 2280-2284 and the Arg677X nonsense mutation account for 59% (10/17) of these mutations. Further studies will determine whether missense changes in the RP1 gene are associated with disease, whether mutations in other regions of RP1 can cause forms of retinal disease other than adRP and whether the background variation in either the mutated or wild-type RP1 allele plays a role in the disease phenotype.  相似文献   

16.
BACKGROUND. Night blindness is an early symptom of retinitis pigmentosa. The rod photoreceptors are responsible for night vision and use rhodopsin as the photosensitive pigment. METHODS AND RESULTS. We found three mutations in the human rhodopsin gene; each occurred exclusively in the affected members of some families with autosomal dominant retinitis pigmentosa. Two mutations were C-to-T transitions involving separate nucleotides of codon 347; the third was a C-to-G transversion in codon 58. Each mutation corresponded to a change in one amino acid residue in the rhodopsin molecule. None of these mutations were found in 106 unrelated normal subjects who served as controls. When the incidence of these three mutations was added to that of a previously reported mutation involving codon 23, 27 of 150 unrelated patients with autosomal dominant retinitis pigmentosa (18 percent) were found to carry one of these four defects in the rhodopsin gene. All 27 patients had abnormal rod function on monitoring of their electroretinograms. It appears that patients with the mutation involving codon 23 probably descend from a single ancestor. CONCLUSIONS. In some patients with autosomal dominant retinitis pigmentosa, the disease is caused by one of a variety of mutations of the rhodopsin gene.  相似文献   

17.
18.
Hereditary spastic paraplegias (HSP) constitute a heterogeneous group of neurodegenerative disorders characterized by slowly progressive spasticity of the lower extremities. Only a few different mutations in the SPG10 gene, KIF5A, have been described in pure dominant forms of the disease. We sequenced the motor domain of KIF5A in a large panel of 205 European HSP patients with either pure or complicated forms of the disease. We identified eight different heterozygous missense mutations, seven novels, in eight different families of French origin. Residue R280 was a mutational hot spot. Interestingly, the patients in 7/8 families had a complex phenotype, with peripheral neuropathy, severe upper limb amyotrophy (Silver syndrome-like), mental impairment, parkinsonism, deafness and/or retinitis pigmentosa as variably associated features. We report the largest series of SPG10 families described so far, which extends both the mutational spectrum of the disease and its phenotype, which now includes complicated forms of HSP. SPG10 mutations were found in 10% of our complicated forms of HSP, suggesting that mutations in KIF5A represent the major cause of complicated AD-HSP in France.  相似文献   

19.
We have previously found linkage to chromosome 1p34 in five large families with autosomal dominant non-syndromic hearing impairment (DFNA2). In all five families, the connexin31 gene ( GJB3 ), located at 1p34 and responsible for non-syndromic autosomal dominant hearing loss in two small Chinese families, has been excluded as the responsible gene. Recently, a fourth member of the KCNQ branch of the K+channel family, KCNQ4, has been cloned. KCNQ4 was mapped to chromosome 1p34 and a single mutation was found in three patients from a small French family with non-syndromic autosomal dominant hearing loss. In this study, we have analysed the KCNQ4 gene for mutations in our five DFNA2 families. Missense mutations altering conserved amino acids were found in three families and an inactivating deletion was present in a fourth family. No KCNQ4 mutation could be found in a single DFNA2 family of Indonesian origin. These results indicate that at least two and possibly three genes responsible for hearing impairment are located close together on chromosome 1p34 and suggest that KCNQ4 mutations may be a relatively frequent cause of autosomal dominant hearing loss.  相似文献   

20.
《Genetics in medicine》2018,20(1):91-97
PurposeC-type natriuretic peptide (CNP) and its principal receptor, natriuretic peptide receptor B (NPR-B), have been shown to be important in skeletal development. CNP and NPR-B are encoded by natriuretic peptide precursor-C (NPPC) and natriuretic peptide receptor 2 (NPR2) genes, respectively. While NPR2 mutations have been described in patients with skeletal dysplasias and idiopathic short stature (ISS), and several Npr2 and Nppc skeletal dysplasia mouse models exist, no mutations in NPPC have been described in patients to date.MethodsNPPC was screened in 668 patients (357 with disproportionate short stature and 311 with autosomal dominant ISS) and 29 additional ISS families in an ongoing whole-exome sequencing study.ResultsTwo heterozygous NPPC mutations, located in the highly conserved CNP ring, were identified. Both showed significant reductions in cyclic guanosine monophosphate synthesis, confirming their pathogenicity. Interestingly, one has been previously linked to skeletal abnormalities in the spontaneous Nppc mouse long-bone abnormality (lbab) mutant.ConclusionsOur results demonstrate, for the first time, that NPPC mutations cause autosomal dominant short stature in humans. The NPPC mutations cosegregated with a short stature and small hands phenotype. A CNP analog, which is currently in clinical trials for the treatment of achondroplasia, seems a promising therapeutic approach, since it directly replaces the defective protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号