首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The metabolism and disposition of telmesteine, a muco-active agent, have been investigated following single oral or intravenous administration of 14C-telmesteine in the Sprague–Dawley rat.

2. 14C-telmesteine was rapidly absorbed after oral dosing (20 and 50mg kg-1) with an oral bioavailability of > 90% both in male and female rats. The Cmax and area under the curve of the radioactivity in plasma increased proportionally to the administered dose and those values in female rats were 30% higher than in male rats.

3. Telmesteine was distributed over all organs except for brain and the tissue/plasma ratio of the radioactivity 30min after dosing was relatively low with a range of 0.1–0.8 except for excretory organs.

4. Excretion of the radioactivity was 86% of the dose in the urine and 0.6% in the faeces up to 7 days after oral administration. Biliary excretion of the radioactivity in bile duct-cannulated rats was about 3% for the first 24 h. The unchanged compound mainly accounted for the radioactivity in the urine and plasma.

5. Telmesteine was hardly metabolized in microsomal incubations. A glucuronide conjugate was detected in the urine and bile, but the amount of glucuronide was less than 6% of excreted radioactivity.  相似文献   

2.
The pharmacokinetics (PK) (absorption, distribution, metabolism, excretion) of peginesatide, a synthetic, PEGylated, investigational, peptide-based erythropoiesis-stimulating agent (ESA), was evaluated in rats. The PK profile was evaluated at 0.1-5 mg·kg(-1) IV using unlabeled or [(14)C]-labeled peginesatide. Mass balance, tissue distribution and metabolism were evaluated following IV administration of 5 mg·kg(-1) [(14)C]-peginesatide, with tissue distribution also evaluated by quantitative whole-body autoradiography (QWBA) following an IV dose of 17 mg·kg(-1) [(14)C]-peginesatide. Plasma clearance was slow and elimination was biphasic with unchanged peginesatide representing >90% of the total radioactivity of the total radioactive exposure. Slow uptake of the radiolabeled compound from the vascular compartment into the tissues was observed. Biodistribution to bone marrow and extramedullary hematopoietic sites, and to highly vascularized lymphatic and excretory tissues occurred. A predominant degradation event to occur in vivo was the loss of one PEG chain from the branched PEG moiety to generate mono-PEG. Renal excretion was the primary mechanism (41%) of elimination, with parent molecule (67%) the major moiety excreted. In conclusion, elimination of [(14)C]-peginesatide-derived radioactivity was extended, retention preferentially occurred at sites of erythropoiesis (bone marrow), and urinary excretion was the primary elimination route.  相似文献   

3.
  1. The pharmacokinetics (PK) (absorption, distribution, metabolism, excretion) of peginesatide, a synthetic, PEGylated, investigational, peptide-based erythropoiesis-stimulating agent (ESA), was evaluated in rats. The PK profile was evaluated at 0.1–5 mg·kg?1 IV using unlabeled or [14C]-labeled peginesatide. Mass balance, tissue distribution and metabolism were evaluated following IV administration of 5 mg·kg?1 [14C]-peginesatide, with tissue distribution also evaluated by quantitative whole-body autoradiography (QWBA) following an IV dose of 17 mg·kg?1 [14C]-peginesatide.

  2. Plasma clearance was slow and elimination was biphasic with unchanged peginesatide representing >90% of the total radioactivity of the total radioactive exposure. Slow uptake of the radiolabeled compound from the vascular compartment into the tissues was observed.

  3. Biodistribution to bone marrow and extramedullary hematopoietic sites, and to highly vascularized lymphatic and excretory tissues occurred.

  4. A predominant degradation event to occur in vivo was the loss of one PEG chain from the branched PEG moiety to generate mono-PEG.

  5. Renal excretion was the primary mechanism (41%) of elimination, with parent molecule (67%) the major moiety excreted.

  6. In conclusion, elimination of [14C]-peginesatide-derived radioactivity was extended, retention preferentially occurred at sites of erythropoiesis (bone marrow), and urinary excretion was the primary elimination route.

  相似文献   

4.
1. This study has investigated absorption, distribution, metabolism and excretion of p-bromophenylacetylurea (BPAU) in the F344 female rat. BPAU and its metabolites were determined by HPLC. 2. Following a single p.o. dose of 150?mg/kg BPAU, the absorbed fraction of dosed BPAU was 65.9% and its half-life in the blood was 9.4 h. The relative distribution of BPAU (tissue/serum ratio) at 6 h (peak time point) after a single i.p. dose of 150?mg/kg BPAU was spinal cord (4.6 +/- 0.2) &;gt; liver (3.7 +/- 0.1) &;gt; brain (2.9 +/- 0.1) (mean +/- SD, n = 5), and they were significantly different from each other (p&;lt;0.05). BPAU in spinal cord reached the highest level. 3. Absorbed BPAU was metabolized in vivo into three major metabolites. N'-hydroxy- p-bromophenylacetylurea (M1) was a dominant metabolite in tissues, whereas 4-(4-bromophenyl)-3-oxapyrrolidine-2,5-dione (M2) reached a high concentration in blood. N'-methyl-p-bromophenylacetylurea (M3) was mainly found in the urine. All three metabolites were excreted via the urine and together accounted for 87% of absorbed BPAU. 4. This study provides a basic understanding of BPAU absorption, distribution, metabolism and elimination in rat.  相似文献   

5.
1. This study has investigated absorption, distribution, metabolism and excretion of p-bromophenylacetylurea (BPAU) in the F344 female rat. BPAU and its metabolites were determined by HPLC. 2. Following a single p.o. dose of 150 mg/kg BPAU, the absorbed fraction of dosed BPAU was 65.9% and its half-life in the blood was 9.4 h. The relative distribution of BPAU (tissue/serum ratio) at 6 h (peak time point) after a single i.p. dose of 150 mg/kg BPAU was spinal cord (4.6+/-0.2) > liver (3.7+/-0.1) > brain (2.9+/-0.1) (mean+/-SD, n = 5), and they were significantly different from each other (p < 0.05). BPAU in spinal cord reached the highest level. 3. Absorbed BPAU was metabolized in vivo into three major metabolites. N'-hydroxy-p-bromophenylacetylurea (M1) was a dominant metabolite in tissues, whereas 4-(4-bromophenyl)-3-oxapyrrolidine-2,5-dione (M2) reached a high concentration in blood. N'-methyl-p-bromophenylacetylurea (M3) was mainly found in the urine. All three metabolites were excreted via the urine and together accounted for 87% of absorbed BPAU. 4. This study provides a basic understanding of BPAU absorption, distribution, metabolism and elimination in rat.  相似文献   

6.
The absorption, distribution, excretion and metabolism of orally administered universally labelled 14C-beta-cyclodextrin and 14C-glucose were compared in rat. The maximum radioactivity of the blood derived from 14C-beta-cyclodextrin was observed between 4th and 11th h and the value of the maximum in different experiments ranged between 5 and 17 0/00 of the total administered radioactivity. Following 14C-glucose treatment radioactivity reached the maximum within half-an-hour, with values of 15 to 82 0/00. In the 8th h after a high dose (313.5 mg/kg) of beta-cyclodextrin no more than 3-50 ppm beta-cyclodextrin was detectable in the blood by HPLC. After 14C-beta-cyclodextrin treatment 4.2-4.8% of the administered total radioactivity was excreted by the urine and about the same quantity (2-3.6%) in case of 14C-glucose. No specific accumulation was observed after 14C-beta-cyclodextrin treatment in the different organs. The large intestine contained 10-15% of the cyclodextrin radioactivity while this value was only 2% in case of 14C-glucose. Following p.o. administration of different doses of 14C-beta-cyclodextrin the radioactivity peak was detected in the exhaled air between the 4-6th and 6-8th h, respectively, depending on the administered doses, while in case of 14C-glucose treatment it was observed within 2 h. The total radioactivity exhaled by 14C-beta-cyclodextrin treated animals in 24 h was 55 to 64% of the administered radioactivity and 58% in case of 14C-glucose. It is assumed that beta-cyclodextrin is metabolized in rats slower but similarly to glucose, therefore p.o. administered beta-cyclodextrin cannot induce toxic symptoms.  相似文献   

7.
8.
1. The pharmacokinetics of cizolirtine citrate, a new analgesic compound, were studied in the rat and dog following single oral and intravenous doses. 2. Absorption of radioactivity was fast and complete regardless of the species, and no dose and food-related differences were found. However, the elimination half-life of unchanged cizolirtine was shorter in rat than in dog. 3. Tissue distribution of total radioactivity in rat differed widely and a high affinity for liver, kidney, gastrointestinal and pigmented tissues was observed. In blood and almost all tissues the highest concentrations were reached at 20 min; beyond that time the decline of radioactivity in most tissues was parallel to that in blood. 4. The percentage of radioactivity excreted in the rat was 68% in urine and 21% in faeces, the latter being apparently due to drug enterohepatic circulation. In the dog, 92 and 4% of the radioactivity was found in urine and faeces respectively. The contribution of renal excretion to cizolirtine elimination was 5% in rat and 20% in dog. Twelve metabolites were detected in rat and six in the dog by radio-hplc analysis of urine.  相似文献   

9.
10.
1. The pharmacokinetics of cizolirtine citrate, a new analgesic compound, were studied in the rat and dog following single oral and intravenous doses. 2. Absorption of radioactivity was fast and complete regardless of the species, and no dose and food-related differences were found. However, the elimination half-life of unchanged cizolirtine was shorter in rat than in dog. 3. Tissue distribution of total radioactivity in rat differed widely and a high affinity for liver, kidney, gastrointestinal and pigmented tissues was observed. In blood and almost all tissues the highest concentrations were reached at 20 min; beyond that time the decline of radioactivity in most tissues was parallel to that in blood. 4. The percentage of radioactivity excreted in the rat was 68% in urine and 21% in faeces, the latter being apparently due to drug enterohepatic circulation. In the dog, 92 and 4% of the radioactivity was found in urine and faeces respectively. The contribution of renal excretion to cizolirtine elimination was <5% in rat and 20% in dog. Twelve metabolites were detected in rat and six in the dog by radio-hplc analysis of urine.  相似文献   

11.
1. After oral administration of 14C-labelled (5R)-3-\[2-((1S)-3-cyano-1-hydroxypropyl)benzothiazol-6-yl]-5-methoxymethyl-2-oxazolidinone (E2011) at a dose of 1?mg/kg, the blood level of radioactivity reached a maximum concentration (Cmax) of 0.545 μg eq./ml after 0.25?h in the rat and of 0.900 μg eq./ml after 0.5?h in the dog. In dog plasma, Cmax for radioactivity and unchanged E2011 were 0.862 μg eq./ml and 0.650 μg/ml respectively with corresponding Tmax (time at Cmax) of 0.75 and 0.25?h. The unchanged drug in dog plasma was below the detection limit (5 ng/ml plasma) after 24?h. 2. The tissue levels of radioactivity were measured at 0.25 (Tmax), 6, 24, and 168?h after max administration to the rat and at 0.5 (Tmax), 24, and 168?h in the dog. The radioactivity was max distributed in all tissues examined at Tmax in the rat and dog. The radioactivity levels of the cerebral cortex in the rat and dog were 26 and 36% of the plasma level at Tmax. The radioactivity in tissues decreased at almost the same rate as that in plasma. Plasma protein binding of the unchanged drug in the rat in vitro were about 70% in the range of 0.1-10 μg/ml, and those in the dog were about 45% in the same concentration range. 3. Cumulative excretion of radioactivity in the rat was 74.5% in urine and 22.5% in faeces after 7 days. In the dog, 55.5 and 36.5% of the radioactivity administered were excreted in urine and faeces respectively after 7 days. The biliary excretion of radioactivity in the cannulated rat was 23.0% within 48?h. 4. In tlc analysis of plasma and tissues of the rat and dog, the radioactivity for the unchanged drug was much higher than metabolites. In tlc analysis of urine, the same metabolites were detected in the rat and dog, and the radioactivity of a metabolite, IM1, was the highest in the both animals. Eight metabolites were detected in the plasma, tissues and excreta of the rat, and four metabolites in the dog. 5. In conclusion, the absorption, distribution, metabolism and excretion of 14C-labelled E2011 in the rat and dog have been established, and only minor differences were observed between these species.  相似文献   

12.
The absorption, distribution, metabolism and excretion of molidustat were investigated in healthy male participants. In study 1, a mass balance study, radiolabelled molidustat 25 mg (3.57 MBq) was administered as an oral solution (n = 4). Following rapid absorption, molidustat‐related radioactivity was predominantly distributed in plasma rather than in red blood cells. The total recovery of the administered radioactivity was 97.0%, which was mainly excreted renally (90.7%). Metabolite M‐1, produced by N‐glucuronidation, was the dominant component in plasma (80.2% of the area under the concentration‐time curve for total radioactivity) and was primarily excreted via urine (~85% of dose). Only minor amounts of unchanged molidustat were excreted in urine (~4%) and faeces (~6%). Study 2 investigated the absolute bioavailability and pharmacodynamics of molidustat (part 1, n = 12; part 2, n = 16). Orally administered molidustat immediate release tablets had an absolute bioavailability of 59%. Following intravenous administration (1, 5 and 25 mg), total body clearance of molidustat was 28.7‐34.5 L/h and volume of distribution at steady state was 39.3‐50.0 L. All doses of molidustat transiently elevated endogenous erythropoietin levels, irrespective of the route of administration. Molidustat was considered safe and well tolerated at the administered doses.  相似文献   

13.
Single oral doses of 14C-dexloxiglumide were rapidly and extensively absorbed in rats, and eliminated more slowly by females than by males. The respective half-lives were about 4.9 and 2.1 h. Following single intravenous doses, dexloxiglumide was characterised as a drug having a low clearance (6.01 and about 1.96 ml/min/kg in males and females respectively), a moderate volume of distribution (Vss, 0.98 and about 1.1 L/kg in males and females respectively) and a high systemic availability. It was extensively bound to plasma proteins (97%). Dexloxiglumide is mainly cleared by the liver. Its renal clearance was minor. In only the liver and gastrointestinal tract, were concentrations of 14C generally greater than those in plasma. Peak 14C concentrations generally occurred at 1-2 h in males and at 2-4 h in females. Tissue 14C concentrations then declined by severalfold during 24 h although still present in most tissues at 24 h but only in a few tissues (such as the liver and gastrointestinal tract) at 168 h. Decline of 14C was less rapid in the tissues of females than in those of males. Single intravenous or oral doses were mainly excreted in the faeces (87-92%), mostly during 24 h and more slowly from females than from males. Urines contained less than 11% dose. Mean recoveries during 7 days when 14C was not detectable in the carcass except in one female rat ranged between 93-101%. Biliary excretion of 14C was prominent (84-91% dose during 24 h) in the disposition of 14C which was also subjected to facile enterohepatic circulation (74% dose). Metabolite profiles in plasma and selected tissues differed. In the former, unchanged dexloxiglumide was the major component whereas in the latter, a polar component was dominant. Urine, bile and faeces contained several 14C-components amongst which unchanged dexloxiglumide was the most important (eg. up to 63% dose in bile). LC-MS/MS showed that dexloxiglumide was metabolised mainly by hydroxylation in the N-(3-methoxypropyl)pentyl sidechain and by O-demethylation followed by subsequent oxidation of the resulting alcohol to a carboxylic acid.  相似文献   

14.
The pharmacokinetics of bacmecillinam (KW-1100), a new semisynthetic penicillin, was studied. Plasma levels, tissue distribution, metabolites and urinary and biliary excretion of mecillinam after oral administration of KW-1100 were studied in rats given a dose of 20 mg/kg (as mecillinam). The absorption of 14C-KW-1100 was so rapid that the level in blood was found to reach the peak 30 minutes after administration. 14C-KW-1100 was distributed widely into various tissues and relatively high distribution was noted in liver, kidney, adrenal gland and spleen. No accumulation of 14C-KW-1100 in any tissue was found. It was excreted rapidly from each tissue. Within 24 hours after administration of KW-1100, approximately 86% of the given dose was excreted. And within 72 hours, approximately 97% of the dose was excreted. Excretions in urine and feces within 72 hours after KW-1100 administration were 39.5 and 57.4% of the given dose, respectively. Biliary excretion was 2.0% of the given dose within 24 hours after administration of KW-1100. The major metabolite in the plasma at peak time (30 minutes) was mecillinam (50.5%). The major metabolite in the urine (0 approximately 8 hours) was mecillinam (52.2%), too. The minor metabolites were 5,5-dimethyl-2-(1'-formamidomethyl)-thiazolidine-1',4-dicarboxylat e(M-1), 6-beta-[(hexahydro-1H-azepin-1-yl)-methyleneamino]-penicilloic acid (M-6) and M-4.  相似文献   

15.
Rats received (14C)-Sultopride (St) in doses of 20 mg/kg by ip. and oral route. After ip.-administration, urinary elimination was 62% of administered dose in 72 hours, fecal excretion, 25% in 96 hours. Conversely, at 120 hours after oral administration, renal elimination was 46% and fecal elimination 34%. From these data 75% absorption of St in rat intestine may be deduced. From total excreted radioactivity (feces plus urine; ip. route) 35% is due to unchanged St. Seven metabolites were isolated from the urine. By comparison of isolated compounds with chemically synthesized putative metabolites using spectrophotometric and radiometric TLC scanning procedures 5 metabolites were identified: O-desmethylated St (DMSt; 20% of total radioactivity excreted), sulfon-desethylated St (SDESt; 13%), 5-pyrrolidine-oxo St (OSt; 3%), the product of hydrolysis of the central amide bond (MESS; 4%) and the secondary metabolite O-desmethyl-oxo St (ODMST; less than 1%). Two metabolites both minor (1% or less), remained unidentified. In guinea-pigs, metabolism of St leads almost exclusively to OSt while in mice, to DMSt.  相似文献   

16.
Pharmacologic and toxic effects of xenobiotics, such as drugs of abuse, depend on the genotype and phenotype of an individual, and conversely on the isoenzymes involved in their metabolism and transport. The current knowledge of such isoenzymes of frequently abused therapeutics such as opioids (oxycodone, hydrocodone, methadone, fentanyl, buprenorphine, tramadol, heroin, morphine and codeine), anesthetics (γ-hydroxybutyric acid, propofol, ketamine and phencyclidine) and cognitive enhancers (methylphenidate and modafinil), and some important plant-derived hallucinogens (lysergide, salvinorin A, psilocybin and psilocin), as well as of nicotine in humans are summarized in this article. The isoenzymes (e.g., cytochrome P450, glucuronyltransferases, esterases and reductases) involved in the metabolism of drugs and some pharmacokinetic data are discussed. The relevance of such data is discussed for predicting possible interactions with other xenobiotics, understanding pharmacokinetic behavior and pharmacogenomic variations, assessing toxic risks, developing suitable toxicological analysis procedures, and finally for interpretating drug testing results.  相似文献   

17.
Prasugrel is converted to the pharmacologically active metabolite after oral dosing in vivo. In this study, 14C-prasugrel or prasugrel was administered to rats at a dose of 5?mg?kg–1. After oral and intravenous dosing, the values of AUC0–∞ of total radioactivity were 36.2 and 47.1?µg?eq.?h?ml–1, respectively. Oral dosing of unlabeled prasugrel showed the second highest AUC0–8 of the active metabolite of six metabolites analyzed. Quantitative whole body autoradiography showed high radioactivity concentrations in tissues for absorption and excretion at 1?h after oral administration, and were low at 72?h. The excretion of radioactivity in the urine and feces were 20.2% and 78.7%, respectively, after oral dosing. Most radioactivity after oral dosing was excreted in bile (90.1%), which was reabsorbed moderately (62.4%). The results showed that orally administered prasugrel was rapidly and fully absorbed and efficiently converted to the active metabolite with no marked distribution in a particular tissue.  相似文献   

18.
Prasugrel is converted to the pharmacologically active metabolite after oral dosing in vivo. In this study, (14)C-prasugrel or prasugrel was administered to rats at a dose of 5 mg kg(-1). After oral and intravenous dosing, the values of AUC(0-infinity) of total radioactivity were 36.2 and 47.1 microg eqx h ml(-1), respectively. Oral dosing of unlabeled prasugrel showed the second highest AUC(0-8) of the active metabolite of six metabolites analyzed. Quantitative whole body autoradiography showed high radioactivity concentrations in tissues for absorption and excretion at 1 h after oral administration, and were low at 72 h. The excretion of radioactivity in the urine and feces were 20.2% and 78.7%, respectively, after oral dosing. Most radioactivity after oral dosing was excreted in bile (90.1%), which was reabsorbed moderately (62.4%). The results showed that orally administered prasugrel was rapidly and fully absorbed and efficiently converted to the active metabolite with no marked distribution in a particular tissue.  相似文献   

19.
1,2-Dihydro-2,2,4-trimethylquinoline (TMQ), an antioxidant used in the rubber industry, was readily absorbed from the gastrointestinal tract of the male Fischer 344/N rat and rapidly distributed throughout the body tissues. Absorption, distribution, metabolism, and excretion were not significantly affected by dose in the range 11.5-1150 mumol/kg. Following iv administration, the greatest amounts of TMQ-derived radioactivity were present in the high volume tissues including muscle, adipose, skin, liver, and blood. TMQ had no particular affinity for any tissue. TMQ-derived radioactivity was excreted primarily in urine (60-70%) and feces (20-30%) within 3 days after administration. Greater than 99% of the TMQ dose excreted in urine and feces was in the form of metabolites. Urine contained two major and ten minor metabolites while feces contained two major and four minor metabolites. The two major TMQ metabolites in urine were identified by NMR and mass spectroscopy as the O-sulfate conjugate of 1,2-dihydro-6-hydroxy-2,2,4-trimethylquinoline and the monosulfate conjugate of 1,2-dihydro-1,6-dihydroxy-2,2,4-trimethylquinoline. In vitro studies with liver subcellular fractions suggest that most of the metabolites present in urine, feces, and bile are the products of mixed function oxidase activity and conjugates of these metabolites. Multiple exposure of rats to high TMQ doses (1150 mumol/kg) resulted in some bioaccumulation of TMQ-derived radioactivity in all tissues examined, but these residues did not persist when dosing was discontinued.  相似文献   

20.
1. Naldemedine is a peripherally acting μ-opioid receptor antagonist for the treatment of opioid-induced constipation.

2. This phase 1 study investigated the absorption, distribution, metabolism and excretion of naldemedine, following a single oral 2-mg dose of [oxadiazole-14C]-naldemedine or [carbonyl-14C]-naldemedine to 12 healthy adult male subjects. Pharmacokinetic assessments were performed on blood, urine and fecal samples collected at defined intervals.

3. Naldemedine was the major circulating component in plasma with a median Tmax of approximately 0.8–0.9?h and a geometric mean t1/2,z of approximately 11?h. Total systemic exposures, AUC, of metabolites nor-naldemedine were less abundant than those of naldemedine (9% or 13% of AUC of naldemedine) and 16.2% or 18.1% of naldemedine was excreted as unchanged in urine after administration of [oxadiazole-14C]-naldemedine or [carbonyl-14C]-naldemedine, respectively, and benzamidine was the major radioactive component after administration of [oxadiazole-14C]-naldemedine (32.5% of administered dose). Overall, the recovery of total radioactivity was 92% (57.3% in urine; 34.8% in feces) after administration of [oxadiazole-14C]-naldemedine and 85% (20.4% in urine; 64.3% in feces) after administration of [carbonyl-14C]-naldemedine.

4. Our findings suggest that naldemedine is mainly metabolized to nor-naldemedine. Naldemedine was rapidly absorbed and well tolerated, with no major safety signals observed.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号