首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human amyloid precursor protein (APP) is processed by the nonamyloidogenic and the amyloidogenic catabolic pathways. The sequential cleavage of APP by the beta- and gamma-secretase activities, known as the amyloidogenic processing of APP, leads to the formation of the amyloid-beta peptide (Abeta). Abeta is the main constituent of the amyloid core of senile plaques, a typical hallmark of Alzheimer's disease. In addition to secretases, other cellular proteolytic activities, like the proteasome, might participate in the metabolism of APP. We investigated the consequence of proteasome inhibition on the amyloidogenic processing of human APP. CHO cells and primary cultures of rat cortical neurons expressing human APP or a protein corresponding to its beta-cleaved C-terminal fragment (C99) were treated with lactacystin, an irreversible inhibitor of the chymotrypsin-like activity of the proteasome. Lactacystin significantly decreased the level of Abeta produced from APP in both cellular models, whereas the production of Abeta from C99 was not affected. Lactacystin did not inhibit gamma-secretase activity but was found to inhibit the beta-cleavage of APP, leading to a proportional decrease in Abeta production. Although lactacystin did not inhibit the catalytic activity of recombinant BACE1, a decrease in neuronal beta-secretase activity was measured after treatment with lactacystin.  相似文献   

2.
3.
Sequential proteolytic processing of the Amyloid Precursor Protein (APP) by beta- and gamma-secretases generates the 4-kDa amyloid (A beta) peptide, a key component of the amyloid plaques seen in Alzheimer's disease (AD). We and others have recently reported the identification and characterisation of an aspartic proteinase, Asp2 (BACE), as beta-secretase. Here we describe the characterization of a second highly related aspartic proteinase, Asp1 as a second beta-secretase candidate. Asp1 is expressed in brain as detected at the mRNA level and at the protein level. Transient expression of Asp1 in APP-expressing cells results in an increase in the level of beta-secretase-derived soluble APP and the corresponding carboxy-terminal fragment. Paradoxically there is a decrease in the level of soluble A beta secreted from the cells. Asp1 colocalizes with APP in the Golgi/endoplasmic reticulum compartments of cultured cells. Asp1, when expressed as an Fc fusion protein (Asp1-Fc), has the N-terminal sequence ALEP..., indicating that it has lost the prodomain. Asp1-Fc exhibits beta-secretase activity by cleaving both wild-type and Swedish variant (KM/NL) APP peptides at the beta-secretase site.  相似文献   

4.
One of the main neuropathological lesions observed at brain autopsy of Alzheimer's disease (AD) patients are the extracellular senile plaques mainly composed of amyloid-beta (Abeta) peptides. Abeta is generated by proteolytic processing of amyloid precursor protein (APP) via beta and gamma-secretases. The beta-secretase APP cleaving enzyme 1 (BACE1) has become a target of intense research aimed at blocking the enzyme activity. Recent studies showed that BACE1 is involved in processing other non-APP substrates, and that other proteases are involved in APP processing. We have recently established a novel approach to inhibit Abeta production via antibodies against the beta-secretase cleavage site of APP. These antibodies bind wild type and Swedish mutated APP expressed in transgenic mice brain tissues. The isolated antibodies do not bind any form of Abeta peptides. Antibody up-take experiments, using Chinese hamster ovary cells expressing wild-type APP, suggest that antibody internalization and trafficking are mediated via the endocytic pathway. Administration of antibodies to the cells growing media resulted in a considerable decrease in intracellular Abeta levels, as well as in the levels of the corresponding C-terminal fragment (C99). The relevance of intra-neuronal accumulation of mainly Abeta42 as an early event in AD pathogenesis suggests that this approach may be applicable as a novel therapeutic strategy in AD treatment.  相似文献   

5.
In addition to the proteolytic cleavages that give rise to amyloid-beta (Abeta), the amyloid-beta protein precursor (AbetaPP) is cleaved at Asp664 intracytoplasmically. This cleavage releases a cytotoxic peptide, APP-C31, removes AbetaPP-interaction motifs required for signaling and internalization, and is required for the generation of AD-like deficits in a mouse model of the disease. Although we and others had previously shown that Asp664 cleavage of AbetaPP is increased in AD brains, the distribution of the Asp664-cleaved forms of AbetaPP in non-diseased and AD brains at different ages had not been determined. Confirming previous reports, we found that Asp664-cleaved forms of AbetaPP were increased in neuronal cytoplasm and nuclei in early-stage AD brains but were absent in age-matched, non-diseased control brains and in late-stage AD brains. Remarkably, however, Asp664-cleaved AbetaPP was prominent in neuronal somata and in processes in entorhinal cortex and hippocampus of non-diseased human brains at ages <45 years. Our observations suggest that Asp664 cleavage of AbetaPP may be part of the normal proteolytic processing of AbetaPP in young (<45 years) human brain and that this cleavage is down-regulated with normal aging, but is aberrantly increased and altered in location in early AD.  相似文献   

6.
Beta-secretase cleavage represents the first step in the generation of Abeta polypeptides and initiates the amyloid cascade that leads to neurodegeneration in Alzheimer's disease. By comparative Western blot analysis, we show a 2.7-fold increase in protein expression of the beta-secretase enzyme BACE in the brain cortex of Alzheimer's disease patients as compared to age-matched controls. Similarly, we found the levels of the amyloid precursor protein C-terminal fragment produced by beta-secretase to be increased by nearly twofold in Alzheimer's disease cortex.  相似文献   

7.
Cerebrolysin is a peptide mixture with neurotrophic effects that might reduce the neurodegenerative pathology in Alzheimer's disease (AD). We have previously shown in an amyloid protein precursor (APP) transgenic (tg) mouse model of AD-like neuropathology that Cerebrolysin ameliorates behavioral deficits, is neuroprotective, and decreases amyloid burden; however, the mechanisms involved are not completely clear. Cerebrolysin might reduce amyloid deposition by regulating amyloid-beta (Abeta) degradation or by modulating APP expression, maturation, or processing. To investigate these possibilities, APP tg mice were treated for 6 months with Cerebrolysin and analyzed in the water maze, followed by RNA, immunoblot, and confocal microscopy analysis of full-length (FL) APP and its fragments, beta-secretase (BACE1), and Abeta-degrading enzymes [neprilysin (Nep) and insulin-degrading enzyme (IDE)]. Consistent with previous studies, Cerebrolysin ameliorated the performance deficits in the spatial learning portion of the water maze and reduced the synaptic pathology and amyloid burden in the brains of APP tg mice. These effects were associated with reduced levels of FL APP and APP C-terminal fragments, but levels of BACE1, Notch1, Nep, and IDE were unchanged. In contrast, levels of active cyclin-dependent kinase-5 (CDK5) and glycogen synthase kinase-3beta [GSK-3beta; but not stress-activated protein kinase-1 (SAPK1)], kinases that phosphorylate APP, were reduced. Furthermore, Cerebrolysin reduced the levels of phosphorylated APP and the accumulation of APP in the neuritic processes. Taken together, these results suggest that Cerebrolysin might reduce AD-like pathology in the APP tg mice by regulating APP maturation and transport to sites where Abeta protein is generated. This study clarifies the mechanisms through which Cerebrolysin might reduce Abeta production and deposition in AD and further supports the importance of this compound in the potential treatment of early AD.  相似文献   

8.
Tissue amyloid plaque immuno-reactive (TAPIR) antibody was better related to the effect of immunotherapy in Alzheimer's disease (AD) than ELISA antibody. Here we used a hybridoma technique to develop a TAPIR-like anti-human amyloid-beta (Abeta) mouse monoclonal antibody. The obtained monoclonal antibody, 3.4A10, was an IgG2b isotype and recognized N-terminal portion of Abeta1-42 without binding denatured or native amyloid-beta protein precursor. It had higher affinity to Abeta1-42 than to Abeta1-40 by Biacore affinity analysis and stained preferably the peripheral part of senile plaques and recognized the plaque core less than 4G8. It inhibited the Abeta1-42 fibril formation as well as degraded pre-aggregated Abeta1-42 peptide in a thioflavin T fluorescence spectrophotometry assay. The in vivo studies showed that 3.4A10 treatment decreased amyloid burden compared to the control group and significantly reduced Abeta42 levels rather than Abeta40 levels in brain lysates as well as the Abeta*56 oligomer (12mer) in TBS fraction of the brain lysates. 3.4A10 entered brain and decorated some plaques, which is surrounded by more Iba1-positive microglia. 3.4A10 therapy did not induce lymphocytic infiltration and obvious increase in microhemorrhage. We conclude that 3.4A10 is a TAPIR-like anti-human amyloid monoclonal antibody, and has a potential of therapeutic application for AD.  相似文献   

9.
10.
Amyloid-beta (Abeta) peptides are major components of Alzheimer's disease (AD)-associated senile plaques and generated by sequential cleavage of the beta-amyloid precursor protein (betaAPP) by beta-secretase and gamma-secretase. While beta-secretase activity is exerted by the aspartic protease BACE1, gamma-secretase consists of a protein complex of at least four essential proteins with the presenilins as the catalytically active components. The understanding of the subcellular trafficking of betaAPP and proteases involved in its proteolytic processing has increased rapidly in the last years. BetaAPP as well as the secretases are membrane proteins, and recent work demonstrated that alterations in the lipid composition of cellular membranes could affect the proteolytic processing of betaAPP and Abeta generation. We identified glycosphingolipids as membrane components that modulate the subcellular transport of betaAPP and the generation of Abeta. By cell biological and biochemical methods we also characterized the role of BACE1 and its homologue BACE2 in the proteolytic processing of betaAPP. Here, I summarize and discuss these findings in the context of other studies focused on the function of BACE1 and BACE2 and the role of subcellular trafficking in the proteolytic processing of betaAPP.  相似文献   

11.
The amyloid-beta protein precursor, a type 1 transmembrane protein, gives rise to the amyloid beta-protein, a neurotoxic peptide postulated to be involved in the pathogenesis of Alzheimer's disease. Here, we show that soluble amyloid beta protein accelerates amyloid precursor protein complex formation, a process that contributes to neuronal cell death. The mechanism of cell death involves the recruitment of caspase-8 to the complex, followed by intracytoplasmic caspase cleavage of amyloid precursor protein. In vivo, the levels of soluble amyloid beta protein correlated with caspase-cleaved fragments of the amyloid precursor protein in brains of Alzheimer's disease subjects. These findings suggest that soluble amyloid beta protein-induced multimerization of the amyloid precursor protein may be another mechanism by which amyloid beta protein contributes to synapse loss and neuronal cell death seen in Alzheimer's disease.  相似文献   

12.
A rat model of acute ocular hypertension was established by enhancing the perfusion of balanced salt solution in the anterior chamber of the right eye. Minocycline (90 mg/kg) was administered intraperitoneally into rats immediately after the operation for 3 consecutive days. Immunofluorescence, western blot assay and PCR detection revealed that the expression of the precursor form of nerve growth factor, nerve growth factor and the p75 neurotrophin receptor, and the mRNA expression of nerve growth factor and the p75 neurotrophin receptor, increased after acute ocular hypertension. The number of double-labeled CD11B- and precursor form of nerve growth factor-positive cells, glial fibrillary acidic protein- and p75 neurotrophin receptor-positive cells, glial fibrillary acidic protein- and caspase-3-positive cells in the retina markedly increased after acute ocular hypertension. The above-described expression decreased after minocycline treatment. These results suggested that minocycline inhibited the increased expression of the precursor form of nerve growth factor in microglia, the p75 neurotrophin receptor in astroglia, and protected cells from apoptosis.  相似文献   

13.
A monoclonal antibody (Mab) named EDU-3, was produced by fusing splenocytes from one Balb/c mouse, immunized with a mixture of platelets and non-T cells from heparinized human peripheral blood, with the HAT-sensitive myeloma line P3-NS1/1.Ag4.1. By indirect immunofluorescence (IF) it was seen that this Mab reacted with all normal human platelets and bone marrow megakaryocytes, but did not react with lymphoid cells from normal donors, or platelets from Glanzmann's thrombasthenia (GT) patients. Immunoprecipitation and SDS-PAGE experiments demonstrated that this Mab recognized an epitope on the IIb-IIIa glycoprotein complex (GPC). EDU-3 inhibited platelet aggregation and release of ATP induced by ADP and epinephrine. Aggregation induced by arachidonic acid, ristocetin and bovine factor VIII were not inhibited by EDU-3. The difference between EDU-3 and other Mab directed against the IIb-IIIa GPC is discussed.  相似文献   

14.
For the better part of the past two decades, studies on the molecular, biochemical and cellular mechanisms of Alzheimer disease have focused on amyloid-beta protein, the major proteinaceous component of senile plaques. In fact, the Amyloid Cascade Hypothesis has come to dominate the field both in terms of proposed disease mechanism as well as potential for therapeutic intervention. In this review, we look at the Amyloid Cascade Hypothesis from the perspective of pathology, cell biology, and genetics. In all cases, alternate interpretations of old data as well as new evidence indicates that amyloid-beta, far from being the harbinger of disease, actually occurs secondary to more fundamental pathological changes and may even play a protective role in the diseased brain. These findings bring into serious doubt the validity of the Amyloid Cascade Hypothesis as the central cause of Alzheimer disease and, consequently, the potential usefulness of therapeutic targets against amyloid-beta.  相似文献   

15.
Previous studies have shown that oxidized low-density lipoprotein (LDL) induces platelet activation more effectively than native LDL. To achieve a better understanding of the mechanism underlying the activation of human platelets by oxidized LDL, the present study relates the effect of oxidized LDL to changes of binding characteristics for glycoprotein (GP) IIb-IIIa. Washed human platelets were treated by monoclonal antibody against GP IIb-IIIa, and the ligand-receptor complexes were revealed by immunocytochemical techniques on the ultrastructural level. The localization of the antiglycoprotein IIb-IIIa was time-dependent. After binding to the platelet surface membrane and open canalicular system, the surface-membrane labeling decreased during longer incubation periods. Preincubation with oxidized LDL inhibited the binding of antiglycoprotein IIb-IIIa. Our findings suggest that GP IIb-IIIa acts as a receptor for oxidized LDL. The binding of oxidized LDL to the GP IIb-IIIa might be the first step in platelet activation by plasma lipoproteins.  相似文献   

16.
A monoclonal antibody named TM60, which inhibited both thrombin- and ristocetin-induced platelet aggregations, was obtained by hybridoma technique. TM60 inhibited binding of von Willebrand factor to platelets under the presence of ristocetin. The subclass of TM60 was IgG2a. TM60 did not inhibit ADP-, collagen-A-23187-, arachidonic acid- and PAF-induced platelet aggregations, but inhibited polylysine-, polybrene- and cationized ferritin-induced platelet aggregations. ATP-release from platelets induced by thrombin was also inhibited by TM60. Immunoprecipitation and SDS-PAGE experiments demonstrated that TM60 recognized an epitope on GPIb whose molecular weight was 165,000 under non-reduced and 145,000 under reduced conditions.  相似文献   

17.
Alzheimer's disease (AD) is characterized by the degeneration and loss of neurons, intracellular neurofibrillary tangles and the accumulation of extracellular senile plaques consisting mainly of beta-amyloid (A beta). A beta is generated from the amyloid precursor protein (APP) by sequential beta- and gamma-secretase cleavage. Alternatively, APP may be cleaved within the A beta region by alpha-secretase, preventing A beta formation. Here we investigated APP processing and secretion in primary neurons, using either colchicine or the calcium ionophore A23187 to induce apoptosis. Cell viability was determined by MTT measurements and apoptosis was further confirmed by annexin V and propidium iodide staining. We found that exposure to A23187 significantly decreased the secretion of soluble beta-secretase cleaved APP (beta-sAPP) in a caspase-dependent manner, although the secretion of total soluble APP beta sAPP) did not change. In addition, caspase inhibition restored cell viability to control levels. Exposure to colchicine did not change the amount of either secreted beta-sAPP or total sAPP and caspase inhibition was only partially able to restore cell viability. We conclude that calcium homeostasis is an important apoptotic effector specifically affecting the beta-secretase cleavage of APP.  相似文献   

18.
The nervous system-specific protein GAP-43 is significantly upregulated in neurons and glia that are differentiating. In P19 EC cells that do not express GAP-43, neurogenesis is inhibited; many immature neurons apoptose and the survivors do not mature morphologically. Here we show that the initial defect is in an early precursor with characteristics of a neural stem cell, which failed to respond normally to retinoic acid (RA). As a consequence, its progeny had altered cell fates: In addition to the neuronal defects previously reported, RC1-labeled radial glia failed to exit the cell cycle, accumulated, and failed to acquire GFAP immunoreactivity. However, leukemia inhibitory factor (LIF) could stimulate GFAP expression suggesting that astrocytes not derived from radial glia are less affected by absence of GAP-43. Differentiation of radial glia-derived astrocytes was also inhibited in glial cultures from GAP-43 (-/-) cerebellum, and in GAP-43 (-/-) telencephalon in vivo, differentiation of astrocytes derived from both radial and nonradial glia lineages were both affected: In the glial wedge, GFAP-labeled radial glia-derived astrocytes were reduced consistent with the interpretation that they may be unable to deflect GAP-43 (-/-) commissural axons toward the midline. At the midline, both radial and nonradial glia-derived astrocytes were also decreased although it fused normally. The results demonstrate that GAP-43 expressed in multipotent precursors is required for appropriate cell fate commitment, and that its absence affects astrocyte as well as neuronal differentiation.  相似文献   

19.
The Alzheimer's amyloid precursor (APP) is cleaved by an unidentified enzyme (APP secretase) to produce soluble APP. Fractionation of PC12 cell homogenates in a detergent-free buffer showed the presence of the Kunitz protease inhibitor (KPI)-containing soluble APP (nexin II) in the particulate fraction. Digitonin or sodium carbonate treatment of this fraction solubilized nexin II suggesting that it is contained in the lumen of vesicles. Nexin II production was not affected by lysosomotropic agents, suggesting that APP secretase is not a lysosomal enzyme. Labelling of cell surface proteins by iodination failed to detect full-length APP on the surface of PC12 cells, suggesting that most of this protein is located intracellularly. Furthermore, pulse-chase experiments showed that nexin II is detected in cell extracts before it appears in the culture medium. Cellular nexin II was detected at zero time of chase after only 5 min of pulse labelling with 35S-sulfate, indicated that APP secretase cleavage takes place immediately after APP is sulfated. Temperature block, pulse-chase, and 35S-sulfate-labelling experiments suggested that APP is cleaved by APP secretase intracellularly in the trans-Golgi network (TGN) or in a post-Golgi compartment.  相似文献   

20.
Previous studies of factor (F)Va inactivation on human umbilical vein endothelial cells have shown that alpha-thrombin cleaves the heavy chain near the COOH-terminus to produce a M(r) 97,000 fragment containing the NH(2)-terminal portion of the heavy chain and a M(r) 8,000 peptide containing the rest of the molecule. The alpha-thrombin cleavage appeared to occur between amino acid residues 586 and 654 of FV. This region contains a consensus sequence for alpha-thrombin cleavage located at residues 640-644 (S-S-P-R-S). To test the hypothesis that alpha-thrombin cleaves the FVa heavy chain at Arg(643) and to evaluate the functional importance of this cleavage for FVa inactivation, site-directed mutagenesis was used to create recombinant FV molecules with mutations R(643) --> Q (FV(R643Q)) and R(643) --> A (FV(R643A)). All recombinant molecules were purified to homogeneity and assayed for activity following extended activation with alpha-thrombin. Under similar experimental conditions, appearance of the M(r) 97,000 heavy chain fragment in the plasma and wild-type FVa molecules correlated with partial loss of cofactor activity, while following extended incubation of FV(R643Q) and FV(R643A) with alpha-thrombin no cleavage of the heavy chain at Arg(643) was detected and no presence of the M(r) 97,000 heavy-chain fragment was noticed. Further, no loss in cofactor activity was observed using these mutant recombinant FVa molecules. Our data demonstrate that cleavage of FVa at Arg(643) by alpha-thrombin results in a partially inactive cofactor molecule and provides for an activated protein C (APC)-independent anticoagulant effect of alpha-thrombin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号