首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The intent of this study was to determine whether adding carbonation to either water or a low calorie sport drink would affect gastric emptying (GE). Fifteen subjects rode for 20 minutes on a cycle ergometer at 55% of max VO2. After 5 minutes of exercise, the subjects ingested 5.5 ml/kg body weight of a test solution: water (W), carbonated water (CW), and a low calorie sport drink in both a carbonated (C2C) and noncarbonated (2C) form. At the end of each ride, the stomach was emptied through gastric aspiration. The results indicate that carbonation has no effect on GE. However, the type of drink did have an effect on GE, as both 2C and C2C emptied from the stomach at a slower rate than either W or CW. Subjective ratings of gastrointestinal comfort were similar for both carbonated and noncarbonated forms, and at no time did the subjects report discomfort. The results were independent of the exercise challenge, as exercise intensity, heart rate, and ratings of perceived exertion did not differ between experimental trials. It is concluded that carbonation does not affect the GE characteristics of a drink taken during submaximal exercise, but the flavoring system of the low calorie beverage decreased the rate of GE by as much as 25% when compared to water.  相似文献   

2.
These studies were done to determine the effect of carbonation and carbohydrate content on either gastric emptying or ad libitum drinking during treadmill exercise in the heat. Four test drinks were used: a 6% carbohydrate, noncarbonated; a 6% carbohydrate, carbonated; a 10% carbohydrate, noncarbonated; and a 10% carbohydrate, carbonated drink. For gastric emptying studies, subjects completed four 1-hr treadmill runs in the heat. They were given 400 mL of test drink at 0 min and 200 mL at 15, 30, and 45 min of exercise. For ad libitum drinking studies, subjects completed four 2-hr treadmill runs in the heat. Gastric residual volumes were similar during the four 1-hr runs. During the 2-hr runs, ad libitum drinking of the four beverages was also similar. Mean values for sweat rate, percentage of body weight lost, and percentage of fluid replaced by ad libitum drinking were similar for the four trials. Similar changes in heart rate, rectal temperature, and ratings of perceived exertion were also observed during the four 2-hr treadmill runs. We conclude that the presence of carbonation in a carbohydrate drink did not have a significant effect on either gastric emptying or ad libitum drinking.  相似文献   

3.
The purpose of this study was to determine if lowering carbohydrate (CHO) concentration in a sport drink influences gastric emptying, intestinal absorption, or performance during cycle ergometry (85 min, 60% VO(2peak)). Five subjects (25 +/- 1 y, 61.5 +/- 2.1 mL . kg(-1) . min(-1) VO(2peak)) ingested a 3% CHO, 6% CHO, or a water placebo (WP) beverage during exercise. Gastric emptying was determined by repeated double sampling and intestinal absorption by segmental perfusion. Total solute absorption and plasma glucose was greater for 6% CHO; however, neither gastric emptying, intestinal water absorption, or 3-mi time trial performance (7:58 +/- 0:33 min, 8:13 +/- 0:25 min, and 8:25 +/- 0:29 min, respectively, for 6% CHO, 3% CHO, and WP) differed among solutions. These results indicate lowering the CHO concentration of a sport drink from 6% CHO does not enhance gastric emptying, intestinal water absorption, or time trial performance, but reduces CHO and total solute absorption.  相似文献   

4.
The aims of the study were to determine if medium-chain triacylglycerol (MCT), ingested in combination with carbohydrate (CHO), would alter substrate metabolism and improve simulated competitive ultra-endurance cycling performance. Eight endurance-trained cyclists took part in this randomized, single-blind crossover study. On two separate occasions, subjects cycled for 270 min at 50% of peak power output, interspersed with four 75 kJ sprints at 60 min intervals, followed immediately by a 200 kJ time-trial. One hour prior to the exercise trials, subjects ingested either 75 g of CHO or 32 g of MCT, and then ingested 200 mL of a 10% CHO (wt/vol) solution or a 4.3% MCT + 10% CHO (wt/vol) solution every 20 min during the CHO and MCT trials, respectively. During the constant-load phases of the 270 min exercise trial, VO2. RER, and heart rate were measured at 30 min intervals and gastrointestinal (GI) symptoms were recorded. There was no difference in VO2 or RER between the MCT and CHO trials (P = 0.40). Hourly sprint (P = 0.03 for trial x time interaction) and time-trial times (14:30 +/- 0.58 vs. 12:36 +/- 1:6, respectively, P < 0.001) were slower in the MCT than the CHO trial. Half the subjects experienced GI symptoms with MCT ingestion. In conclusion, MCTs ingested prior to exercise and co-ingested with CHO during exercise did not alter substrate metabolism and significantly compromised sprint performance during prolonged ultra-endurance cycling exercise.  相似文献   

5.
The purpose of this study was to determine the effects of repeated ingestion of drinks containing varying concentrations of carbohydrate on gastric emptying rate during steady-state exercise. On five separate occasions, 14 subjects cycled for 90 min at an average power output of 151 +/- 2 W. At 15-min intervals, subjects ingested 227 +/- 3 ml of either water, 4% carbohydrate (CHO), 6% CHO, or 8% CHO. Gastric volume was determined prior to each drink and at 90 min using the modified double-sampling technique. Gross gastric volumes were significantly greater and mean gastric emptying rates and the percentage of ingested beverage emptied from the stomach were significantly less for 8% CHO. These data indicate that repeated ingestion of an 8% CHO beverage during exercise significantly reduces gastric emptying rate, whereas lower concentrations of carbohydrate do not. In addition, beverage osmolality is not as important as beverage energy content in influencing gastric emptying rate at these carbohydrate concentrations.  相似文献   

6.
We examined the effects of a high-fat diet (HFD-CHO) versus a habitual diet, prior to carbohydrate (CHO)-loading on fuel metabolism and cycling time-trial (TT) performance. Five endurance-trained cyclists participated in two 14-day randomized cross-over trials during which subjects consumed either a HFD (> 65% MJ from fat) or their habitual diet (CTL) (30 +/- 5% MJ from fat) for 10 day, before ingesting a high-CHO diet (CHO-loading, CHO > 70% MJ) for 3 days. Trials consisted of a 150-min cycle at 70% of peak oxygen uptake (VáO2peak), followed immediately by a 20-km TT. One hour before each trial, cyclists ingested 400 ml of a 3.44% medium-chain triacylglycerol (MCT) solution, and during the trial, ingested 600 ml/hour of a 10% 14C-glucose + 3.44% MCT solution. The dietary treatments did not alter the subjects' weight, body fat, or lipid profile. There were also no changes in circulating glucose, lactate, free fatty acid (FFA), and b-hydroxybutyrate concentrations during exercise. However, mean serum glycerol concentrations were significantly higher (p < .01) in the HFD-CHO trial. The HFD-CHO diet increased total fat oxidation and reduced total CHO oxidation but did not alter plasma glucose oxidation during exercise. By contrast, the estimated rates of muscle glycogen and lactate oxidation were lower after the HFD-CHO diet. The HFD-CHO treatment was also associated with improved TT times (29.5 +/- 2.9 min vs. 30.9 +/- 3.4 min for HFD-CHO and CTL-CHO, p <.05). High-fat feeding for 10 days prior to CHO-loading was associated with an increased reliance on fat, a decreased reliance on muscle glycogen, and improved time trial performance after prolonged exercise.  相似文献   

7.
This study investigated the effect of differing fluid volumes consumed during exercise, on cycle time-trial (TT) performance conducted under thermoneutral conditions (20 degrees C, 70% RH). Ten minutes after consuming a bolus of 6 ml x kg(-1) body mass (BM) of a 6.4% CHO solution and immediately following a warm-up, 8 male cyclists undertook a 1-h self-paced TT on 4 separate occasions. During a "familiarization" trial, subjects were given three 5-min periods (15-20 min, 30-35 min, and 45-50 min) to consume fluid ad libitum. Thereafter subjects undertook, in random order, trials consuming high (HF), moderate (MF), or low fluid (LF) volumes, where 300, 150, and 40 ml of fluid were consumed at 15, 30, and 45 min of each trial, respectively, and total CHO intake was maintained at 57.6 g. During exercise, power output and heart rate were monitored continuously, whilst stomach fullness was rated every 10 min. Additionally, BM loss and BM loss corrected for fluid intake was calculated during each trial. At 40, 50, and 60 min differences in ratings of stomach fullness were found between trials (LF vs. HF and MF vs. HF). There were however no differences in performance or physiological variables (heart rate or BM loss) between trials. These results indicate that when a pre-exercise CHO bolus is consumed, there is no effect of subsequent consumption of different fluid volumes when trained cyclists undertake a 1-h performance task in a thermoneutral environment.  相似文献   

8.
The purpose of the current study was to examine the influence of dietary composition on short-term endurance training-induced adaptations of substrate partitioning and time trial exercise performance. Eight untrained males cycled for 90 min at approximately 54% aerobic capacity while being infused with [6,6(2)H]glucose before and after two 10-d experimental phases separated by a 2-week washout period. Time trial performance was measured after the 90-min exercise trials before and after the 2nd experimental phase. During the first 10-d phase, subjects were randomly assigned to consume either a high carbohydrate or high fat diet while remaining inactive (CHO or FAT). During the second 10-d phase, subjects consumed the opposite diet, and both groups performed identical daily supervised endurance training (CHO+T or FAT+T). CHO and CHO+T did not affect exercise metabolism. FAT reduced glucose flux at the end of exercise, while FAT+T substantially increased whole body lipid oxidation during exercise and reduced glucose flux at the end of exercise. Despite these differences in adaptation of substrate use, training resulted in similar improvements in time trial performance for both groups. We conclude that (a) 10-d high fat diets result in substantial increases in whole body lipid oxidation during exercise when combined with daily aerobic training, and (b) diet does not affect short-term training-induced improvements in high-intensity time trial performance.  相似文献   

9.
This study tests the hypotheses that (a) a mixture of whey protein, amino acids (AA), and carbohydrates (CHO) stimulates net muscle protein synthesis to a greater extent than isoenergetic CHO alone after resistance exercise; and (b) that the stimulatory effect of a protein, AA, and CHO mixture will last beyond the 1st hour after intake. Eight subjects participated in 2 trials. In one (PAAC), they ingested 77.4 g CHO, 17.5 g whey protein, and 4.9 g AA 1 hr after resistance exercise. In the other (CON), 100 g CHO was ingested instead. They received a primed constant infusion of L-[2H5]-phenylalanine, and samples from femoral artery and vein, and biopsies from vastus lateralis were obtained. The area under the curve for net uptake of phenylalanine into muscle above pre-drink value was 128+/- 42 mg x leg(- 1) (PAAC) versus 32+/- 10 mg x leg (-1) (CON) for the 3 hr after the drink (p =.04). The net protein balance response to the mixture consisted of two components, one rapid immediate response, and a smaller delayed response about 90 min after drink, whereas in CON only a small delayed response was seen. We conclude that after resistance exercise, a mixture of whey protein, AA, and CHO stimulated muscle protein synthesis to a greater extent than isoenergetic CHO alone. Further, compared to previously reported findings, the addition of protein to an AA+ CHO mixture seems to extend the anabolic effect.  相似文献   

10.
The purpose of the present study was to examine the effect of pre-exercise carbohydrate (CHO) ingestion on circulating leukocyte numbers, plasma interleukin (IL)-6, plasma cortisol, and lipopolysaccharide (LPS)-stimulated neutrophil degranulation responses in moderately trained male cyclists who completed approximately 1-h of high-intensity cycling. The influence of the timing of pre-exercise CHO ingestion was investigated in 8 subjects who consumed 75 g CHO as a glucose solution at either 15 (-15 trial), or 75 (-75 trial) min before the onset of exercise. The influence of the amount of pre-exercise CHO ingestion was investigated in a further 10 subjects who consumed either 25 g or 200 g CHO as a glucose solution or a placebo 45 min before the onset of exercise. At the onset of exercise in the timing experiment, the plasma glucose concentration was significantly (p < .05) lower on the -75 trial compared with pre-drink values, and the plasma cortisol concentration and neutrophil to lymphocyte (N/L) ratio were significantly (p < .05) elevated in the post-exercise period. In the -15 trial, plasma glucose level was well maintained, and the plasma cortisol concentration and N/L ratio were not significantly elevated above resting levels. However, LPS-stimulated neutrophil degranulation was similar in the -15 and -75 trials. The amount of CHO ingested had no effect on the magnitude of the rise in the N/L ratio compared with placebo when consumed 45 min pre-exercise. Finally, although an exercise-induced increase in the plasma IL-6 concentration was observed, this effect was independent of pre-exercise CHO ingestion.  相似文献   

11.
The effects of ingesting different amounts of medium-chain triacylglycerol (MCT) and carbohydrate (CHO) on gastric symptoms, fuel metabolism, and exercise performance were measured in 9 endurance-trained cyclists. Participants, 2 hr after a standardized lunch, cycled for 2 hr at 63% of peak oxygen consumption and then performed a simulated 40-km time trial (Ttrial). During the rides, participants ingested either 10% 14C-glucose (GLU), 10% 14C-GLU + 1.72% MCT (LO-MCT), or 10% 14C-GLU +3.44% MCT (HI-MCT) solutions: 400 ml at the start of exercise and then 100 ml every 10 min. MCT ingestion did not affect gastrointestinal symptoms. It only raised serum free fatty acid (FFA) and beta-hydroxybutyrate concentrations. Higher FFA and beta-hydroxybutyrate concentrations with MCT ingestion did not affect fuel oxidation or T-trial performance. The high CHO content of the pretrial lunch increased starting plasma insulin levels, which may have promoted CHO oxidation despite elevated circulating FFA concentrations with MCT ingestion.  相似文献   

12.
Bodybuilders have used different carbohydrate loading regimens in conjunction with resistance exercise prior to competition in the belief that this would result in increased muscle size. To investigate this possibility, muscle girth measurements were obtained from nine weight-trained males before and after a control (standard isocaloric diet) and an experimental trial (carbohydrate loading). The latter regimen consisted of 3 days of intense weight-lifting while the subjects ingested a diet of 10% carbohydrate (CHO), 57% fat (F), and 33% protein (P), followed by 3 days of light weight-lifting and a day of rest while ingesting a diet of 80% CHO, 5% F, and 15% P. The control trial consisted of an identical weight-lifting regimen while subjects ingested an isocaloric (45 kcal/kg BW/day) diet. Body weight and girths (forearm, upper arm, chest, thigh, waist, and calf) were obtained before and after each trial in a relaxed and flexed state. The results indicate that an exercise/carbohydrate loading regimen had no significant effect on muscle girth as compared to the control trial. It is concluded that CHO loading has no additional advantage to enhancing muscle girth in bodybuilders over weight-lifting alone.  相似文献   

13.
The aim of this study was to investigate the effects of a carbohydrate (CHO) gel on performance after prolonged intermittent high-intensity shuttle running. Seven male soccer players performed 2 exercise trials, 7 d apart. On each occasion, participants completed five 15-min periods of intermittent variable-speed running, interspersed with periods of walking (Part A), followed by an intermittent run to exhaustion (Part B). Participants consumed either a CHO gel or placebo (PLA) immediately before exercise (0.89 mL/kg body mass [BM]) and every 15 min thereafter (0.35 mL/kg BM). In addition, water was consumed at a rate of 5 mL/kg BM before and 2 mL/kg BM every 15 min during exercise. Blood glucose levels were higher (P < 0.05) at 15, 30, and 60 min of exercise and at exhaustion in CHO than in PLA. During Part B, run time to exhaustion was longer (P < 0.05) in the CHO trial (CHO 6.1 +/- 1.3 min vs. PLA 4.2 +/- 1.2 min). These results indicate that ingesting a CHO gel, along with water, improves performance after prolonged intermittent running in healthy male subjects, possibly by maintaining blood glucose levels during exercise.  相似文献   

14.
Isotonic sports drinks are often consumed to offset the effects of dehydration and improve endurance performance, but hypotonic drinks may be more advantageous. The purpose of the study was to compare absorption and effects on performance of a commercially available hypotonic sports drink (Mizone Rapid: 3.9% carbohydrate [CHO], 218 mOsmol/kg) with those of an isotonic drink (PowerAde: 7.6% CHO, 281 mOsmol/ kg), a hypertonic drink (Gatorade: 6% CHO, 327 mOsmol/kg), and a noncaloric placebo (8 mOsmol/kg). In a crossover, 11 cyclists consumed each drink on separate days at 250 ml/15 min during a 2-hr preload ride at 55% peak power followed by an incremental test to exhaustion. Small to moderate increases in deuterium oxide enrichment in the preload were observed with Mizone Rapid relative to PowerAde, Gatorade, and placebo (differences of 88, 45, and 42 parts per million, respectively; 90% confidence limits ±28). Serum osmolality was moderately lower with Mizone Rapid than with PowerAde and Gatorade (-1.9, -2.4; mOsmol/L; ±1.2 mOsmol/L) but not clearly different vs. placebo. Plasma volume reduction was small to moderate with Mizone Rapid, PowerAde, and Gatorade relative to placebo (-1.9%, -2.5%, -2.9%; ± 2.5%). Gut comfort was highest with Mizone Rapid but clearly different (8.4% ± 4.8%) only vs PowerAde. Peak power was highest with Mizone Rapid (380 W) vs. placebo and other drinks (1.2-3.0%; 99% confidence limits ±4.7%), but differences were inconclusive with reference to the smallest important effect (~1.2%). The outcomes are consistent with fastest fluid absorption with the hypotonic sports drink. Further research should determine whether the effect has a meaningful impact on performance.  相似文献   

15.
Numerous studies have shown that ingesting carbohydrate in the form of a drink can improve exercise performance by maintaining blood glucose levels and sparing endogenous glycogen stores. The effectiveness of carbohydrate gels or jellybeans in improving endurance performance has not been examined. On 4 separate days and 1-2 hr after a standardized meal, 16 male (8; 35.8 +/- 2.5 yr) and female (8; 32.4 +/- 2.4 yr) athletes cycled at 75% VO(2peak) for 80 min followed by a 10-km time trial. Participants consumed isocaloric (0.6 g of carbohydrate per kg per hour) amounts of randomly assigned sports beans, sports drink, gel, or water only, before, during, and after exercise. Blood glucose concentrations were similar at rest between treatments and decreased significantly during exercise with the water trial only. Blood glucose concentrations for all carbohydrate supplements were significantly, p < .05, higher than water during the 80-min exercise bout and during the time trial (5.7 +/- 0.2 mmol/L for sports beans, 5.6 +/- 0.2 mmol/L for sports drink, 5.7 +/- 0.3 mmol/L for gel, and 4.6 +/- 0.3 mmol/L for water). There were no significant differences in blood glucose between carbohydrate treatments. The 10-km time trials using all 3 carbohydrate treatments were significantly faster (17.2 +/- 0.6 min for sports beans, 17.3 +/- 0.6 min for sports drink, and 17.3 +/- 0.6 min for gel) than water (17.8 +/- 0.7 min). All carbohydrate-supplement types were equally effective in maintaining blood glucose levels during exercise and improving exercise performance compared with water only.  相似文献   

16.
The majority of football players succumb to fatigue towards the end of the game. This study was designed to examine the influence of protein coingestion with carbohydrate (CHO) vs. an isocaloric CHO supplement on subsequent running capacity towards the end of a simulated football match. Six male amateur football players participated in 3 trials applied in a randomized cross-over experimental design. A laboratory-based, football-specific intermittent exercise was allocated for 75 min interspersed with a 15-min recovery, immediately followed by run time to fatigue (RTF) at 80% peak oxygen consumption. In each trial, prior to exercise and during half-time, participants randomly ingested a placebo (PLC), 6.9% CHO, or 4.8% CHO plus 2.1% protein (CHO-P) supplements matched for color and taste. CHO-P resulted in longer RTF (23.02 ± 5.27 min) than did CHO (16.49 ± 3.25 min) and PLC (11.00 ± 2.80 min) (p < 0.05). Blood glucose was higher in CHO-P at the point of fatigue (4.68 ± 0.64) compared with CHO and PLC (3.92 ± 0.29 and 3.66 ± 0.36, respectively; p < 0.05). Ratings of perceived exertion were lower in the CHO-P subjects at the onset of exercise and towards the end of intermittent exercise when compared with the PLC and CHO subjects (p < 0.05). When protein was added to a CHO supplement, subsequent running capacity following limited recovery from intermittent exercise was enhanced. This improvement suggests that protein coingestion may exert an ergogenic benefit upon endurance capacity during intermittent activity.  相似文献   

17.
Isomaltulose (ISO) is a disaccharide that is slowly digested, resulting in a slow availability for absorption. The aim of this study was to compare the blood substrate responses and exogenous carbohydrate (CHO) oxidation rates from orally ingested sucrose (SUC) and ISO during moderate intensity exercise. We hypothesized that the oxidation of ISO is lower compared with SUC, resulting in lower plasma glucose and insulin concentrations and subsequent lower CHO and higher fat oxidation rates. Ten trained men [maximal oxygen uptake (VO(2)max), 64 +/- 1 mL/(kg body mass.min)] cycled on 3 occasions for 150 min at 59 +/- 2% VO(2)max and consumed either water (WAT) or 1 of 2 CHO solutions providing 1.1 g/min of CHO in the form of either SUC or ISO. Peak exogenous CHO oxidation rates were higher (P < 0.05) during the SUC trial (0.92 +/- 0.03 g/min) than during the ISO trial (0.54 +/- 0.05 g/min). Total endogenous CHO oxidation over the final 90 min of exercise was lower (P < 0.05) in the SUC trial (107 +/- 10 g) than in the WAT (137 +/- 7 g) and ISO (127 +/- 9 g) trials. Fat oxidation was higher during the WAT trial than during the SUC and ISO trials. ISO resulted in a lower plasma insulin response at 30 min compared with SUC, whereas the glucose response did not differ between the 2 CHO. Oxidation of ingested ISO was significantly less than that of SUC, most likely due to the lower rate of digestion of ISO. A lower CHO delivery and a small difference in plasma insulin may have resulted in higher endogenous CHO use and higher fat oxidation during the ISO trial than during the SUC trial.  相似文献   

18.
This double-blind experiment examined the effects of a caffeinated sports drink during prolonged cycling in a warm environment. Sixteen highly trained cyclists completed 3 trials: placebo, carbohydrate-electrolyte sports drink (CES), and caffeinated sports drink (CES+CAF). Subjects cycled for 135 min, alternating between 60% and 75% VO2max every 15 min for the first 120 min, followed by a 15-min performance ride. Maximal voluntary (MVC) and electrically evoked contractile properties of the knee extensors were measured before and after cycling. Work completed during the performance ride was 15-23% greater for CES+CAF than for the other beverages. Ratings of perceived exertion were lower with CES+CAF than with placebo and CES. After cycling, the MVC strength loss was two-thirds less for CES+CAF than for the other beverages (5% vs. 15%). Data from the interpolated-twitch technique indicated that attenuated strength loss with CES+CAF was explained by reduced intrinsic muscle fatigue.  相似文献   

19.
Effects of carbohydrate (CHO) and caffeine (CAF) in amounts typically found in sports-drinks on plasma metabolites, neuroendocrine responses and performance in tennis were investigated in 8 skilled players during a 4 h tennis match. In 3 trials players ingested a placebo (T I), a CAF (T II) or a CHO (T III) drink during court changeover. Total intake consisted of 2.81 of fluid, supplemented with 243 g CHO or with 364 mg CAF, respectively. Self-perceived “drive/motivation” and post-exercise hitting accuracy were evaluated. Plasma free fatty acids increments were lower after CHO while CAF administration had no effect. In all trials, plasma branched-chain amino acids (BCAA) concentrations decreased as a result of exercise; however, no differences were observed between trials. Plasma free tryptophan (TRP) to BCAA ratio was augmented in T I and T II while no change from basal level was found in T III. Plasma prolactin (PRL) and growth hormone (HGH) concentrations after cessation of exercise were lower in T III compared with T I and T II. No main effect for treatment was found for plasma ACTH, COR and β-endorphin. Neither supplement affected number of won games. We conclude that CAF ingestion did not affect the plasma large neutral amino acids concentrations, neuroendocrine system responses or tennis performance. Lower plasma free TRP/BCAA ratio induced by CHO occurred concomitant with reduced plasma PRL and HGH concentrations, suggesting that the brain monoaminergic system might be affected if CHO-containing drinks are consumed during tennis match play. However, the data do not point towards an ergogenic value of reduced plasma free TRP/BCAA ratio.  相似文献   

20.
The well-established ergogenic benefit of ingesting carbohydrates during single-discipline endurance sports has only been tested once within an Olympic-distance (OD) triathlon. The aim of the present study was to compare the effect of ingesting a 2:1 maltodextrin/fructose solution with a placebo on simulated OD triathlon performance. Six male and 4 female amateur triathletes (age, 25 ± 7 years; body mass, 66.8 ± 9.2 kg; peak oxygen uptake, 4.2 ± 0.6 L·min(-1)) completed a 1500-m swim time-trial and an incremental cycle test to determine peak oxygen uptake before performing 2 simulated OD triathlons. The swim and cycle sections of the main trials were of fixed intensities, while the run section was completed as a time-trial. Two minutes prior to completing every quarter of the cycle participants consumed 202 ± 20 mL of either a solution containing 1.2 g·min(-1) of maltodextrin plus 0.6 g·min(-1) of fructose at 14.4% concentration (CHO) or a sugar-free, fruit-flavored drink (PLA). The time-trial was 4.0% ± 1.3% faster during the CHO versus PLA trial, with run times of 38:43 ± 1:10 min:s and 40:22 ± 1:18 min:s, respectively (p = 0.010). Blood glucose concentrations were higher in the CHO versus PLA trial (p < 0.001), while perceived stomach upset did not differ between trials (p = 0.555). The current findings show that a 2:1 maltodextrin/fructose solution (1.8 g·min(-1) at 14.4%) ingested throughout the cycle section of a simulated OD triathlon enhances subsequent 10-km run performance in triathletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号