首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The ultrastructure of substance P (SP)-immunoreactive elements in the cat dorsal motor nucleus of the vagus nerve was examined using pre- and post-embedding immunocytochemical procedures. Substance P-like immunoreactivity was observed in axon terminals and axon fibres which were mostly unmyelinated. Quantitative data showed that at least 16% of axon terminals contained SP. Their mean diameter was larger than that of their non-immunoreactive counterparts. Most (83%) SP-containing terminals were seen to contact dendrites but some were observed adjoining soma or entirely embedded in the cytoplasm of vagal neurons (4.5%). Only 0.5% were observed to contact soma of internuerons. A few immunoreactive axon terminals (4%) were observed in contact with non-immunoreactive axon terminals. Round agranular vesicles and numerous dense core vesicles were visible in most SP-containing axon terminals (84.6%). The immunogold procedure showed the preferential subcellular location of SP to be dense core vesicles. In 32.4% of cases, SP-containing terminals were involved in synaptic contacts that were generally of the asymmetrical Gray type 1 and mainly apposed dendrites. The theoretical total of synaptic contacts was 74.5% and this suggests the existence of weak non-synaptic SP innervation involving approximately 25% of SP-containing axon terminals. No axo-axonic synapses were observed in the dorsal vagal nucleus. These results support the hypothesis that SP found in the dorsal vagal nucleus originates partly from vagal afferents and is involved in direct modulation of visceral functions mediated by vagal preganglionic neurons.  相似文献   

2.
A light and electron microscopic study of GABA-immunoreactive neurons and profiles in the ventroanterior-ventrolateral and ventromedial nuclei of rat dorsal thalamus was conducted using antiserum raised against GABA. Less than 1% of the neurons in these motor-related nuclei exhibited GABA immunoreactivity, confirming previous reports that these nuclei are largely devoid of interneurons. Immunoreactive neurons in the ventral anterior-ventral lateral complex and ventromedial nucleus were bipolar or multipolar in shape, and tended to be smaller than non-immunoreactive neurons. GABA immunoreactivity in the neuropil consisted of labeled axon terminals and myelinated and unmyelinated axons, and was lower in the ventral anterior-ventral lateral complex and ventromedial nucleus than in neighboring thalamic nuclei. The density of neuropil immunolabeling was slightly higher in ventral anterior-ventral lateral complex than in ventromedial nucleus. GABA-immunoreactive axon terminals, collectively termed MP boutons for their medium size and pleomorphic vesicles (and corresponding to "F" profiles of some previous studies of thalamic ultrastructure), formed symmetric synapses and puncta adhaerentia contacts predominantly with large and medium-diameter (i.e. proximal) non-immunoreactive dendrites. Approximately 12 and 18% of boutons in the ventral anterior-ventral lateral complex and ventromedial nucleus, respectively, were GABA-immunopositive. Many of these immunoreactive profiles probably arose from GABAergic neurons in the thalamic reticular nucleus, substantia nigra pars reticulata and entopeduncular nucleus. Two types of non-immunoreactive axon terminals were distinguished based on differences in morphology and synaptic termination sites. Boutons with small ovoid profiles and round vesicles that formed prominent asymmetric synapses onto small-diameter dendrites were observed. Mitochondria were rarely observed within these boutons, which arose from thin unmyelinated axons. These boutons composed approximately 82 and 74% of boutons in the ventral anterior-ventral lateral complex and ventromedial nucleus, respectively, and were considered to arise predominantly from neurons in the cerebral cortex. In contrast, boutons with large terminals that contained round or plemorphic vesicles and formed multiple asymmetric synapses predominantly with large-diameter dendrites were also observed. Puncta adhaerentia contacts were also common. Mitochondria were numerous within large boutons with round vesicles, which arose from myelinated axons. Many of the large boutons were likely to have originated from neurons in the cerebellar nuclei. Approximately 6% of the boutons in the ventral anterior-ventral lateral complex and 8% in ventromedial nucleus were of the large type.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Corticotropin-releasing factor(CRF)-immunoreactive terminals form synaptic specializations with locus coeruleus (LC) dendrites in rat brain. Within these terminals, CRF-immunoreactive dense core vesicles are colocalized with non-labeled dense core vesicles and clear vesicles, implicating other neuromodulators in the actions of CRF on LC neurons. Excitatory (glutamate) and inhibitory (GABA) amino acid afferents to the LC, have been identified which regulate noradrenergic responses to sensory stimuli. This study was designed to determine whether these amino acid neurotransmitters are colocalized with CRF in terminals within the LC/peri-LC region in the rat. Sections through the LC region that were dually labeled using immunohistochemical techniques to visualize either CRF and glutamate or CRF and GABA were examined using electron microscopy. Numerous terminals that contained immunolabeling for both CRF and glutamate (e.g. 30% of 106 CRF-immunoreactive terminals and 13% of 232 glutamate-immunolabeled terminals) were observed in the peri-LC. Additionally, single labeled CRF and glutamate terminals were often apposed to one another or found to converge on common dendritic targets. In contrast, relatively few terminals exhibited immunolabeling for both GABA and CRF (5% of 317 CRF-immunoreactive terminals). However, evidence for a postsynaptic effect of CRF on GABA-containing profiles included synapses between CRF axon terminals and GABA-labeled dendrites (10% of 317 CRF-labeled terminals), as well as appositions between CRF- and GABA-labeled terminals.These results indicate that CRF is preferentially colocalized with glutamate in the rostrolateral LC region and may impact on glutamate neurotransmission in the LC via presynaptic or postsynaptic actions. They argue against colocalization of CRF with GABA, although CRF may modulate GABA release via postsynaptic effects in the peri-LC region.  相似文献   

4.
本文用免疫电镜技术研究了大鼠中脑导水管周围灰质腹外侧区内5-HT样、SP样和L-ENK样的免疫反应阳性亚微结构。5-HT样免疫反应阳性的胞体较多,常见5-HT样阳性树突与阴性轴突终末形成多为非对称性的轴-树突触;偶见阳性轴突终末与阴性树突以及阴性轴突终末与阳性胞体分别构成轴-树和轴-体突触.SP样阳性胞体数目较少,可见少量含多形性小泡的阴性轴突终末与之形成轴-体突触;由阴性轴突终末与阳性树突所形成的轴-树突触最常见;阳性轴突终末与阴性胞体和阳性树突分别构成轴-体突触和轴-树突触。L-ENK样阳性胞体数目也较少,L-ENK样阳性树突与阴性轴突终末所形成的轴-树突触最多见,可见L-ENK样阳性胞体与阴性轴突终末构成轴-体突触;偶见阳性轴突终末与阴性树突形成轴-树突触。上述各种突触均主要含圆形小泡,有时有少量扁平小泡、椭圆形小泡和颗粒囊泡。  相似文献   

5.
A post-embedding immunogold study was carried out to estimate the immunoreactivity to glutamate in retinal terminals, P axon terminals and dendrites containing synaptic vesicles in the superficial layers of the optic tectum of Vipera. Retinal terminals, identified following either intraocular injection of tritiated proline, horseradish peroxidase (HRP) or short-term survivals after retinal ablation, were observed to be highly glutamate-immunoreactive. A detailed quantitative analysis showed that about 50% of glutamate immunoreactivity was localized over the synaptic vesicles, 35.8% over mitochondria and 14.2% over the axoplasmic matrix. The close association of immunoreactivity with the synaptic vesicles could indicate that Vipera retino-tectal terminals may use glutamate as their neurotransmitter. P axon terminals and dendrites containing synaptic vesicles, strongly γ-aminobutyric (GABA)-immunoreactive, were shown to be also moderately glutamate-immunoreactive, but two to three times less than retinal terminals. Moreover, in P axon terminals, the glutamate immunoreactivity was denser over mitochondria than over synaptic vesicles, possibly reflecting the ‘metabolic' pool of glutamate, which serves as a precursor in the formation of GABA.  相似文献   

6.
应用免疫电镜包埋前染色技术对降钙素基因相关肽、甘丙肽免疫反应在大鼠臂旁外侧核分布的超微结构特征进行了研究。在臂旁外侧核腹外侧区中,常见降钙素基因相关肽阳性轴突终末与阴性树突及树突棘形成轴-树或轴-棘突触,大多为非对称型,少数为对称型;也可见阳性树突或阳性胞体与阴性轴突终末形成的轴-树或轴-体突触。阳性轴突终末含清亮小泡和致密核心小泡。臂旁外侧孩腹外侧部中甘丙肽阳性结构大多为阳性轴突终末,部分为阳性树突及阳性胞体。阳性树突常呈丛状分布于血管附近,阳性轴突常与阴性树突,阳性树突常与阴性轴突形成轴-树突触,大多为非对称型。臂旁外侧核腹外侧亚核的甘丙肽阳性结构分布基本与前者相似,但轴-树突触大多为对称型,而且一些阳性轴突与血管基膜紧贴。  相似文献   

7.
8.
We examined the characteristic features of galanin (GAL)-containing nerve afferents in the intermediolateral nucleus (IML) of the rat lumbosacral spinal cord (L6, S1), i.e., spinal parasympathetic nucleus, by immunocytochemistry at both light and electron microscopic levels. Firstly, the types of synapses formed by GAL-immunoreactive (IR) axon terminals and their post- or presynaptic elements were examined in random ultrathin sections. A total of 109 synapses were examined. Axo-dendritic (71%) and axo-somatic (20%) synapses were always of the asymmetrical type. Axo-axonic synapses (9%) were occasionally found; GAL-IR axon terminals were either postsynaptic (3%) or presynaptic (6%) to non-IR axon terminals. By confocal laser microscopy, many GAL-IR axon terminals were seen close to cell bodies and proximal dendrites of the IML neurons that were retrogradely labeled with Fluoro-Gold injected into the pelvic ganglion. Some GAL-IR axon terminals were identified to be presynaptic to them under the electron microscope, by restaining for GAL immunoreactivity with the immunoperoxidase method. These findings suggest that the GAL afferents are involved in the parasympathetic motor regulation of pelvic organs via their central synaptic influences upon preganglionic neurons. Finally, hemi-transection of the upper lumbar segments (L1-L3) or unilateral dorsal rhizotomy (L5-S2) did not significantly alter the immunoreactivity for GAL in the IML. These results suggest that GAL afferents do not originate from regions rostral to the IML nor from the dorsal root ganglion, but probably from GAL cells located at least within the lower lumbar segments and/or sacral spinal cord.  相似文献   

9.
The distribution of immunohistochemically demonstrable glutamate decarboxylase, the synthetic enzyme for GABA, was examined in the rat interpeduncular nucleus at the light and electron microscope levels. Immunoreactive perikarya were distributed in a characteristic pattern among the subnuclear divisions. The rostral, ventral and caudal portions of the nucleus possessed numerous immunoreactive perikarya, while few immunoreactive somata were observed in the subnuclei of the dorsal aspect. A dense field of immunostained axons and terminals was also present throughout. Ultrastructural examination of glutamate decarboxylase immunoreactivity revealed numerous labelled somata, dendritic processes, axons and boutons. Axodendritic and axosomatic synapses with immunoreactive postsynaptic profiles were numerous throughout those subnuclei with large numbers of immunoreactive somata. Immunostained terminals in contact with both immunoreactive and non-immunoreactive somatic and dendritic profiles were also present. An abundance of immunostained terminals was observed in the subnuclei that possessed a sparse population of immunoreactive somata. Immunoreactive myelinated axons of unknown origin were also present.

This investigation demonstrates that the rat interpeduncular nucleus possesses a large population of glutamate decarboxylase-immunoreactive neurons coextensive with a plexus of immunostained axons and terminals. The results suggest that the immunoreactive neurons give rise to axons which contribute to an intrinsic circuit interconnecting the different subnuclear divisions. These immunoreactive neurons are in receipt of non-immunoreactive afferent inputs of variable morphology, as well as projections from intrinsic immunoreactive neurons.  相似文献   


10.
Previous studies have shown that corticotropin-releasing factor (CRF), an integral mediator of the stress response, and opioids regulate the activity of the locus-coeruleus-norepinephrine (LC-NE) system during stress in a reciprocal manner. Furthermore, repeated opiate exposure sensitizes noradrenergic neurons to CRF. Previous studies have shown that mu-opioid receptors (muORs) are prominently distributed within somatodendritic processes of catecholaminergic neurons in the LC and axon terminals containing opioid peptides and CRF converge within the LC. To further examine cellular sites for interactions between CRF receptor type 1 (CRFr) and muOR, immunofluorescence and electron microscopic analysis of the rat LC was conducted. Triple immunofluorescence showed prominent co-localization of the CRFr and muOR in noradrenergic somata in the LC. Ultrastructural analysis confirmed dual localization of CRFr and muOR in common dendritic processes in the LC. Semi-quantitative analysis showed that of the dendrites exhibiting CRFr immunolabeling, 57% expressed muOR immunoreactivity. These data provide ultrastructural evidence that CRFr and muOR are co-localized in LC neurons, a cellular substrate that may underlie opiate-induced sensitization of brain noradrenergic neurons to CRF.  相似文献   

11.
The ultrastructural morphology and afferent sources of terminals containing substance P-like immunoreactivity were examined in the rat parabrachial region. In the first portion of the study, a polyclonal antiserum to substance P was localized in the ventrolateral parabrachial region using the peroxidase-antiperoxidase labeling technique combined with electron microscopy. The antiserum was tested for cross-reaction with substance P, physalaemin, substance K and neuromedins B, C and K. Cross-reactivity was most intense with substance P. However, substance K, neuromedin K and physalaemin also exhibited limited cross-reactions with the antiserum. In the ventrolateral parabrachial region of untreated adult animals, substance P-like immunoreactivity was localized in axon terminals containing numerous small (40-60 nm) clear vesicle and 1-3 large (90-120 nm) dense-core vesicles. At least 54% of the labeled terminals formed asymmetric synapses with unlabeled dendrites; and at least 30% of the recipient dendrites received more than one labeled axon terminal. In addition, the labeled terminals were associated less frequently with other unlabeled soma, axon terminals and blood vessels. In the second part of the study, we examined whether or not perikarya in various extrinsic regions contributed to the substance P-like immunoreactivity in axon terminals in the parabrachial region. Wheat-germ agglutinin conjugated horseradish peroxidase was injected unilaterally into the parabrachial region of adult rats two days prior to being killed and one day prior to intraventricular injection of colchicine (100 micrograms in 7.5 microliter saline) which enhanced the detection of immunoreactivity in perikarya. Sections were first processed by a tetramethylbenzidine reaction stabilized with cobalt-diaminobenzidine for demonstration of the transported peroxidase then were immunocytochemically labeled for substance P. Perikarya containing both the black granular retrograde labeling and brown peroxidase-immunoreactivity were found in the nuclei of the solitary tracts, the caudal ventrolateral reticular formation, the lateral dorsal tegmental nucleus and the paraventricular, dorsomedial and lateral hypothalamic nuclei. The projections were largely, but not exclusively, from perikarya located on the same side as the parabrachial injection. We conclude that substance P, or a closely related tachykinin, is a putative transmitter or modulator within a number of pathways to the parabrachial region and that these afferents act primarily through axodendritic synapses with intrinsic neurons.  相似文献   

12.
Using immunoelectron microscopic techniques, whether or not host neuronal elements newly form synaptic contact with the grafted dopamine (DA) neurons in the caudate nucleus of the rat with unilateral lesion in the nigrostriatal DA pathway was examined. Tyrosine hydroxylase (TH) was used as a marker for DA-containing structures. Motor imbalances after the lesion and before or after the transplantation were assessed by the amount of circlings after the injection of Met-amphetamine. In animals which recovered well from motor imbalance, non-immunoreactive axon terminals made synaptic contact with grafted TH-positive cell bodies and their dendrites. Since the incidence of these synapses was quite low in poorly recovered animals, the formation of a new neuronal circuit may be one of the important bases for behavior recovery.  相似文献   

13.
The synaptic relationship between substance P (SP) and its receptor, i.e. neurokinin-1 receptor (NK1R), was examined in the superficial laminae of the caudal subnucleus of the spinal trigeminal nucleus (medullary dorsal horn; MDH) of the rat. For confocal laser-scanning microscopy, double-immunofluorescence histochemistry for NK1 and SP was performed. In electron microscopic double-immunolabeling study, immunoreactivity for NK1R was detected with the silver-intensified gold method, while immunoreactivity for SP was detected with peroxidase immunohistochemistry. SP-immunoreactive axon terminals were observed to be in synaptic (mostly asymmetric) contact with NK1R-immunoreactive neuronal profiles in lamina I and lamina IIo. Although some SP-immunoreactive axon terminals were in synaptic contact with NK1R-immunoreactive sites of plasma membranes, NK1R-immunoreactivity was observed at both synaptic and non-synaptic sites of plasma membrane. Thus, SP released from axon terminals might not only act on NK1Rs facing the SP-containing axon terminals, but also diffuse in the extracellular fluid for distances larger than the synaptic cleft to act on NK1Rs at some distances from the synaptic sites.  相似文献   

14.
Polyclonal antibodies were generated against the major polypeptide (73,000 mol. wt) present in a highly purified preparation of the [Na+ + K+]coupled L-glutamate transporter from rat brain. These antibodies were able to selectively immunoprecipitate the 73,000 mol. wt polypeptide as well as most of the L-glutamate transport activity--as assayed upon reconstitution--from crude detergent extracts of rat brain membranes. The immunoreactivity in the various fractions obtained during the purification procedure [Danbolt et al. (1990) Biochemistry 29, 6734-6740] closely correlated with the L-glutamate transport activity. Immunoblotting of a crude sodium dodecyl sulphate brain extract, separated by two-dimensional isoelectric focusing-sodium dodecyl sulphate-polyacrylamide gel electrophoresis, showed that the antibodies recognized one 73,000 mol. wt protein species only. Deglycosylation of the protein gave a 10,000 reduction in molecular mass, but no reduction in immunoreactivity. These findings establish that the 73,000 mol. wt polypeptide represents the L-glutamate transporter or a subunit thereof. The antibodies also recognize a 73,000 mol. wt polypeptide and immunoprecipitate L-glutamate transport activity in extracts of brain plasma membranes from rabbit, pig, cow, cat and man. Using the antibodies, the immunocytochemical localization of the transporter was studied at the light and electron microscopic levels in rat central nervous system. In all regions examined (including cerebral cortex, caudatoputamen, corpus callosum, hippocampus, cerebellum, spinal cord) it was found to be located in glial cells rather than in neurons. In particular, fine astrocytic processes were strongly stained. Putative glutamatergic axon terminals appeared non-immunoreactive. The uptake of glutamate by such terminals (for which there is strong previous evidence) therefore may be due to a subtype of glutamate transporter different from the glial transporter demonstrated by us.  相似文献   

15.
With the use of the peroxidase-anti-peroxidase (PAP) technique, thyrotropin-releasing hormone (TRH)-like immunoreactivity was found in axon terminals and cell bodies in the dorsal horn of the cat spinal cord L7 segment. In particular, a conspicuous band-shaped region of axon terminals was observed in laminae II and III, while the cell bodies were most frequent in lamina III. Electron microscopic analysis showed that the TRH-immunoreactive terminals made synaptic contacts with cell bodies and dendrites of various sizes.  相似文献   

16.
Nerve growth factor receptor, as recognized by the monoclonal antibody 192-IgG, was localized to multiple regions of the adult rat forebrain. Immunoreactive cell bodies and fibers were seen in both sensory and motor regions which are known to contain cholinergic and non-cholinergic neurons. Specifically, nerve growth factor receptor immunoreactivity was present in cells lining the olfactory ventricle, rostral portion of the lateral ventricle, in basal forebrain nuclei, caudate putamen, globus pallidus, zona incerta and hypothalamus. Immunoreactive cells which were situated subpially along the olfactory ventricle and anterior portions of the lateral ventricle, and in the arcuate nucleus resembled neuroglia but could not definitively identified at the light microscopic level. Animals pretreated with intracerebroventricular colchicine displayed significantly increased nerve growth factor receptor immunoreactivity in all previously positive neurons and particularly in the medial preoptic area and ventral premammillary nucleus of the hypothalamus. In such animals, receptor immunoreactivity also appeared in previously non-immunoreactive cells of the hippocampal CA3 region and polymorph layer of the dentate gyrus as well as in the mitral cell layer of the olfactory bulb. Nerve growth factor receptor-immunoreactive fibers and varicosities were seen in the olfactory bulb, piriform cortex, neocortex, amygdala, hippocampus, thalamus, olivary pretectal nucleus and hypothalamus. In most regions, such fiber-like immunoreactive structures likely represented axon terminals, although in some areas, neuroglial or extracellular localizations could not be excluded. In this context, diffuse, non-fibrillar receptor immunoreactivity occurred in the lateral habenular nucleus and medial terminal nucleus of the accessory optic tract. Furthermore, intense nerve growth factor receptor immunoreactivity occurred along certain regions of the pial surface on the ventral surface of the brain. The distribution of nerve growth factor receptor-immunoreactive cell bodies and fibers in multiple sensory and motor nuclei suggests wide-spread influences of nerve growth factor throughout the adult rat forebrain. There is a high degree of overlap with regions containing choline acetyltransferase immunoreactivity. However, significant disparities exist suggesting that certain nerve growth factor receptor-containing non-cholinergic neurons of the rat forebrain may also be affected by nerve growth factor.  相似文献   

17.
Synaptic contacts were found between dopaminergic neurons and substance P (SP)-immunoreactive axon terminals in the ventral tegmental area (VTA), by means of the immunoelectron microscopic mirror method. SP-immunoreactive terminals were found to make synaptic contact with VTA neurons exhibiting tyrosine hydroxylase immunoreactivity.  相似文献   

18.
The aim of the present study was to evaluate the expression of two high affinity GABA transporters (GAT-1 and GAT-3) in the rat cerebellum using immunocytochemistry and affinity purified antibodies. GAT-1 immunoreactivity was prominent in punctate structures and axons in all layers of the cerebellar cortex, and was especially prominent around the somata of Purkinje cells. In contrast, the deep cerebellar nuclei showed few if any GAT-1 immunoreactive puncta. Weak GAT-3 immunoreactive processes were present in the cerebellar cortex, whereas GAT-3 immunostaining was prominent around the somata of neurons in the deep cerebellar nuclei. Electron microscopic preparations of the cerebellar cortex demonstrated that GAT-1 immunoreactive axon terminals formed symmetric synapses with somata, axon initial segments and dendrites of Purkinje cells and the dendrites of granule cells. Astrocytic processes in the cerebellar cortex were also immunolabeled for GAT-1. However, Purkinje cell axon terminals that formed symmetric synapses with neurons in the deep cerebellar nuclei lacked GAT-1 immunoreactivity. Instead, weak GAT 1 and strong GAT-3 immunoreactivities were expressed by astrocytic processes that enveloped the Purkinje cell axon terminals. In addition, GAT-3-immunoreactivity appeared in astrocytic processes in the cerebellar cortex. These observations demonstrate that GAT-1 is localized to axon terminals of three of the four neuronal types that were previously established as being GABAergic, i.e. basket, stellate and Golgi cells. GAT-1 and GAT-3 are expressed by astrocytes. The failure to identify a GABA transporter in Purkinje cells is consistent with previous data that indicated that Purkinje cells lacked terminal uptake mechanisms for GABA. The individual glial envelopment of Purkinje cell axon terminals in the deep cerebellar nuclei and the dense immunostaining of GAT-3, and to a lesser extent GAT-1, expressed by astrocytic processes provide a compensatory mechanism for the removal of GABA from the synaptic cleft of synapses formed by Purkinje cell axon terminals.  相似文献   

19.
Summary The intermediate and medial part of the hyperstriatum ventrale of the chick telencephalon plays a crucial role in the learning processes of imprinting. The distribution within the intermediate and medial part of the hyperstriatum ventrale of the neurotransmitter -amino butyric acid was studied with light and electron microscopy using an antibody against this amino acid. The antibody labelled 18.4% of neuronal somata. GABA-labelled terminals made symmetrical synapses onto somata and dendrites of labelled and unlabelled neurons. Labelled somata received about three times as many synaptic boutons as unlabelled somata. Approximately 21% of synaptic terminals on labelled somata were themselves labelled; unlabelled somata received a higher proportion (37.6%) of such terminals. Most labelled terminals synapsing with dendrites were confined to the shafts; very few labelled terminals contributed to axospinous synapses. Synaptic contacts made on dendritic shafts by labelled boutons were intermingled with symmetrical and asymmetrical contacts from non-immunoreactive terminals. The proportion of labelled terminals received by labelled dendrites (33.1%) was approximately twice that received by unlabelled dendrites (15.9%). Labelled neurons therefore received a higher proportion of labelled terminals on their dendrites and a lower proportion on their somata compared with unlabelled neurons. No immunoreactivity was seen in glial cells or ependyma.  相似文献   

20.
Summary The distribution of the neural-specific growth associated protein B-50 (GAP-43), which persists in the mature spinal cord and dorsal root ganglia, has been studied by light and electron microscopic immunohistochemistry in the cat. Throughout the spinal cord, B-50 immunoreactivity was seen confined to the neuropil, whereas neuronal cell bodies were unreactive. The most conspicuous immunostaining was observed in the dorsal horn, where it gradually decreased from superficial laminae (I–II) toward more ventral laminae (III–V), and in the central portion of the intermediate gray (mainly lamina X). In these regions, the labelling was localized within unmyelinated, small diameter nerve fibres and axon terminals. In the rest of the intermediate zone (laminae VI–VIII), B-50 immunoreactivity was virtually absent. The intermediolateral nucleus in the thoracic and cranial lumbar cord showed a circumscribed intense B-50 immunoreactivity brought about by the labelling of many axon terminals on preganglionic sympathetic neurons. In motor nuclei of the ventral horn (lamina IX), low levels of B-50 immunoreactivity were present in a few axon terminals on dendritic and somal profiles of motoneurons. In dorsal root ganglia, B-50 immunoreactivity was mainly localized in the cell bodies of small and medium-sized sensory neurons. The selective distribution of persisting B-50 immunoreactivity in the mature cat throughout sensory, motor, and autonomie areas of the spinal cord and in dorsal root ganglia suggests that B-50-positive systems retain in adult life the capacity for structural and functional plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号