首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The restricted gene expression of a differentiated cell can be reversed by forming hybrid with embryonic stem cells (ESCs). The resulting hybrid cells showed not only an ESC-specific marker expression but also a differentiation potential similar to the pluripotent fusion partner. Here, we evaluated whether the tetraploid fusion hybrid cells have a unique differentiation potential compared with diploid pluripotent cells. The first Oct4-GFP-positive cells were observed at day 2 following fusion between ESCs and neurosphere cells (OG2(+/-)/ROSA26(+/-)). Reprogramming efficiency was as high as 94.5% at passage 5 and 96.4% at passage 13. We have found that the tetraploid hybrid cells could form chimera with contribution to placenta after blastocyst injection. This result indicates that the tetraploid pluripotent fusion hybrid cells have wide range of differentiation potential. Therefore, we suggest that once the somatic cells are reprogrammed by fusion with ESCs, the tetraploid hybrid cells contributed to the extraembryonic as well as embryonic tissues.  相似文献   

2.
3.
Nuclei of embryonic stem cells reprogram somatic cells   总被引:9,自引:0,他引:9  
The restricted potential of a differentiated cell can be reverted back to a pluripotent state by cell fusion; totipotency can even be regained after somatic cell nuclear transfer. To identify factors involved in resetting the genetic program of a differentiated cell, we fused embryonic stem cells (ESCs) with neurosphere cells (NSCs). The fusion activated Oct4, a gene essential for pluripotency, in NSCs. To further identify whether cytoplasmic or nuclear factors are responsible for its reactivation, we fused either karyoplasts or cytoplasts of ESCs with NSCs. Our results show that ESC karyoplasts could induce Oct4 expression in the somatic genome, but cytoplasts lacked this ability. In addition, mitomycin C-treated ESCs, although incapable of DNA replication and cell division, could reprogram 5-azacytidine-treated NSCs. We therefore conclude that the Oct4 reprogramming capacity resides in the ESC karyoplast and that gene reactivation is independent of DNA replication and cell division.  相似文献   

4.
Human pluripotent stem cells hold great promise for basic research and regenerative medicine due to their inherent property to propagate infinitely, while maintaining the potential to differentiate into any given cell type of the human body. Since the first derivation in 1998, pluripotent human embryonic stem cells (ESCs) have been studied intensively, and although these cells provoke ethical and immune rejection concerns, translation of human ESC research into the clinics has been initiated. The generation of embryonic stem cell-like human induced pluripotent stem cells (iPSCs) from somatic cells by virus-mediated overexpression of distinct sets of reprogramming factors (OCT4, SOX2, KLF4, and c-MYC, or OCT4, SOX2, NANOG, and LIN28) in 2007 has opened up further opportunities in the field. While circumventing the major disputes associated with human ESCs, iPSCs offer the same advantages and, in addition, new perspectives for personalized medicine. This review summarizes technical advances toward the generation of potentially clinically relevant human iPSCs. We also highlight key molecular events underlying the process of cellular reprogramming and discuss inherent features of iPSCs, including genome instability and epigenetic memory. Furthermore, we will give an overview of particular envisaged human iPSC applications and point out which improvements are yet to come and what has been achieved so far.  相似文献   

5.
Gap junctional intercellular communication (GJIC) has been described in embryonic stem cells (ESCs) and various somatic cells. GJIC has been implicated in the regulation of cell proliferation, self-renewal, and differentiation. Recently, a new type of pluripotent stem cells was generated by direct reprogramming of somatic cells. Here, for the first time, we show that during reprogramming events GJIC is re-established upon reaching complete reprogramming. The opposite process of cell differentiation from the pluripotent state leads to the disruption of GJIC between pluripotent and differentiated cell subsets. However, GJIC is subsequently re-established de novo within each differentiated cell type in vitro, forming communication compartments within a histotype. Our results provide the important evidence that reestablisment of functional gap junctions to the level similar to human ESCs is an additional physiological characteristic of somatic cell reprogramming to the pluripotent state and differentiation to the specific cell type.  相似文献   

6.
Reprogramming somatic gene activity by fusion with pluripotent cells   总被引:1,自引:0,他引:1  
Fertilized eggs and early blastomeres, that have the potential to develop to fetuses when placed into a uterus, are totipotent. Those cells in the embryo, that can give rise to all cell types of an organism, but not to an organism itself, are pluripotent. Embryonic stem (ES), embryonic carcinoma (EC), and embryonic germ (EG) cells are powerful in vitro artifacts derived from different embryonic stages and are pluripotent. Totipotent and pluripotent cells have the potential to greatly benefit biological research and medicine. One powerful feature is that the genetic program of somatic cells can be converted into that of totipotent or pluripotent cells, as shown by nuclear transfer or cell fusion experiments. During reprogramming by cell fusion various features of pluripotent cells are acquired. These include the typical morphology of the respective pluripotent fusion partner, a specific epigenetic state, a specific gene profile, inactivation of tissue-specific genes expressed in the somatic fusion partner, and the developmental as well as differentiation potential of pluripotent cells. In this review, we will discuss what is known about the reprogramming process mediated by cell fusion and the potential use of fusion-induced reprogramming for therapeutic applications.  相似文献   

7.
8.
9.
Induced pluripotency: history, mechanisms, and applications   总被引:2,自引:0,他引:2  
  相似文献   

10.
11.
The fusion of pluripotent embryonic cells with somatic cells results in reprogramming of the somatic cell genome. Oct4-green fluorescent protein (GFP) transgenes that do not contain the proximal enhancer (PE) region are widely used to visualize reprogramming of the somatic to the pluripotent cell state. The temporal onset of Oct4-GFP activation has been found to occur 40-48 hours postfusion. We asked whether activation of the transgene actually reflects activation of the endogenous Oct4 gene. In the current study, we show that activation of an Oct4-GFP transgene that contains the PE region occurs within 22 hours of fusion. In addition, demethylation of the Oct4-GFP transgene and that of the endogenous Oct4 and Nanog genes was found to occur within 24 hours of fusion. As this timing corresponds with the timing of cell cycle completion in embryonic stem cells and fusion hybrids (approximately 22 hours), we postulate that pluripotential reprogramming of the somatic cell genome begins during the first cell cycle after the fusion of a somatic cell with a pluripotent cell and has been completed by day 2 postfusion.  相似文献   

12.
背景:由于胚胎干细胞移植存在致瘤性和伦理学争议,有关胚胎干细胞的研究及临床应用存在较大的限制。2006年Yamanaka实验室利用Oct3/4、Sox2、Klf4、c-Myc 4 种因子将鼠成纤维细胞重编程为诱导多功能干细胞,标志着一种新型类胚胎干细胞的问世。 目的:了解诱导多功能干细胞的研究进展和应用前景。 方法:由第一作者检索2006/2010 PubMed 数据库(http://www.ncbi.nlm.nih.gov/PubMed)及万方数据库(http://g.wanfangdata.com.cn/)有关诱导多功能干细胞的产生、细胞特征、产生技术的研究进展及应用前景等方面的文章,英文检索词为“induced pluripotent stem cells,defined factors,reprogramming,vectors,disease”,排除重复性研究,共保留其中的69篇进行归纳总结。 结果与结论:诱导多功能干细胞研究在诱导因子种类,因子导入方式,重编程效率及应用研究等诸多方面取得进展。然而体细胞重编程为诱导多功能干细胞仍存在一定的风险,重编程效率还非常低。一旦解决诱导多功能干细胞的安全性和重编程效率问题,诱导多功能干细胞就可被广泛应用于疾病模型,药物测试,细胞移植及患者和疾病特异性多功能干细胞的建立等诸多方面。  相似文献   

13.
14.
Regulatory issues for personalized pluripotent cells   总被引:1,自引:0,他引:1  
The development of personalized pluripotent stem cells for research and for possible therapies holds out great hope for patients. However, such cells will face significant technical and regulatory challenges before they can be used as therapeutic reagents. Here we consider two possible sources of personalized pluripotent stem cells: embryonic stem cells derived from nuclear transfer (NT-ESCs) and induced pluripotent stem cells (iPSCs) derived from direct reprogramming of adult somatic cells. Both sources of personalized pluripotent stem cells face unique regulatory hurdles that are in some ways significantly higher than those facing stem cells derived from embryos produced by fertilization (ESCs). However, the outstanding long-term potential of iPSCs and their relative freedom from the ethical concerns raised by both ESCs and NT-ESCs makes direct reprogramming an exceptionally promising approach to advancing research and providing therapies in the field of regenerative medicine.  相似文献   

15.
The efficiency of somatic cell reprogramming to pluripotency using defined factors is dramatically affected by the cell type of origin. Here, we show that human keratinocytes, which can be reprogrammed at a higher efficiency than fibroblast [Nat Biotechnol 2008;26:1276-1284], share more genes hypermethylated at CpGs with human embryonic stem cells (ESCs) than other somatic cells frequently used for reprogramming. Moreover, pluripotent cells reprogrammed from keratinocytes (KiPS) are more similar to ESCs than those reprogrammed from fibroblasts (FiPS) in regard to DNA methylation levels, mostly due to the presence of genes that fail to acquire high levels of DNA methylation in FiPS cells. We propose that higher reprogramming efficiency correlates with the hypermethylation of tissue-specific genes rather than with a more permissive pluripotency gene network.  相似文献   

16.
Reprogramming of the epigenetic state from differentiated to pluripotent cells can be attained by cell fusion of differentiated somatic cells with embryonic stem (ES) cells or transfer of the nucleus of a differentiated cell into an enucleated oocyte. Activation of Akt signaling is sufficient to maintain pluripotency of ES cells and promotes derivation of embryonic germ (EG) cells from primordial germ cells (PGCs). Here we analyzed the effects of Akt signaling on somatic cell nuclear reprogramming after cell fusion and nuclear transfer. We found that forced activation of Akt signaling stimulated reprogramming after cell fusion of ES cells with thymocytes or mouse embryonic fibroblasts. These hybrid cells showed ES cell characteristics, including in vitro and in vivo differentiation capacity. In contrast, Akt signaling significantly reduced the efficiency of reprogramming with nuclear transfer. Our results demonstrate that Akt signaling plays important roles on the nuclear reprogramming of somatic cells.  相似文献   

17.
The recent high-profile reports of the derivation of human embryonic stem cells (ESCs) from human blastocysts produced by somatic cell nuclear transfer (SCNT) have highlighted the possibility of making autologous cell lines specific to individual patients. Cell replacement therapies have much potential for the treatment of diverse conditions, and differentiation of ESCs is highly desirable as a means of producing the ranges of cell types required. However, given the range of immunophenotypes of ESC lines currently available, rejection of the differentiated cells by the host is a potentially serious problem. SCNT offers a means of circumventing this by producing ESCs of the same genotype as the donor. However, this technique is not without problems because it requires resetting of the gene expression program of a somatic cell to a state consistent with embryonic development. Some remodeling of parental DNA does occur within the fertilized oocyte, but the somatic genome presented in a radically different format to those of the gametes. Hence, it is perhaps unsurprising that many genes are expressed aberrantly within "cloned" embryos and the ESCs derived from them. Epigenetic modification of the genome through DNA methylation and covalent modification of the histones that form the nucleosome is the key to the maintenance of the differentiated state of the cell, and it is this that must be reset during SCNT. This review focuses on the mechanisms by which this is achieved and how this may account for its partial failure in the "cloning" process. We also highlight the potential dangers this may introduce into ESCs produced by this technology.  相似文献   

18.
Reprogramming of somatic cells into inducible pluripotent stem cells (iPSCs) provides an alternative to using embryonic stem cells (ESCs). Mesenchymal stem cells derived from human hair follicles (hHF-MSCs) are easily accessible, reproducible by direct plucking of human hairs. Whether these hHF-MSCs can be reprogrammed has not been previously reported. Here we report the generation of iPSCs from hHF-MSCs obtained by plucking several hairs. hHF-MSCs were isolated from hair follicle tissues and their mesenchymal nature confirmed by detecting cell surface antigens and multilineage differentiation potential towards adipocytes and osteoblasts. They were then reprogrammed into iPSCs by lentiviral transduction with Oct4, Sox2, c-Myc and Klf4. hHF-MSC-derived iPSCs appeared indistinguishable from human embryonic stem cells (hESCs) in colony morphology, expression of alkaline phosphotase, and expression of specific hESCs surface markers, SSEA-3, SSEA-4, Tra-1-60, Tra-1-81, Nanog, Oct4, E-Cadherin and endogenous pluripotent genes. When injected into immunocompromised mice, hHF-MSC-derived iPSCs formed teratomas containing representatives of all three germ layers. This is the first study to report reprogramming of hHF-MSCs into iPSCs.  相似文献   

19.
20.
A potential application of embryonic and inducible pluripotent stem cells for the therapy of degenerative diseases involves pure somatic cells, free of tumorigenic undifferentiated embryonic and inducible pluripotent stem cells. In complex collections of chemicals with pharmacological potential we expect to find molecules able to induce specific pluripotent stem cell death, which could be used in some cell therapy settings to eliminate undifferentiated cells. Therefore, we have screened a chemical library of 1120 small chemicals to identify compounds that induce specifically apoptotic cell death in undifferentiated mouse embryonic stem cells (ESCs). Interestingly, three compounds currently used as clinically approved drugs, nortriptyline, benzethonium chloride and methylbenzethonium chloride, induced differential effects in cell viability in ESCs versus mouse embryonic fibroblasts (MEFs). Nortriptyline induced apoptotic cell death in MEFs but not in ESCs, whereas benzethonium and methylbenzethonium chloride showed the opposite effect. Nortriptyline, a tricyclic antidepressant, has also been described as a potent inhibitor of mitochondrial permeability transition, one of two major mechanisms involved in mitochondrial membrane permeabilization during apoptosis. Benzethonium chloride and methylbenzethonium chloride are quaternary ammonium salts used as antimicrobial agents with broad spectrum and have also been described as anticancer agents. A similar effect of benzethonium chloride was observed in human induced pluripotent stem cells (hiPSCs) when compared to both primary human skin fibroblasts and an established human fibroblast cell line. Human fibroblasts and hiPSCs were similarly resistant to nortriptyline, although with a different behavior. Our results indicate differential sensitivity of ESCs, hiPSCs and fibroblasts to certain chemical compounds, which might have important applications in the stem cell-based therapy by eliminating undifferentiated pluripotent stem cells from stem cell-derived somatic cells to prevent tumor formation after transplantation for therapy of degenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号