首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
γδ T cells are a potent source of innate IL‐17A and IFN‐γ, and they acquire the capacity to produce these cytokines within the thymus. However, the precise stages and required signals that guide this differentiation are unclear. Here we show that the CD24low CD44high effector γδ T cells of the adult thymus are segregated into two lineages by the mutually exclusive expression of CCR6 and NK1.1. Only CCR6+ γδ T cells produced IL‐17A, while NK1.1+ γδ T cells were efficient producers of IFN‐γ but not of IL‐17A. Their effector phenotype correlated with loss of CCR9 expression, particularly among the NK1.1+ γδ T cells. Accordingly, both γδ T‐cell subsets were rare in gut‐associated lymphoid tissues, but abundant in peripheral lymphoid tissues. There, they provided IL‐17A and IFN‐γ in response to TCR‐specific and TCR‐independent stimuli. IL‐12 and IL‐18 induced IFN‐γ and IL‐23 induced IL‐17A production by NK1.1+ or CCR6+ γδ T cells, respectively. Importantly, we show that CCR6+ γδ T cells are more responsive to TCR stimulation than their NK1.1+ counterparts. In conclusion, our findings support the hypothesis that CCR6+ IL‐17A‐producing γδ T cells derive from less TCR‐dependent selection events than IFN‐γ‐producing NK1.1+ γδ T cells.  相似文献   

2.
γδ T cells play a crucial role in controlling malaria parasites. Dendritic cell (DC) activation via CD40 ligand (CD40L)‐CD40 signaling by γδ T cells induces protective immunity against the blood‐stage Plasmodium berghei XAT (PbXAT) parasites in mice. However, it is unknown which γδ T‐cell subset has an effector role and is required to control the Plasmodium infection. Here, using antibodies to deplete TCR Vγ1+ cells, we saw that Vγ1+ γδ T cells were important for the control of PbXAT infection. Splenic Vγ1+ γδ T cells preferentially expand and express CD40L, and both Vγ1+ and Vγ4+ γδ T cells produce IFN‐γ during infection. Although expression of CD40L on Vγ1+ γδ T cells is maintained during infection, the IFN‐γ positivity of Vγ1+ γδ T cells is reduced in late‐phase infection due to γδ T‐cell dysfunction. In Plasmodium‐infected IFN‐γ signaling‐deficient mice, DC activation is reduced, resulting in the suppression of γδ T‐cell dysfunction and the dampening of γδ T‐cell expansion in the late phase of infection. Our data suggest that Vγ1+ γδ T cells represent a major subset responding to PbXAT infection and that the Vγ1+ γδ T‐cell response is dependent on IFN‐γ‐activated DCs.  相似文献   

3.
We investigated the ability of the most common TCR‐γ and δ chains to express on the cell surface. Vγ1Cγ4 and Vγ7Cγ1 chains paired with all TCR‐δ chains tested, whereas Vγ4Cγ1 chains were found with Vδ4 and Vδ5, but not with Vδ2 or Vδ6 chains, and Vγ2Cγ2 chains were expressed only with Vδ5. Mapping studies showed that up to four polymorphic residues influence the different co‐expressions of Vγ1 and Vγ2 chains with Vδ chains. Unexpectedly, these residues are not located in the canonical γ/δ interface, but in the outer part of the γδ TCR complex exposed to the solvent. Expression of functional Vδ4 or Vδ6 chains in Vγ2/Vδ5+ cells or of functional Vγ2Cγ2 in Vγ1+ cells reduced cell‐surface expression of the γδ TCR. Taken together, these data show that (i) the Vγ/Vδ repertoire of mouse γδ T cells is reduced by physical constraints in their associations. (ii) Lack of Vγ2/Vδ expression is due to the formation of aberrant TCR complexes, rather than to an intrinsic inability of the chains to pair and (iii) despite not being expressed at the cell surface, the presence of a functionally rearranged Vγ2 chain in γδ T cells results in reduced TCR levels.  相似文献   

4.
5.
Regulatory CD4+ T cells are important for the homeostasis of immune cells, and their absence correlates with autoimmune disorders. However, how the immune system regulates Treg homeostasis remains unclear. We found that IFN‐γ‐deficient‐mice had more forkhead box P3 (FOXP3+) cells than WT mice in all secondary lymphoid organs except the thymus. However, T‐bet‐ or IL‐4Rα‐deficient mice did not show a similar increase. In vitro differentiation studies showed that conversion of naïve T cells into FOXP3+ cells (neo‐generated inducible Treg (iTreg)) by TGF‐β was significantly inhibited by IFN‐γ in a STAT‐1‐dependent manner. Moreover, an in vivo adoptive transfer study showed that inhibition of FOXP3+ iTreg generation by IFN‐γ was a T‐cell autocrine effect. This inhibitory effect of IFN‐γ on iTreg generation was significantly abrogated after N‐acetyl‐L ‐cysteine treatment both in vitro and in vivo, indicating that IFN‐γ regulation of iTreg generation is dependent on ROS‐mediated apoptosis. Therefore, our results suggest that autocrine IFN‐γ can negatively regulate the neo‐generation of FOXP3+ iTreg through ROS‐mediated apoptosis in the periphery.  相似文献   

6.
We show here that the expression of 4–1BB is rapidly induced in γδ T cells following antigenic stimulation in both mice and humans, and ligation of the newly acquired 4–1BB with an agonistic anti‐4–1BB augments cell division and cytokine production. We further demonstrate that γδ rather than αβ T cells protect mice from Listeria monocytogenes (LM) infection and 4–1BB stimulation enhances the γδ T‐cell activities in the acute phase of LM infection. IFN‐γ produced from γδ T cells was the major soluble factor regulating LM infection. Vγ1+ T cells were expanded in LM‐infected mice and 4–1BB signal triggered an exclusive expansion of Vγ1+ T cells and induced IFN‐γ in these Vγ1+ T cells. Similarly, 4–1BB was induced on human γδ T cells and shown to be fully functional. Combination treatment with human γδ T cells and anti‐hu4–1BB effectively protected against LM infection in human γδ T cell‐transferred NOD‐SCID mice. Taken together, these data provide evidence that the 4–1BB signal is an important regulator of γδ T cells and induces robust host defense against LM infection.  相似文献   

7.
γδ T cell comprises about 5% of the overall T cell population, and they differ from conventional αβ T cells. Previous studies have indicated the contribution of γδ T cell to acute allograft rejection, but the role of γδ T cell in cardiac allograft vasculopathy (CAV) is not investigated. Hearts of adult B6.C‐H‐2bm12KhEg were heterotopically transplanted into major histocompatibility complex (MHC) class II‐mismatched C57BL/6 mice (wild‐type, γδ TCR?/?), which is an established murine model of chronic allograft rejection without immunosuppression. The survival of grafts was monitored daily by abdominal palpation until the complete cessation of cardiac contractility. Our current study demonstrated that γδ T cell receptor (TCR) deficiency significantly attenuated CAV, and this effect coincides with low expression of Hmgb1, IFN‐γ and IL‐17 while increased number of CD4+CD25+Foxp3+ regulatory T cells, and depletion of regulatory T cells abrogated the prolonged allograft survival induced by γδ TCR deficiency. γδ TCR deficiency resulted in attenuated CAV and prolonged graft survival in murine models of cardiac transplantation, and this effect was associated with enhanced expansion of regulatory T cells.  相似文献   

8.
γδ T cells are highly cytolytic lymphocytes that produce large amounts of pro‐inflammatory cytokines during immune responses to multiple pathogens. Furthermore, their ability to kill tumor cells has fueled the development of γδ‐T‐cell‐based cancer therapies. Thus, the regulation of γδ‐T‐cell activity is of great biological and clinical relevance. Here, we show that murine CD4+CD25+ αβ T cells, the vast majority of which express the Treg marker, Foxp3, abolish key effector functions of γδ T cells, namely the production of the pro‐inflammatory cytokines, IFN‐γ and IL‐17, cytotoxicity, and lymphocyte proliferation in vitro and in vivo. We further show that suppression is dependent on cellular contact between Treg and γδ T cells, results in the induction of an anergic state in γδ lymphocytes, and can be partially reversed by manipulating glucocorticoid‐induced TNF receptor‐related protein (GITR) signals. Our data collectively dissect a novel mechanism by which the expansion and pro‐inflammatory functions of γδ T cells are regulated.  相似文献   

9.
10.
Nuclear factor‐κB‐inducing kinase (NIK) is known to play a critical role in maintaining proper immune function. This is exemplified in the spontaneous mutant mouse lacking functional NIK, alymphoplasia (aly), which is simultaneously immune‐compromised and autoimmune‐prone. To investigate the role of NIK in αβ T‐cell repertoire formation, we analysed T‐cell development in aly/aly mice bearing a transgenic T‐cell receptor (TCR). Although there were no apparent abnormalities in the mature αβ T cells of non‐transgenic aly/aly mice, the maturation efficiency of idiotypehigh+ T cells in the TCR‐transgenic mice was lower in aly/aly mice compared with those found in aly/+ mice, suggesting that the mature αβ T‐cell repertoire could be altered by the absence of functional NIK. In one strain of TCR‐transgenic aly/aly mice with a negatively selecting H‐2 background, the proportion of CD8low+ idiotypehigh+ cells, which are thought to potentially represent the γδ lineage of T cells, was markedly decreased. When the γδ T cells in non‐transgenic aly/aly mice were investigated, the proportion of γδ T cells in the peripheral organs of aly/aly mice was found to be one‐half to one‐fifth of those in aly/+ mice. Analyses of bone marrow chimera mice indicated that NIK in host cells, rather than in donor cells was important for generating a normal number of peripheral γδ T cells. Collectively, these results suggest that NIK could be involved in thymic positive selection of some αβ T cells and that NIK in non‐haematopoietic cells is important for the optimal development and/or maintenance of γδ T cells.  相似文献   

11.
αβ T‐cell development and selection proceed while thymocytes successively migrate through distinct regions of the thymus. For γδ T cells, the interplay of intrathymic migration and cell differentiation is less well understood. Here, we crossed C‐C chemokine receptor (CCR)7‐deficient (Ccr7?/?) and CCR9‐deficient mice (Ccr9?/?) to mice with a TcrdH2BeGFP reporter background to investigate the impact of thymic localization on γδ T‐cell development. γδ T‐cell frequencies and numbers were decreased in CCR7‐deficient and increased in CCR9‐deficient mice. Transfer of CCR7‐ or CCR9‐deficient BM into irradiated C57BL/6 WT recipients reproduced these phenotypes, pointing toward cell‐intrinsic migration defects. Monitoring recent thymic emigrants by intrathymic labeling allowed us to identify decreased thymic γδ T‐cell output in CCR7‐deficient mice. In vitro, CCR7‐deficient precursors showed normal γδ T‐cell development. Immunohistology revealed that CCR7 and CCR9 expression was important for γδ T‐cell localization within thymic medulla or cortex, respectively. However, γδ T‐cell motility was unaltered in CCR7‐ or CCR9‐deficient thymi. Together, our results suggest that proper intrathymic localization is important for normal γδ T‐cell development.  相似文献   

12.
13.
Interstitial pneumonia (IP) is a chronic progressive interstitial lung disease associated with poor prognosis and high mortality. However, the pathogenesis of IP remains to be elucidated. The aim of this study was to clarify the role of pulmonary γδT cells in IP. In wild‐type (WT) mice exposed to bleomycin, pulmonary γδT cells were expanded and produced large amounts of interferon (IFN)‐γ and interleukin (IL)‐17A. Histological and biochemical analyses showed that bleomycin‐induced IP was more severe in T cell receptor (TCR‐δ‐deficient (TCRδ–/–) mice than WT mice. In TCRδ–/– mice, pulmonary IL‐17A+CD4+ Τ cells expanded at days 7 and 14 after bleomycin exposure. In TCRδ–/– mice infused with γδT cells from WT mice, the number of pulmonary IL‐17A+ CD4+ T cells was lower than in TCRδ–/– mice. The examination of IL‐17A–/– TCRδ–/– mice indicated that γδT cells suppressed pulmonary fibrosis through the suppression of IL‐17A+CD4+ T cells. The differentiation of T helper (Th)17 cells was determined in vitro, and CD4+ cells isolated from TCRδ–/– mice showed normal differentiation of Th17 cells compared with WT mice. Th17 cell differentiation was suppressed in the presence of IFN‐γ producing γδT cells in vitro. Pulmonary fibrosis was attenuated by IFN‐γ‐producing γδT cells through the suppression of pulmonary IL‐17A+CD4+ T cells. These results suggested that pulmonary γδT cells seem to play a regulatory role in the development of bleomycin‐induced IP mouse model via the suppression of IL‐17A production.  相似文献   

14.
We have previously shown that γδ T cells traffic to the CNS during EAE with concurrently increased expression of β2‐integrins and production of IFN‐γ and TNF‐α. To extend these studies, we transferred bioluminescent γδ T cells to WT mice and followed their movement through the acute stages of disease. We found that γδ T cells rapidly migrated to the site of myelin oligodendrocyte glycoprotein peptide injection and underwent massive expansion. Within 6 days after EAE induction, bioluminescent γδ T cells were found in the spinal cord and brain, peaking in number between days 10 and 12 and then rapidly declining by day 15. Reconstitution of γδ T cell?/? mice with γδ T cells derived from β2‐integrin‐deficient mice (CD11a, ‐b or ‐c) demonstrated that γδ T‐cell trafficking to the CNS during EAE is independent of this family of adhesion molecules. We also examined the role of γδ T‐cell‐produced IFN‐γ and TNF‐α in EAE and found that production of both cytokines by γδ T cells was required for full development of EAE. These results indicate that γδ T cells are critical for the development of EAE and suggest a therapeutic target in demyelinating disease.  相似文献   

15.
Inducible Treg (iTreg) cells generated from Ag‐stimulated naïve CD4+ T cells in the periphery play an important role in regulating immune responses. TGF‐β is a key cytokine that promotes this conversion process; however, how this process is regulated in vivo remains unclear. Here, we report that γδ T cells play a crucial role in controlling iTreg generation and suppressor function. Ag‐induced iTreg generation was significantly enhanced in C57BL/6 mice in the absence of γδ T cells. Inhibition of iTreg conversion was mediated by IFN‐γ produced by activated γδ T cells but not by activated CD4+ T cells. BM chimera experiments further confirmed γδ‐derived IFN‐γ‐dependent mechanism in regulating iTreg generation in vivo. Lastly, human peripheral blood γδ T cells also interfere with iTreg conversion via IFN‐γ. Our results suggest a novel function of γδ T cells in limiting the generation of iTreg cells, potentially balancing immunity and tolerance.  相似文献   

16.
17.
Myeloid‐derived suppressor cells (MDSC) and DC are major controllers of immune responses against tumors or infections. However, it remains unclear how DC development and MDSC suppressor activity both generated from myeloid precursor cells are regulated. Here, we show that the combined treatment of BM‐derived MDSC with LPS plus IFN‐γ inhibited the DC development but enhanced MDSC functions, such as NO release and T‐cell suppression. This was not observed by the single treatments in vitro. In the spleens of healthy mice, we identified two Gr‐1lowCD11bhighLy‐6ChighSSClowMo‐MDSC and Gr‐1highCD11blowPMN‐MDSC populations with suppressive potential, whereas Gr‐1highCD11bhigh neutrophils and Gr‐1lowCD11bhighSSClow eosinophils were not suppressive. Injections of LPS plus IFN‐γ expanded these populations within the spleen but not LN leading to the block of the proliferation of CD8+ T cells. At the same time, their capacity to develop into DC was impaired. Together, our data suggest that spleens of healthy mice contain two subsets of MDSC with suppressive potential. A two‐signal‐program through combined LPS and IFN‐γ treatment expands and fully activates MDSC in vitro and in vivo.  相似文献   

18.
mAb targeting the γδ TCR have been used for γδ T‐cell depletion with varying success. Although the depletion‐capacity of the anti‐γδ TCR mAb clone GL3 has been disputed repeatedly, many groups continue to use γδ T‐cell depletion protocols involving the mAb clone UC7‐13D5 and find significant biological effects. We show here that treatment with both GL3 and UC7‐13D5 antibodies does not deplete γδ T cells in vivo, but rather leads to TCR internalization and thereby generates “invisible” γδ T cells. We addressed this issue using anti‐γδ TCR mAb injections into WT mice as well as into reporter TCR delta locus‐histone 2B enhanced GFP knock‐in mice, in which γδ T cells can be detected based on an intrinsic green fluorescence. Importantly, the use of TCR delta locus‐histone 2B enhanced GFP mice provided here for the first time direct evidence that the “depleted” γδ T cells were actually still present. Our results show further that GL3 and UC7‐13D5 mAb are in part cross‐competing for the same epitope. Assessed by activation markers, we observed in vitro and in vivo activation of γδ T cells through mAb. We conclude that γδ T‐cell depletion experiments must be evaluated with caution and discuss the implications for future studies on the physiological functions of γδ T cells.  相似文献   

19.
The term immunological memory has long been a trademark restricted to adaptive lymphocytes such as memory B cells and plasma cells as well as memory CD8+ αβ T cells. In recent years, innate lymphocytes such as NK cells have also been shown to adapt to their environment by antigen‐specific expansion and selective survival. However, whether γδ T cells mount comparable memory responses to pathogenic stimuli is less well understood. In this issue of European Journal of Immunology, Hartwig et al. [Eur. J. Immunol. 2015. 45: 3022–3033] identify a subset of IL‐17‐producing γδ T cells that are capable of establishing long‐lived memory in the skin of mice exposed to imiquimod in the Aldara psoriasis model. These γδ T cells uniformly express a Vγ4+Vδ4+ TCR. They produce IL‐17A/F and persist in the dermis for long periods of time, also at untreated distal sites. Upon secondary challenge, experienced Vγ4+Vδ4+ cells show enhanced effector functions and mediate exacerbated secondary inflammation. These findings showcase innate γδ T‐cell memory that uses a single conserved public TCR combination. Furthermore, they provide mechanistic insight to the observed psoriatic relapses in patients in response to topical treatment with imiquimod.  相似文献   

20.
Tuberculous pleurisy is a naturally occurring site of Mycobacterium tuberculosis (Mtb) infection. Herein, we describe the expression of activation, natural killer (NK) and cell migration markers, as well as effector functions from γδT cells in peripheral blood (PB) and pleural effusion (PE) from tuberculosis patients (TB). We observed a decreased percentage of circulating γδT from TB patients and differential expression of NK as well as of chemokine receptors on PB and PE. Two subsets of γδT cells were differentiated by the CD3/γδT cell receptor (γδTCR) complex. The γδTCRlow subset had a higher CD3 to TCR ratio and was enriched in Vδ2+ cells, whereas most Vδ1+ cells belonged to the γδTCRhigh subset. In PB from TB, most γδTCRhigh were CD45RA+CCR7 and γδTCRlow were CD45RA+/?CCR7+CXCR3+. In the pleural space the proportion of CD45RACCR7+CXCR3+ cells was higher. Neither spontaneous nor Mtb‐induced interferon (IFN)‐γ production was observed in PB‐γδT cells from TB; however, PE‐γδT cells showed a strong response. Both PB‐ and PE‐γδ T cells expressed surface CD107a upon stimulation with Mtb. Notably, PE‐γδTCRlow cells were the most potent effector cells. Thus, γδT cells from PB would acquire a further activated phenotype within the site of Mtb infection and exert full effector functions. As γδT cells produce IFN‐γ within the pleural space, they would be expected to play a beneficial role in tuberculous pleurisy by helping to maintain a T helper type 1 profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号