首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Input–output computations of individual neurons may be affected by the three‐dimensional structure of their dendrites and by the location of input synapses on specific parts of their dendrites. However, only a few examples exist of dendritic architecture which can be related to behaviorally relevant computations of a neuron. By combining genetic, immunohistochemical and confocal laser scanning methods this study estimates the location of the spike‐initiating zone and the dendritic distribution patterns of putative synaptic inputs on an individually identified Drosophila flight motorneuron, MN5. MN5 is a monopolar neuron with > 4000 dendritic branches. The site of spike initiation was estimated by mapping sodium channel immunolabel onto geometric reconstructions of MN5. Maps of putative excitatory cholinergic and of putative inhibitory GABAergic inputs on MN5 dendrites were created by charting tagged Dα7 nicotinic acetylcholine receptors and Rdl GABAA receptors onto MN5 dendritic surface reconstructions. Although these methods provide only an estimate of putative input synapse distributions, the data indicate that inhibitory and excitatory synapses were located preferentially on different dendritic domains of MN5 and, thus, computed mostly separately. Most putative inhibitory inputs were close to spike initiation, which was consistent with sharp inhibition, as predicted previously based on recordings of motoneuron firing patterns during flight. By contrast, highest densities of putative excitatory inputs at more distant dendritic regions were consistent with the prediction that, in response to different power demands during flight, tonic excitatory drive to flight motoneuron dendrites must be smoothly translated into different tonic firing frequencies.  相似文献   

2.
In rodents, the dorsolateral striatum regulates voluntary movement by integrating excitatory inputs from the motor‐related cerebral cortex and thalamus to produce contingent inhibitory output to other basal ganglia nuclei. Striatal parvalbumin (PV)‐producing interneurons receiving this excitatory input then inhibit medium spiny neurons (MSNs) and modify their outputs. To understand basal ganglia function in motor control, it is important to reveal the precise synaptic organization of motor‐related cortical and thalamic inputs to striatal PV interneurons. To examine which domains of the PV neurons receive these excitatory inputs, we used male bacterial artificial chromosome transgenic mice expressing somatodendritic membrane–targeted green fluorescent protein in PV neurons. An anterograde tracing study with the adeno‐associated virus vector combined with immunodetection of pre‐ and postsynaptic markers visualized the distribution of the excitatory appositions on PV dendrites. Statistical analysis revealed that the density of thalamostriatal appositions along the dendrites was significantly higher on the proximal than distal dendrites. In contrast, there was no positional preference in the density of appositions from axons of the dorsofrontal cortex. Population observations of thalamostriatal and corticostriatal appositions by immunohistochemistry for pathway‐specific vesicular glutamate transporters confirmed that thalamic inputs preferentially, and cortical ones less preferentially, made apposition on proximal dendrites of PV neurons. This axodendritic organization suggests that PV neurons produce fast and reliable inhibition of MSNs in response to thalamic inputs and process excitatory inputs from motor cortices locally and plastically, possibly together with other GABAergic and dopaminergic dendritic inputs, to modulate MSN inhibition.  相似文献   

3.
The spatial distribution of synaptic inputs on the dendritic tree of a neuron can have significant influence on neuronal function. Consequently, accurate anatomical reconstructions of neuron morphology and synaptic localization are critical when modeling and predicting physiological responses of individual neurons. Historically, generation of three-dimensional (3D) neuronal reconstructions together with comprehensive mapping of synaptic inputs has been an extensive task requiring manual identification of putative synaptic contacts directly from tissue samples or digital images. Recent developments in neuronal tracing software applications have improved the speed and accuracy of 3D reconstructions, but localization of synaptic sites through the use of pre- and/or post-synaptic markers has remained largely a manual process. To address this problem, we have developed an algorithm, based on 3D distance measurements between putative pre-synaptic terminals and the post-synaptic dendrite, to automate synaptic contact detection on dendrites of individually labeled neurons from 3D immunofluorescence image sets. In this study, the algorithm is implemented with custom routines in Matlab, and its effectiveness is evaluated through analysis of primary sensory afferent terminals on motor neurons. Optimization of algorithm parameters enabled automated identification of synaptic contacts that matched those identified by manual inspection with low incidence of error. Substantial time savings and the elimination of variability in contact detection introduced by different users are significant advantages of this method.  相似文献   

4.
Growing physiological evidence suggests that there are functional differences between synapses made by the ascending and parallel fiber segments of the granule axon on cerebellar Purkinje cells. Supporting this view, our previous electron microscopic studies suggested that these synapses also contacted different regions of the Purkinje cell dendrite, and in particular that ascending segment synapses are made exclusively on the smallest diameter Purkinje cell dendrites. In the current study we used serial electron microscopic techniques to reconstruct Purkinje cell dendritic segments up to almost 10 μm in length. Using a combination of anatomical and immunological labeling techniques we identified the ascending or parallel fiber origins of the excitatory synaptic inputs onto dendritic spines, as well as the location of inhibitory synapses made directly on the dendritic shaft. The results confirmed that there are regions of the Purkinje cell dendrite receiving exclusively ascending or parallel fiber synapses and that ascending segment synapses are only found on small‐diameter dendrites. In addition, we describe for the first time small‐diameter dendritic regions contacted by both types of excitatory synapses. While our data suggest that the majority of inhibitory inputs to the Purkinje cell tree are associated with parallel fiber synaptic inputs, we also found inhibitory inputs on dendritic regions with mixed ascending and parallel fiber inputs, or exclusively parallel fiber inputs. The finding that ascending and parallel fiber inputs can be segregated on the Purkinje cell dendritic tree provides further evidence that these excitatory granule cell synaptic inputs may be functionally distinct. J. Comp. Neurol. 514:583–594, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Thalamocortical (TC) neurons of the dorsal thalamus integrate sensory inputs in an attentionally relevant manner during wakefulness and exhibit complex network-driven and intrinsic oscillatory activity during sleep. Despite these complex intrinsic and network functions, little is known about the dendritic distribution of ion channels in TC neurons or the role such channel distributions may play in synaptic integration. Here we demonstrate with simultaneous somatic and dendritic recordings from TC neurons in brain slices that action potentials evoked by sensory or cortical excitatory postsynaptic potentials are initiated near the soma and backpropagate into the dendrites of TC neurons. Cell-attached recordings demonstrated that TC neuron dendrites contain a nonuniform distribution of sodium but a roughly uniform density of potassium channels across the somatodendritic area examined that corresponds to approximately half the average path length of TC neuron dendrites. Dendritic action potential backpropagation was found to be active, but compromised by dendritic branching, such that action potentials may fail to invade relatively distal dendrites. We have also observed that calcium channels are nonuniformly distributed in the dendrites of TC neurons. Low-threshold calcium channels were found to be concentrated at proximal dendritic locations, sites known to receive excitatory synaptic connections from primary afferents, suggesting that they play a key role in the amplification of sensory inputs to TC neurons.  相似文献   

6.
An imbalance of excitatory and inhibitory functions has been shown to contribute to numerous pathological disorders. Accumulating evidence supports the idea that a change in hypothalamic γ‐aminobutyric acid (GABA)‐ergic inhibitory and glutamatergic excitatory synaptic functions contributes to exacerbated neurohumoral drive in prevalent cardiovascular disorders, including hypertension. However, the precise underlying mechanisms and neuronal substrates are still not fully elucidated. In the present study, we combined quantitative immunohistochemistry with neuronal tract tracing to determine whether plastic remodeling of afferent GABAergic and glutamatergic inputs into identified RVLM‐projecting neurons of the hypothalamic paraventricular nucleus (PVN‐RVLM) contributes to an imbalanced excitatory/inhibitory function in renovascular hypertensive rats (RVH). Our results indicate that both GABAergic and glutamatergic innervation densities increased in oxytocin‐positive, PVN‐RVLM (OT‐PVN‐RVLM) neurons in RVH rats. Despite this concomitant increase, time‐dependent and compartment‐specific differences in the reorganization of these inputs resulted in an altered balance of excitatory/inhibitory inputs in somatic and dendritic compartments. A net predominance of excitatory over inhibitory inputs was found in OT‐PVN‐RVLM proximal dendrites. Our results indicate that, along with previously described changes in neurotransmitter release probability and postsynaptic receptor function, remodeling of GABAergic and glutamatergic afferent inputs contributes as an underlying mechanism to the altered excitatory/inhibitory balance in the PVN of hypertensive rats. J. Comp. Neurol. 518:567–585, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Globus pallidus (GP) neurons receive dense inhibitory synaptic inputs interspersed with sparse excitatory inputs distributed across the entire extent of their somata and dendrites. Yet, despite this predominance of inhibitory influence, GP neurons fire at a high tonic rate, suggesting that intrinsic properties play an important role in determining the physiological characteristics of these neurons. High-voltage-activated (HVA) calcium channels represent an important class of conductances that plays roles in controlling neurotransmitter release, postsynaptic excitability, and intracellular calcium signaling. To better understand the intrinsic properties of GP neurons, we examined the subcellular localization of HVA calcium channels by using immunocytochemistry at the electron microscopic level. Peroxidase labeling with antibodies against P/Q-, N-, and R-type HVA calcium channels demonstrated the presence of these channels in both proximal and distal dendrites of GP neurons. P/Q-, N-, and R-type channels were also found in presynaptic terminals, whereas L-type channels were found exclusively postsynaptically in neuronal elements. Immunogold labeling demonstrated that, although the density of intracellular L-type calcium channel labeling remains constant throughout the proximal-distal extent of the dendritic tree of GP neurons, the density of plasma membrane-bound channels is greater in distal dendrites. The finding of HVA calcium channels distributed throughout the whole dendritic tree of GP neurons indicates that these channels may interact with synaptic inputs to allow rich processing possibilities for GP neuron dendrites. Furthermore, the finding of a greater density of plasma membrane-bound L-type channels in distal dendrites expands the view that L-type channels are important only in somatic and proximal locations.  相似文献   

8.
Current understanding of the synaptic organization of the brain depends to a large extent on knowledge about the synaptic inputs to the neurons. Indeed, the dendritic surfaces of pyramidal cells (the most common neuron in the cerebral cortex) are covered by thin protrusions named dendritic spines. These represent the targets of most excitatory synapses in the cerebral cortex and therefore, dendritic spines prove critical in learning, memory and cognition. This paper presents a new method that facilitates the analysis of the 3D structure of spine insertions in dendrites, providing insight on spine distribution patterns. This method is based both on the implementation of straightening and unrolling transformations to move the analysis process to a planar, unfolded arrangement, and on the design of DISPINE, an interactive environment that supports the visual analysis of 3D patterns.  相似文献   

9.
Cerebellar Purkinje neurons are arguably some of the most conspicuous neurons in the vertebrate central nervous system. They have characteristic planar fan-shaped dendrites which branch extensively and fill spaces almost completely with little overlap. This dendritic morphology is well suited to receiving a single or a few excitatory synaptic inputs from each of more than 100,000 parallel fibers which run orthogonally to Purkinje cell dendritic trees. In contrast, another type of excitatory input to a Purkinje neuron is provided by a single climbing fiber, which forms some hundreds to thousands of synapses with a Purkinje neuron. This striking contrast between the two types of synaptic inputs to a Purkinje neuron has attracted many neuroscientists. It is also to be noted that Purkinje neurons are the sole neurons sending outputs from the cerebellar cortex. In other words, all computational results within the cortex are transmitted by Purkinje cell axons, which inhibit neurons in the cerebellar or vestibular nucleus. Notably, Purkinje neurons show several forms of synaptic plasticity. Among them, long-term depression (LTD) at parallel fiber synapses has been regarded as a putatively essential mechanism for cerebellum-dependent learning. In this special issue on Purkinje neurons, you will find informative reviews and original papers on the development, characteristics and functions of Purkinje neurons, or related themes contributed by outstanding researchers.  相似文献   

10.
In the hippocampus, parvalbumin‐expressing basket (BC) and axo‐axonic cells (AAC) show different discharge patterns during distinct network states, but the cellular mechanisms underlying these differences are not well understood. Using whole‐cell patch‐clamp techniques, we investigated the single‐cell properties and excitatory synaptic features of anatomically identified BCs and AACs in the CA3 region of mouse hippocampal slices. The results showed that BCs had lower threshold for action potential (AP) generation and lower input resistance, narrower AP and afterhyperpolarization than AACs. In addition, BCs fired with higher frequencies and with more modest accommodation compared with AACs. The kinetic properties of excitatory postsynaptic currents (EPSC), the rectification of AMPA receptor‐mediated currents, the fraction of the NMDA receptor‐mediated component in EPSCs, and the EPSC magnitude necessary to evoke an AP were similar in both cell types. However, smaller excitatory postsynaptic potential and lower intensity fiber stimulation in stratum oriens was necessary to drive firing in BCs. Moreover, the rate of spontaneous EPSCs in BCs was higher than in AACs. Neurolucida analysis revealed that the dendrites of BCs in strata radiatum and oriens were longer and more extensively ramified. Since the density of the excitatory synapses was estimated to be comparable in both cell types, we conclude that the more elaborated dendritic arbor of BCs ensures that they receive a larger number of proximal excitatory inputs. Thus, CA3 pyramidal cells more profoundly innervate BCs than AACs, which could explain, at least in part, their distinct spiking behavior under different hippocampal network activities. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Competition between presynaptic inputs has been suggested to shape dendritic form. This hypothesis can be directly tested on bitufted, auditory neurons in chicken nucleus laminaris (NL). Each NL neuron contains two relatively symmetrical dendritic arbors; the dorsal dendrites receive excitatory glutamatergic input from the ipsilateral ear, and the ventral dendrites receive corresponding input from the contralateral ear. To assess the effect of relative synaptic strength on NL dendrites, we used single-cell electroporation; electrophysiology; and live, two-photon laser scanning microscopy to manipulate both the amount and the balance of synaptic input to the two matching sets of dendrites. With simultaneous activation, both sets of dendrites changed together, either growing or retracting over the imaging period. In contrast, stimulation of only one set of dendrites (either dorsal or ventral) resulted in the unstimulated dendrites losing total dendritic branch length, whereas the stimulated dendrites exhibited a tendency to grow. In this system, balanced input leads to balanced changes in the two sets of dendrites, but imbalanced input results in differential changes. Time-lapse imaging revealed that NL dendrites respond to differential stimulation by first decreasing the size of their unstimulated dendrites and then increasing the size of their stimulated dendrites. This result suggests that the relative activity of presynaptic neurons dynamically controls dendritic structure in NL and that dendritic real estate can rapidly be shifted from inactive inputs to active inputs.  相似文献   

12.
Principal neurons in the ventral cochlear nucleus (VCN) receive powerful ascending excitation and pass on the auditory information with exquisite temporal fidelity. Despite being dominated by ascending inputs, the VCN also receives descending cholinergic connections from olivocochlear neurons and from higher regions in the pontomesencephalic tegmentum. In Mongolian gerbils, acetylcholine acts as an excitatory and modulatory neurotransmitter on VCN neurons, but the anatomical structure of cholinergic innervation of gerbil VCN is not well described. We applied fluorescent immunohistochemical staining to elucidate the development and the cellular localization of presynaptic and postsynaptic components of the cholinergic system in the VCN of the Mongolian gerbil. We found that cholinergic fibers (stained with antibodies against the vesicular acetylcholine transporter) were present before hearing onset at P5, but innervation density increased in animals after P10. Early in development cholinergic fibers invaded the VCN from the medial side, spread along the perimeter and finally innervated all parts of the nucleus only after the onset of hearing. Cholinergic fibers ran in a rostro‐caudal direction within the nucleus and formed en‐passant swellings in the neuropil between principal neurons. Nicotinic and muscarinic receptors were expressed differentially in the VCN, with nicotinic receptors being mostly expressed in dendritic areas while muscarinic receptors were located predominantly in somatic membranes. These anatomical data support physiological indications that cholinergic innervation plays a role in modulating information processing in the cochlear nucleus.  相似文献   

13.
Dendritic spines are small protrusions along the dendrites of many types of neurons in the central nervous system and represent the major target of excitatory synapses. For this reason, numerous anatomical, physiological and computational studies have focused on these structures. In the cerebral cortex the most abundant and characteristic neuronal type are pyramidal cells (about 85 % of all neurons) and their dendritic spines are the main postsynaptic target of excitatory glutamatergic synapses. Thus, our understanding of the synaptic organization of the cerebral cortex largely depends on the knowledge regarding synaptic inputs to dendritic spines of pyramidal cells. Much of the structural data on dendritic spines produced by modern neuroscience involves the quantitative analysis of image stacks from light and electron microscopy, using standard statistical and mathematical tools and software developed to this end. Here, we present a new method with musical feedback for exploring dendritic spine morphology and distribution patterns in pyramidal neurons. We demonstrate that audio analysis of spiny dendrites with apparently similar morphology may “sound” quite different, revealing anatomical substrates that are not apparent from simple visual inspection. These morphological/music translations may serve as a guide for further mathematical analysis of the design of the pyramidal neurons and of spiny dendrites in general.  相似文献   

14.
The number and distribution of excitatory and inhibitory inputs affect the integrative properties of neurons. These parameters have been studied recently for several hippocampal neuron populations. Besides parvalbumin- (PV) containing cells that include basket and axo-axonic cells, cholecystokinin (CCK)-containing interneurons also form a basket cell population with several properties distinct from PV cells. Here, at the light microscopic level, we reconstructed the entire dendritic tree of CCK-immunoreactive (IR) basket cells to describe their geometry, the total length and laminar distribution of their dendrites. This was followed by an electron microscopic analysis of serial ultrathin sections immunostained against gamma-aminobutyric acid, to estimate the density of excitatory and inhibitory synapses on their somata, axon initial segments and different subclasses of dendrites. The dendritic tree of CCK-IR basket cells has an average length of 6300 microm and penetrates all layers. At the electron microscopic level, CCK basket cells receive dendritic inputs with a density of 80-230 per 100 microm. The ratio of inhibitory inputs is relatively high (35%) and increases towards the soma (83%). The total numbers of excitatory and inhibitory synapses converging onto CCK-IR cells are approximately 8200. Comparison of the two, neurochemically distinct basket cells reveals that CCK-containing basket cells receive much less synaptic input than PV cells; however, the relative weight of inhibition is higher on CCK cells. Additional differences in their anatomical and physiological properties predict that CCK basket cells are under a more diverse, elaborate control than PV basket cells, and thus the function of the two populations must be different.  相似文献   

15.
Large neurons in the monkey neostriatum were examined in the electron microscope in tissue treated with the rapid-Golgi impregnation method followed by the gold-toning procedure. Two types of large neurons were investigated: an aspiny neuron (aspiny type II; N = 5) with numerous varicose dendrites and a spiny cell (spiny type II; N = 1) with few sparsely spined dendrites. The large aspiny neurons had variably shaped somata, an eccentric highly invaginated nucleus, and a cytoplasm rich in organelles. Mitochondria were distributed unevenly in dendrites and were localized primarily in varicosities. Some mitochondria exhibited dense bodies 80-300 nm in size. Most synapses (84%) onto large aspiny neurons occurred 20 micron or more from the cell body and contacted dendritic varicosities (63%). A smaller proportion of boutons (21%) contacted constricted portions of varicose segments. A low incidence of synaptic boutons was observed on smooth primary and secondary dendrites (11%), cell bodies (3%), and branch points (2%). Seven percent of the axons that synapsed with large aspiny neurons also contacted nearby dendrites or spines of medium-sized spiny neurons. At least eight morphologically distinct types of axons making synapses with large aspiny neurons were identified and included both symmetric and asymmetric types. The large spiny neuron was different from the large aspiny neuron in its subcellular characteristics. Synapses were found on all portions of the cell, including the axon initial segment, but fewer types of axonal inputs were identified. These findings confirm that the two types of large neurons identified in Golgi impregnations of the primate neostriatum are also different at the ultrastructural level, both in their cytological features and in their synaptic organization. The large aspiny neuron integrates synaptic inputs that innervate a relatively large area of caudate neuropil and appear to arise from a variety of extrinsic and intrinsic sources. The high density of synaptic inputs to dendritic varicosities suggests that they have an important functional role.  相似文献   

16.
17.
We examined the synaptic structure, quantity, and distribution of α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionic acid (AMPA)‐ and N‐methyl‐D‐aspartate (NMDA)‐type glutamate receptors (AMPARs and NMDARs, respectively) in rat cochlear nuclei by a highly sensitive freeze‐fracture replica labeling technique. Four excitatory synapses formed by two distinct inputs, auditory nerve (AN) and parallel fibers (PF), on different cell types were analyzed. These excitatory synapse types included AN synapses on bushy cells (AN‐BC synapses) and fusiform cells (AN‐FC synapses) and PF synapses on FC (PF‐FC synapses) and cartwheel cell spines (PF‐CwC synapses). Immunogold labeling revealed differences in synaptic structure as well as AMPAR and NMDAR number and/or density in both AN and PF synapses, indicating a target‐dependent organization. The immunogold receptor labeling also identified differences in the synaptic organization of FCs based on AN or PF connections, indicating an input‐dependent organization in FCs. Among the four excitatory synapse types, the AN‐BC synapses were the smallest and had the most densely packed intramembrane particles (IMPs), whereas the PF‐CwC synapses were the largest and had sparsely packed IMPs. All four synapse types showed positive correlations between the IMP‐cluster area and the AMPAR number, indicating a common intrasynapse‐type relationship for glutamatergic synapses. Immunogold particles for AMPARs were distributed over the entire area of individual AN synapses; PF synapses often showed synaptic areas devoid of labeling. The gold‐labeling for NMDARs occurred in a mosaic fashion, with less positive correlations between the IMP‐cluster area and the NMDAR number. Our observations reveal target‐ and input‐dependent features in the structure, number, and organization of AMPARs and NMDARs in AN and PF synapses. J. Comp. Neurol. 522:4023–4042, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Cortical inhibition is determined in part by the organization of synaptic inputs to gamma-aminobutyric acidergic (GABAergic) neurons. In adult rat visual cortex, feedforward (FF) and feedback (FB) connections that link lower with higher areas provide approximately 10% of inputs to parvalbumin (PV)-expressing GABAergic neurons and approximately 90% to non-GABAergic cells (Gonchar and Burkhalter [1999] J. Comp. Neurol. 406:346-360). Although the proportions of these targets are similar in both pathways, FF synapses prefer larger PV dendrites than FB synapses, which may result in stronger inhibition in the FF than in the FB pathway (Gonchar and Burkhalter [1999] J. Comp. Neurol. 406:346-360). To determine when during postnatal (P) development FF and FB inputs to PV and non-PV neurons acquire mature proportions, and whether the pathway-specific distributions of FF and FB inputs to PV dendrites develop from a similar pattern, we studied FF and FB connections between area 17 and the higher order lateromedial area (LM) in visual cortex of P15-42 mice. We found that the innervation ratio of PV and non-PV neurons is mature at P15. Furthermore, the size distributions of PV dendrites contacted by FF and FB synapses were similar at P15 but changed during the third to sixth postnatal weeks so that, by P36-42, FF inputs preferred thick dendrites and FB synapses favored thin PV dendrites. These results suggest that distinct FF and FB circuits develop after eye opening by rearranging the distribution of excitatory synaptic inputs on the dendritic tree of PV neurons. The purpose of this transformation may be to adjust differentially the strengths of inhibition in FF and FB circuits.  相似文献   

19.
Pyramidal neurons are covered with dendritic spines, the main postsynaptic targets of excitatory (asymmetrical) synapses. However, the proximal portion of both the apical and basal dendrites is devoid of spines, suggesting a lack of excitatory inputs to this region. In the present study we used electron microscopy to analyse the proximal region of the basal dendrites of supra- and infragranular pyramidal cells to determine if this is the case. The proximal region of 80 basal dendrites sampled from the rat hindlimb representation in the primary somatosensory cortex was studied by electron microscopy. A total of 317 synapses were found within this region of the dendrites, all of which were of the symmetrical type. These results suggest that glutamate receptors, although present in the cytoplasm, are not involved in synaptic junctions in the proximal portion of the dendrites. These data further support the idea that inhibitory terminals exclusively innervate the proximal region of basal dendrites.  相似文献   

20.
Calcium signaling plays a role in synaptic regulation of dendritic structure, usually on the time scale of hours or days. Here we use immunocytochemistry to examine changes in expression of plasma membrane calcium ATPase type 2 (PMCA2), a high‐affinity calcium efflux protein, in the chick nucleus laminaris (NL) following manipulations of synaptic inputs. Dendrites of NL neurons segregate into dorsal and ventral domains, receiving excitatory input from the ipsilateral and contralateral ears, respectively, via nucleus magnocellularis (NM). Deprivation of the contralateral projection from NM to NL leads to rapid retraction of ventral, but not the dorsal, dendrites of NL neurons. Immunocytochemistry revealed symmetric distribution of PMCA2 in two neuropil regions of normally innervated NL. Electron microscopy confirmed that PMCA2 localizes in both NM terminals and NL dendrites. As early as 30 minutes after transection of the contralateral projection from NM to NL or unilateral cochlea removal, significant decreases in PMCA2 immunoreactivity were seen in the deprived neuropil of NL compared with the other neuropil that continued to receive normal input. The rapid decrease correlated with reductions in the immunoreactivity for microtubule‐associated protein 2, which affects cytoskeleton stabilization. These results suggest that PMCA2 is regulated independently in ventral and dorsal NL dendrites and/or their inputs from NM in a way that is correlated with presynaptic activity. This provides a potential mechanism by which deprivation can change calcium transport that, in turn, may be important for rapid, compartment‐specific dendritic remodeling. J. Comp. Neurol. 514:624–640, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号