首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When the distal stump of a transected peripheral nerve is brought into the vicinity of the proximal nerve stump, the regenerating axons advance toward it across the gap. Similar results are obtained when a predegenerated nerve segment is used. However, when a nerve segment subjected to proximal axotomy 7 days earlier (7-day nerve segment) was placed close to the proximal end of a freshly cut nerve at a distance of less than 1.5 mm, there were neither regenerating axons nor sprouts. The same inhibition of axonal regeneration was also exhibited when a nerve segment subjected to axotomy 9 to 14 days earlier was used. To examine the inhibitory effect of the nerve segments on established regenerating axons, we positioned a 7-day nerve segment in close apposition to a proximal nerve end at 2 or 3 days after transection. The growth of the 3-day-old regenerating axons, already ensheathed by Schwann cells, was not disturbed, but the 2-day-old regenerating axons, consisting of naked axons, were eliminated by the 7-day nerve segment. It is assumed that the findings reflect a mechanism serving to eliminate abundant sprouts and immature axons, probably conferring optimum regeneration and maturation of outgrowing pioneer axons. The inhibitory effect on abundant sprouts and immature axons was completely blocked by local application of antibodies to myelin-associated glycoprotein (MAG). The MAG-containing cells appeared at 6 to 12 days after axotomy.  相似文献   

2.
Peripheral nerves and blood vessels travel together closely during development but little is known about their interactions post-injury. The SIV-infected pigtailed macaque model of human immunodeficiency virus (HIV) recapitulates peripheral nervous system pathology of HIV infection. In this study, we assessed the effect of SIV infection on neurovascular regrowth using a validated excisional axotomy model. Six uninfected and five SIV-infected macaques were studied 14 and 70 days after axotomy to characterize regenerating vessels and axons. Blood vessel extension preceded the appearance of regenerating nerve fibers suggesting that vessels serve as scaffolding to guide regenerating axons through extracellular matrix. Vascular endothelial growth factor (VEGF) was expressed along vascular silhouettes by endothelial cells, pericytes, and perivascular cells. VEGF expression correlated with dermal nerve (r=0.68, p=0.01) and epidermal nerve fiber regrowth (r=0.63, p=0.02). No difference in blood vessel growth was observed between SIV-infected and control macaques. In contrast, SIV-infected animals demonstrated altered length, pruning and arborization of nerve fibers as well as alteration of VEGF expression. These results reinforce earlier human primate findings that vessel growth precedes and influences axonal regeneration. The consistency of these observations across human and non-human primates validates the use of the pigtailed-macaque as a preclinical model.  相似文献   

3.
End-to-side (ETS) nerve repair remains an area of intense scrutiny for peripheral nerve surgeon-scientists. In this technique, the transected end of an injured nerve, representing the “recipient” is sutured to the side of an uninjured “donor” nerve. Some works suggest that the recipient limb is repopulated with regenerating collateral axonal sprouts from the donor nerve that go on to form functional synapses. Significant, unresolved questions include whether the donor nerve needs to be injured to facilitate regeneration, and whether a single donor neuron is capable of projecting additional axons capable of differentially innervating disparate targets. We serially imaged living transgenic mice (n = 66) expressing spectral variants of GFP in various neuronal subsets after undergoing previously described atraumatic, compressive, or epineurotomy forms of ETS repair (n = 22 per group). To evaluate the source, and target innervation of these regenerating axons, nerve morphometry and retrograde labeling were further supplemented by confocal microscopy as well as Western blot analysis. Either compression or epineurotomy with inevitable axotomy were required to facilitate axonal regeneration into the recipient limb. Progressively more injurious models were associated with improved recipient nerve reinnervation (epineurotomy: 184 ± 57.6 myelinated axons; compression: 78.9 ± 13.8; atraumatic: 0), increased Schwann cell proliferation (epineurotomy: 72.2% increase; compression: 39% increase) and cAMP response-element binding protein expression at the expense of a net deficit in donor axon counts distal to the repair. These differences were manifest by 150 days, at which point quantitative evidence for pruning was obtained. We conclude that ETS repair relies upon injury to the donor nerve.  相似文献   

4.
The axons of both peripheral and central neurons in C57BL/Wld s (C57BL/Ola) mice are unique among mammals in degenerating extremely slowly after axotomy. Motor and sensory axons attempting to regenerate are thus confronted with an intact distal nerve stump rather than axon-and myelin-free Schwann cell-filled endoneurial tubes. Surprisingly, however, motor axons in the sciatic nerve innervating the soleus muscle regenerate rapidly, and there is evidence that they may use Schwann cells associated with unmyelinated fibres as a pathway. If this is so, motor axon regeneration might be impaired in C57BL/Wld s mice in the phrenic nerve, which has very few unmyelinated fibres. We found that as long as the myelinated axons in the distal stump of the phrenic nerve remained intact (up to 10 days), regeneration of motor axons did not occur, in spite of vigorous production of sprouts at the crush site. In contrast to motor axons, myelinated sensory axons regenerate very poorly in C57BL/Wld s mice, even in the presence of unmyelinated axons. We showed that this was also due to adverse local conditions confronting nerve sprouts, for the dorsal root ganglion cell bodies responded normally to injury with a rapid induction of Jun protein-like immunoreactivity and when the saphenous nerve was forced to degenerate more rapidly by multiple crush lesions sensory axons regrew much more successfully. The findings show that motor and sensory axons in C57BL/Wld s mice, although very atypical in the way that they degenerate, are able to regenerate normally but only in an appropriate environment. The results also give support to the view that intact peripheral nerves either fail to encourage or actively inhibit axon growth, and that an unsuitable local environment can prevent regeneration even if the cell body is reacting normally to injury.  相似文献   

5.
Two distinct patterns of reinnervation occur after injury to the cutaneous nerves: regenerative growth of the injured nerve and "collateral sprouting" of neighboring intact nerves. We describe two complementary models of regrowth of transected small sensory fibers in human skin. The "incision" model uses a circular incision that transects the subepidermal plexus, resulting in Wallerian degeneration of the nerve fibers that enter the incised cylinder, leaving a defined zone of denervated dermis and epidermis. The "excision" model utilizes an identical incision, followed by removal of the incised cylinder of skin, leaving a denervated area in which Schwann cells are absent. In the incision model, the earliest reinervation of denervated epidermis occurred by collateral sprouting from the terminals of epidermal axons from just outside the incision line. These axon terminals extended horizontally across the incision line and through the superficial layers of the epidermis, beneath the stratum corneum. By 13 days, numerous regenerating axons appeared in the deeper dermis derived from transected axons. These regenerating axons grew toward and ultimately into the epidermis, so that epidermal axonal density had normalized by 30-75 days. The invasion of these axons was associated with regression of the horizontally growing collateral sprouts. In the excision model, new fibers arose by terminal elongation of the epidermal axons outside the incision line, as in the incision model, and especially by collateral branching of epidermal fibers at the incision margins. These collaterals reached the epidermal surface of the basal lamina at the dermal-epidermal junction and then grew slowly toward the center of the denervated circle. In contrast to the incision model, however, complete reinnervation was not achieved even after 23 months. These models can be used to study reinnervation of denervated skin in man in different injury models and have relevance for exploring the stimuli for axonal growth and remodeling.  相似文献   

6.
Following peripheral trochlear nerve axotomy in the cat, the normal number of myelinated axons is restored despite significant motor neuron death, suggesting regulation of the number of myelinated axons in the regenerated nerve. In this study we used light and electron microscopy to examine the production and maintenance of axonal sprouts at different locations in the nerve and at different postoperative intervals. Despite proliferative sprouting and an overproduction of nonmyelinated axons in the regenerating trochlear nerve, the number of myelinated axons was strictly regulated. Only ~1,000 regenerated axons were eventually remyelinated, but many nonmyelinated axons were still present 6–8 months postaxotomy. Regenerated axons were remyelinated in a proximal-to-distal direction between 3 and 4 weeks postaxotomy. We also examined the maturation of regenerated myelinated axons by measuring axon diameter and myelin index (an expression of myelin thickness). Mean myelinated axon diameter remained significantly below normal in long-term regenerated nerves. Mean myelin index was not different from normal at 4 weeks postaxotomy but was significantly decreased at long postoperative intervals, reflecting a slightly thicker myelin sheath relative to the axon diameter. This relative increase in mean myehn thickness could serve to restore normal conduction velocity despite the decrease in mean axon diameter. We suggest that the regulation of the number of myelinated axons at the normal number despite cell death and the increase in mean myelin thickness may both be compensatory mechanisms that function to restore preoperative conditions and maximize functional recovery. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Summary Long-term endoneurial changes in the distal stump of transected rat sciatic nerve were examined from 8 to 50 weeks after nerve transection. The morphological alterations were followed both in nerves which were allowed to regenerate and in nerves in which regeneration was prevented by suturing. The nerves prevented from regenerating showed markedly atrophied Schwann cell columns after 20 weeks and a disappearance of some Schwann cell columns after 30 weeks. The surrounding endoneurial fibroblast-like cells gradually lost their delicate cytoplasmic extensions and formed rough fascicles around numerous shrunken Schwann cell columns or around areas from which Schwann cells had apparently disappeared. Inside the fascicles, the Schwann cell loss was replaced by collagen fibrils or occasionally, by a dense accumulation of microfibrils. The loss of endoneurial cytoplasmic processes continued up to 50 weeks, leaving behind patches of thin fibrils around numerous shrunken Schwann cell columns or around collagenous areas where Schwann cells were lost. The endoneurial matrix showed presence of thin 25- to 30-nm collagen fibrils close to shrunken Schwann cell columns up to 50 weeks but in areas with advanced degeneration a shift towards regular 50- to 60-nm collagen fibrils occurred. The degenerated areas resembled those described in Renaut bodies and neurofibromas. Despite suturing of transected nerves to prevent sprouting, occasional regenerating sprouts were noted in the Schwann cell columns. These axons were surrounded in a sheath-like fashion by pre-existing endoneurial cell fascicles covered by a basal lamina. In the reinnervating nerves the endoneurial space gradually lost its compartmentized structures consisting of collagen fibrils and endoneurial fibroblast-like cells. After 20 weeks the endoneurial cells were inconspicuous and the extracelluar matrix consisted mainly of 50- to 60-nm collagen fibrils. During axonal growth and maturation, Schwann cells containing unmyelinated axons surrounded large, myelinated axons in a collar-like fashion. Close to these collars of Schwann cells, thin 25- to 30-nm collagen fibrils were noted in focal areas, even after 50 weeks. Occasionally, numerous clusters of regenerating axonal sprouts were noted in the perineurium. These were surrounded by multiple layers of cells possessing basal lamina. The present results show that after nerve transection the distal stump of the severed nerve shows dynamic changes in the endoneurial space, especially in nerves where reinnervation is prevented. The endoneurial fascicles around occasional axonal sprouts in sutured nerves, representing possibly a delayed type of regeneration, show that axons have a strong ability to grow but on the other hand endoneurial structures are unable to respond normally to axonal growth after advanced degeneration.  相似文献   

8.
We have investigated some of the factors controlling the distribution of axonal and dendritic sprouting following axotomy of a subset of Muller giant interneurons (anterior bulbar cells or ABCs) in the hindbrain of the larval sea lamprey (Petromyzon marinus). Sprouts originated from different sites in the cell depending on the distance of the axonal lesion from the soma. When the axon was cut close to the soma (within 500 microns), the dendritic tips sprouted profusely, whereas the proximal axon stump showed few sprouts and frequently disappeared entirely. Axotomy further from the soma (1000-1400 microns) resulted in less sprouting from the dendrites and more from the axon stump, with the total amount of dendritic plus axonal sprouting remaining constant. Axotomy at sites distant from the soma (1 cm or more) did not result in dendritic sprouting. No sprouts were ever observed emerging from the soma proper or from the axon stump except at the lesion site. Neuritic sprouts from dendrites and axon were similar in their gross morphology. Sprouts resembled axons rather than dendrites whatever their sites of origin; they followed linear, rostrocaudally oriented paths in the "basal plate" region of the hindbrain. Dendritic and axonal sprouts grew both rostrally and caudally within the brain. Either "close" or "distant" axotomy resulted in the retraction of the dendritic tree and of both dendritic and axonal sprouts by several months postaxotomy. Reaxotomy close to the soma 30 d after a distant axotomy accelerated the onset of this evoked dendritic retraction. Reaxotomy close to the soma also induced sprouting significantly sooner than did close axotomy alone. These results suggest that axotomy close to the soma causes axonal regeneration to be shunted into ectopic locations at the dendritic tips. The emerging sprouts then follow guidance cues appropriate for regenerating ABC axons.  相似文献   

9.
Injured peripheral nerves regenerate their lost axons but functional recovery in humans is frequently disappointing. This is so particularly when injuries require regeneration over long distances and/or over long time periods. Fat replacement of chronically denervated muscles, a commonly accepted explanation, does not account for poor functional recovery. Rather, the basis for the poor nerve regeneration is the transient expression of growth-associated genes that accounts for declining regenerative capacity of neurons and the regenerative support of Schwann cells over time. Brief low-frequency electrical stimulation accelerates motor and sensory axon outgrowth across injury sites that, even after delayed surgical repair of injured nerves in animal models and patients, enhances nerve regeneration and target reinnervation. The stimulation elevates neuronal cyclic adenosine monophosphate and, in turn, the expression of neurotrophic factors and other growth-associated genes, including cytoskeletal proteins. Electrical stimulation of denervated muscles immediately after nerve transection and surgical repair also accelerates muscle reinnervation but, at this time, how the daily requirement of long-duration electrical pulses can be delivered to muscles remains a practical issue prior to translation to patients. Finally, the technique of inserting autologous nerve grafts that bridge between a donor nerve and an adjacent recipient denervated nerve stump significantly improves nerve regeneration after delayed nerve repair, the donor nerves sustaining the capacity of the denervated Schwann cells to support nerve regeneration. These reviewed methods to promote nerve regeneration and, in turn, to enhance functional recovery after nerve injury and surgical repair are sufficiently promising for early translation to the clinic.  相似文献   

10.
The effects of CNS and PNS axotomy of the IVth nerve on cell death, soma size, axon size, and axon number were investigated. In adult cats, the IVth nerve was axotomised by using four surgical paradigms: (1) peripheral IVth nerve crush, (2) peripheral IVth nerve cut, (3) peripheral IVth nerve resection, and (4) a CNS IVth nerve cut in the velum. The extent of cell death resulting from each surgical paradigm was determined. Following axotomy distal to the decussation of the IVth nerves, cell death was least after nerve crush, intermediate after nerve cut, and maximal after resection of 5-7 mm of the nerve. Following axotomy at the decussation--a CNS lesion--most cells died but some successful regeneration was observed. Soma size measurements following a short-term survival (3 days to 4 weeks) before the regenerating axons reached their target muscle revealed that somas of axotomised cells underwent hypotrophy within 1 week of axotomy and then gradually increased in size. They re-attained normal size by 4 weeks postoperative when regenerating axons first reach their target. Following a long-term survival (greater than 2 months), somas were significantly hypertrophied, and the degree of hypertrophy was inversely related to the extent of cell survival up to a limit of 40% soma size increase. Counts and measurements of axons revealed that mean axon diameter of regenerated axons was much smaller than normal 3 months after axotomy, increased during the third to sixth postoperative months, but then showed no subsequent increase and remained below normal. In animals with cell death varying from 10% to 70%, the number of axons in the nerve was maintained constant at approximately 1,000. These data indicate that there is a mechanism for the production and maintenance of the appropriate number of regenerative axonal branches following axotomy. In animals in which cell death exceeded 70%, the number of axons was controlled by a maximum ratio of 3 to 4 axon branches per surviving cell. The results suggest that axon number is strongly influenced by the target muscle and that hypertrophy of regenerated cells is related to the number of axonal sprouts each cell has to produce and support in order to re-establish the preoperative number of axons in the regenerated trochlear nerve.  相似文献   

11.
In axonal regeneration after a peripheral nerve injury, Schwann cells migrate from the two nerve ends and at last form a continuous tissue cable across the gap which guides the axons toward the bands of Büngner. However, the behavior of migratory Schwann cells and their possible role are obscure. Using a film model in which the proximal stump of a transected nerve in mice was sandwiched between two thin plastic films, we analyzed neural regeneration in the early phase up to the 6th day after axotomy. Regenerating neurites emerged from the nodes of Ranvier adjacent to the axotomized nerve stump within 3 h after axotomy and extended along the parent nerve onto the film. All of the regenerating neurites on the surface of the film consisted of naked axons for at least 2 days after axotomy. Thereafter, Schwann cells from the proximal nerve migrated along a network of the regenerating axons and then closely attached to the axons, ensheathing them. Some of the Schwann cells advanced ahead of the axonal growth cones and were distributed over regions in which axonal extension was not yet present. As calculated from the time course of regenerating neurites, the velocity of axonal regeneration showed two phases: an initial slow phase (77 μm/day) up to the 2nd post-operative day followed by a faster phase (283 μm/day). The first observation of Schwann cells coincided with the onset of the second phase. In addition, the length of regenerating axons on the surface of the film containing many Schwann cells was significantly greater than that on the surface where Schwann cells were not yet present. It meant that migratory Schwann cells stimulated axons to elongate for a longer distance. Furthermore, Schwann cells from a distal stump showed a stronger ability to accelerate the axonal outgrowth than these from a proximal stump.  相似文献   

12.
The highly specific projection of abducens internuclear neurons on the medial rectus motoneurons of the oculomotor nucleus constitutes an optimal model for investigating the effects of axotomy in the central nervous system. We have analyzed the morphological changes induced by this lesion on both the cell bodies and the transected axons of abducens internuclear neurons in the adult cat. Axotomy was performed by the transection of the medial longitudinal fascicle. Cell counts of Nissl-stained material and calretinin-immunostained abducens internuclear neurons revealed no cell death by 3 months postaxotomy. Ultrastructural examination of these cells at 6, 14, 24, and 90 days postaxotomy showed normal cytological features. However, the surface membrane of axotomized neurons appeared contacted by very few synaptic boutons compared to controls. This change was quantified by measuring the percentage of synaptic coverage of the cell bodies and the linear density of boutons. Both parameters decreased significantly after axotomy, with the lowest values at 90 days postlesion ( approximately 70% reduction). We also explored axonal regrowth and the possibility of reinnervation of a new target by means of anterograde labeling with biocytin. At all time intervals analyzed, labeled axons were observed to be interrupted at the caudal limit of the lesion; in no case did they cross the scar tissue to reach the distal part of the tract. Nonetheless, a conspicuous axonal sprouting was present at the caudal aspect of the lesion site. Structures suggestive of axonal growth were found, such as large terminal clubs, from which short filopodium-like branches frequently emerged. Similar findings were obtained after parvalbumin and calretinin immunostaining. At the electron microscopy level, biocytin-labeled boutons originating from the sprouts appeared surrounded by either extracellular space, which was extremely dilated at the lesion site, or by glial processes. The great majority of labeled boutons examined were, thus, devoid of neuronal contact, indicating absence of reinnervation of a new target. Altogether, these data indicate that abducens internuclear neurons survive axotomy in the adult cat and show some form of axonal regrowth, even in the absence of target connection.  相似文献   

13.
Aging deeply influences several morphologic and functional features of the peripheral nervous system (PNS). Morphologic studies have reported a loss of myelinated and unmyelinated nerve fibers in elderly subjects, and several abnormalities involving myelinated fibers, such as demyelination, remyelination and myelin balloon figures. The deterioration of myelin sheaths during aging may be due to a decrease in the expression of the major myelin proteins (P0, PMP22, MBP). Axonal atrophy, frequently seen in aged nerves, may be explained by a reduction in the expression and axonal transport of cytoskeletal proteins in the peripheral nerve. Aging also affects functional and electrophysiologic properties of the PNS, including a decline in nerve conduction velocity, muscle strength, sensory discrimination, autonomic responses, and endoneurial blood flow. The age-related decline in nerve regeneration after injury may be attributed to changes in neuronal, axonal, Schwann cell and macrophage responses. After injury, Wallerian degeneration is delayed in aged animals, with myelin remnants accumulated in the macrophages being larger than in young animals. The interaction between Schwann cells and regenerative axons takes longer, and the amount of trophic and tropic factors secreted by reactive Schwann cells and target organs are lower in older subjects than they are in younger subjects. The rate of axonal regeneration becomes slower and the density of regenerating axons decrease in aged animals. Aging also determines a reduction in terminal and collateral sprouting of regenerated fibers, further limiting the capabilities for target reinnervation and functional restitution. These age-related changes are not linearly progressive with age; the capabilities for axonal regeneration and reinnervation are maintained throughout life, but tend to be delayed and less effective with aging.  相似文献   

14.
Schwann cells respond to nerve injury by dedifferentiating into immature states and producing neurotrophic factors, two actions that facilitate successful regeneration of axons. Previous reports have implicated the Raf‐ERK cascade and the expression of c‐jun in these Schwann cell responses. Here we used cultured primary Schwann cells to demonstrate that active Rac1 GTPase (Rac) functions as a negative regulator of Schwann cell differentiation by upregulating c‐jun and downregulating Krox20 through the MKK7‐JNK pathway, but not through the Raf‐ERK pathway. The activation of MKK7 and induction of c‐jun in sciatic nerves after axotomy was blocked by Rac inhibition. Microarray experiments revealed that the expression of regeneration‐associated genes, such as glial cell line‐derived neurotrophic factor and p75 neurotrophin receptor, after nerve injury was dependent on Rac but not on ERK. Finally, the inhibition of ErbB2 signaling prevented MKK7 activation, c‐jun induction, and Rac‐dependent gene expression in sciatic nerve explant cultures. Taken together, our results indicate that the neuregulin‐Rac‐MKK7‐JNK/c‐jun pathway regulates Schwann cell dedifferentiation following nerve injury.  相似文献   

15.
Poor functional recovery after peripheral nerve injury is attributable, at least in part, to chronic motoneuron axotomy and chronic Schwann cell (SC) denervation. While FK506 has been shown to accelerate the rate of nerve regeneration following a sciatic nerve crush or immediate nerve repair, for clinical application, it is important to determine whether the drug is effective after chronic nerve injuries. Two models were employed in the same adult rats using cross-sutures: chronic axotomy and chronic denervation of SCs. For chronic axotomy, a chronically (2 months) injured proximal tibial (TIB) was sutured to a freshly cut common peroneal (CP) nerve. For chronic denervation, a chronically (2 months) injured distal CP nerve was sutured to a freshly cut TIB nerve. Rats were given subcutaneous injections of FK506 or saline (5 mg/kg/day) for 3 weeks. In the chronic axotomy model, FK506 doubled the number of regenerated motoneurons identified by retrograde labeling (from 205 to 414 TIB motoneurons) and increased the numbers of myelinated axons (from 57 to 93 per 1000 microm2) and their myelin sheath thicknesses (from 0.42 to 0.78 microm) in the distal nerve stump. In contrast, after chronic denervation, FK506 did not improve the reduced capacity of SCs to support axonal regeneration. Taken together, the results suggest that FK506 acts directly on the neuron (as opposed to the denervated distal nerve stump) to accelerate and promote axonal regeneration of neurons whose regenerative capacity is significantly reduced by chronic axotomy.  相似文献   

16.
17.
Chronic nerve injuries are notorious for their poor regenerative outcomes. Here, we addressed the question of whether the established reduced ability of injured motoneurons to regenerate their axons with time of disconnection with targets (chronic axotomy) is associated with a failure of injured motoneurons to express and sustain their expression of regeneration‐associated genes. Sciatic motoneurons were prevented from regenerating by ligation of the transected nerves (chronic axotomy), and then subjected to a second nerve transection (acute axotomy) to mimic the clinical surgical procedure of refreshing the proximal nerve stump prior to delayed nerve repair. The expression of α1‐tubulin, actin and GAP‐43 mRNA was analysed in axotomized sciatic motoneurons by the use of in situ hybridization followed by autoradiography and silver grain quantification. The expression of these regeneration‐associated genes by naive (acutely) axotomized motoneurons declined exponentially, to reach baseline levels within 6 months. These chronically injured motoneurons responded to a refreshment axotomy by elevating the expression of the genes to the same levels as in acutely (i.e. for the first time) axotomized sciatic motoneurons. However, the expression of these declined more rapidly than after acute axotomy. We conclude that a progressive decline in the expression of the regeneration‐associated genes in chronically axotomized motoneurons and the even more rapid decline in their expression in response to a refreshment axotomy may explain why the regenerative capacity of chronically axotomized neurons declines with time.  相似文献   

18.
The extent of the muscle endplate reinnervation that followed crush injury of the sciatic nerve was compared between young adult (4 and 5 months old) and aged (24 months old) animals. The time course of regeneration in the muscular nerve bundle, its ramification, and the nerve terminal was immunohistochemically estimated using an antibody against the neuron specific enolase (NSE), a neuronal marker. During early phases of regeneration (7, 21 and 28 days post-crush) in the young adult animal, there were tortuosity, vacuolation and/or unfasciculation in the nerve bundle and its ramification, along with immature nerve terminals and multiple innervation. Following a subsequent advancement in reinnervation to the denervated motor endplates, the adult type of single motor innervation was common on the day 56. The old muscles basically followed the course of reversible axotomy alike the young adult ones. The age difference accounted for as follows: a reduced rate of reinnervation as indicated by a greater frequency of abnormal nerve bundles and immature nerve terminals at 28 days and 56 days post-crush, as well as unusual pathways or striking tortuosity represented by the NSE-labeled processes between day 7 and 56; late in the reinnervation period, abnormal regeneration characterized by damage of the nerve bundle, and poorly developed terminal architectures. These results suggest that despite the capability of the nerve from the old animals to extend its process, re-establishment of normal single motor innervation is reduced due to some age-related deficits, which may be related to the impaired Schwann cell-axon interactions.  相似文献   

19.
ABSTRACT: BACKGROUND: Understanding the cellular mechanisms regulating axon degeneration and regeneration is crucial for developing treatments for nerve injury and neurodegenerative disease. In neurons, axon degeneration is distinct from cell body death and often precedes or is associated with the onset of disease symptoms. In the peripheral nervous system of both vertebrates and invertebrates, after degeneration of detached fragments, axons can often regenerate to restore function. Many studies of axonal degeneration and regeneration have used in vitro approaches, but the influence of extrinsic cell types on these processes can only be fully addressed in live animals. Because of its simplicity and superficial location, the larval zebrafish posterior lateral line (pLL) nerve is an ideal model system for live studies of axon degeneration and regeneration. RESULTS: We used laser axotomy and time-lapse imaging of pLL axons to characterize the roles of leukocytes, Schwann cells and target sensory hair cells in axon degeneration and regeneration in vivo. Immune cells were essential for efficient removal of axonal debris after axotomy. Schwann cells were required for proper fasciculation and pathfinding of regenerating axons to their target cells. Intact target hair cells were not themselves required for regeneration, but chemical ablation of neuromasts caused axons to transiently deviate from their normal paths. CONCLUSIONS: Macrophages, Schwann cells, and target sensory organs are required for distinct aspects of pLL axon degeneration or regeneration in the zebrafish larva. Our work introduces a powerful vertebrate model for analyzing axonal degeneration and regeneration in the living animal and elucidating the role of extrinsic cell types in these processes.  相似文献   

20.
This study investigated the effects of a membrane conduit filled with a synthetic matrix BD™ PuraMatrix™ peptide (BD) hydrogel and cultured Schwann cells on regeneration after peripheral nerve injury in adult rats.After sciatic axotomy, a 10 mm gap between the nerve stumps was bridged using ultrafiltration membrane conduits filled with BD hydrogel or BD hydrogel containing Schwann cells. In control experiments, the nerve defect was bridged using either membrane conduits with alginate/fibronectin hydrogel or autologous nerve graft. Axonal regeneration within the conduit was assessed at 3 weeks and regeneration of spinal motoneurons and recovery of muscle weight evaluated at 16 weeks postoperatively.Schwann cells survived in the BD hydrogel both in culture and after transplantation into the nerve defect. Regenerating axons grew significantly longer distances within the conduits filled with BD hydrogel when compared with the alginate/fibronectin hydrogel and alginate/fibronectin with Schwann cells. Addition of Schwann cells to the BD hydrogel considerably increased regeneration distance with axons crossing the injury gap and entering into the distal nerve stump. The conduits with BD hydrogel showed a linear alignment of nerve fibers and Schwann cells.The number of regenerating motoneurons and recovery of the weight of the gastrocnemius muscle was inferior in BD hydrogel and alginate/fibronectin groups compared with nerve grafting. Addition of Schwann cells did not improve regeneration of motoneurons or muscle recovery.The present results suggest that BD hydrogel with Schwann cells could be used within biosynthetic conduits to increase the rate of axonal regeneration across a nerve defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号