首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Invariant CD1d‐restricted NKT cells play important roles in regulating both innate and adaptive immunity. They are targeted by HIV‐1 infection and severely reduced in number or even lost in many infected subjects. Here, we have investigated the characteristics of NKT cells retained by some patients despite chronic HIV‐1 infection. NKT cells preserved under these circumstances displayed an impaired ability to proliferate and produce IFN‐γ in response to CD1d‐restricted lipid antigen as compared with cells from uninfected control subjects. HIV‐1 infection was associated with an elevated expression of the inhibitory programmed death‐1 (PD‐1) receptor (CD279) on the CD4? subset of NKT cells. However, blocking experiments indicated that the functional defects in NKT cells were largely PD‐1‐independent. Furthermore, the elevated PD‐1 expression and the functional defects were not restored by anti‐retroviral treatment, and the NKT cell numbers in blood did not recover significantly in response to treatment. The functional phenotype of NKT cells in these patients suggests an irreversible immune exhaustion due to chronic activation in vivo. The data demonstrate a severe functional impairment in the remaining NKT‐cell compartment in HIV‐1‐infected patients, which limits the prospects to mobilize these cells in immunotherapy approaches in patients.  相似文献   

3.
4.
Significant variability in efficacy of live Mycobacterium bovis BCG as a tuberculosis vaccine is observed globally. Effects of pre‐vaccination sensitisation to non‐tuberculous environmental mycobacteria (Env) are suspected to underlie this phenomenon, but the mechanisms remain unclear. We postulated that it could be due to Env‐specific T cells exerting cytotoxicity against BCG‐infected host cells. After murine sensitisation with heat‐killed antigens of different Env species, splenocytes from M. chelonae (CHE)‐sensitised mice exerted the strongest cytotoxicity against autologous BCG‐infected macrophages. This cytotoxicity was correlated with reduced BCG viability. The cytotoxicity was reduced by the depletion of CD4+, but not CD8+ or CD56+ cells, and CD4+ cells showed higher percentage of cytotoxicity than CD4? cells, supporting a role for CD4+ cells in CHE‐induced, BCG‐specific cytotoxicity. Additionally, this cytotoxicity was IFN‐γ, perforin and FasL dependent. After CHE‐sensitisation and subsequent BCG intranasal infection, there was significant expansion of lung CD4+ cells, the main cell type producing IFN‐γ. This was associated with 2‐ and 6‐fold reductions in lung BCG counts 1 and 3 wk, respectively post‐ infection, relative to non‐sensitised mice. This is the first report describing cytotoxicity against BCG‐infected cells as a mechanism underlying the influence of Env sensitisation on subsequent BCG responses.  相似文献   

5.
Invariant natural killer T (iNKT) cells play critical roles in autoimmune, anti‐tumor, and anti‐microbial immune responses, and are activated by glycolipids presented by the MHC class I‐like molecule, CD1d. How the activation of signaling pathways impacts antigen (Ag)‐dependent iNKT cell activation is not well‐known. In the current study, we found that the MAPK JNK2 not only negatively regulates CD1d‐mediated Ag presentation in APCs, but also contributes to CD1d‐independent iNKT cell activation. A deficiency in the JNK2 (but not JNK1) isoform enhanced Ag presentation by CD1d. Using a vaccinia virus (VV) infection model known to cause a loss in iNKT cells in a CD1d‐independent, but IL‐12‐dependent manner, we found the virus‐induced loss of iNKT cells in JNK2 KO mice was substantially lower than that observed in JNK1 KO or wild‐type (WT) mice. Importantly, compared to WT mice, JNK2 KO mouse iNKT cells were found to express less surface IL‐12 receptors. As with a VV infection, an IL‐12 injection also resulted in a smaller decrease in JNK2 KO iNKT cells as compared to WT mice. Overall, our work strongly suggests JNK2 is a negative regulator of CD1d‐mediated Ag presentation and contributes to IL‐12‐induced iNKT cell activation and loss during viral infections.  相似文献   

6.
A detailed phenotypic analysis of major and minor circulating lymphocyte subsets is described in potential blood donors with markers of hepatitis C virus (HCV), including non‐viremic and viremic groups. Although there were no changes in the hematological profile of either group, increased the levels of pre‐NK cells (CD3?CD16+CD56?) and a lower frequency of mature NK cells (CD3?CD16+CD56+) characterized innate immunity in the non‐viremic group. Both non‐viremic and viremic groups displayed significantly increased levels of CD56Bright NK cells. Furthermore, this subset was significantly elevated in the viremic subgroup with a low viral load. In addition, an increase in the NKT2 subset was observed only in this subgroup. An enhanced frequency of activated CD4+ T‐cells (CD4+HLA‐DR+) was a characteristic feature of the non‐viremic group, whereas elevated CD19+ B‐cells and CD19+CD86+ cell populations were the major phenotypic features of the viremic group, particularly in individuals with a low viral load. Although CD4+CD25High T‐cells were significantly elevated in both the viremic and non‐viremic groups, it was particularly evident in the viremic low viral load subgroup. A parallel increase in CD4+CD25High T‐cells, pre‐NK, and activated CD4+ T‐cells was observed in the non‐viremic group, whereas a parallel increase in CD4+CD25High T‐cells and CD19+ B‐cells was characteristic of the low viral load subgroup. These findings suggest that CD56Bright NK cells, together with pre‐NK cells and activated CD4+ T‐cells in combination with CD4+CD25High T‐cells, might play an important role in controlling viremia. Elevated CD56Bright NK cells, B‐cell responses and a T‐regulated immunological profile appeared to be associated with a low viral load. J. Med. Virol. 81:49–59, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
CD1d-restricted NKT cells are activated by TCR-mediated stimulation via CD1d plus lipid antigens such as alpha-galactosylceramide (alpha-GalCer). These cells suppressed autoimmunity and graft rejection, but sometimes enhanced resistance to infection and tumor immunity. This double-action phenomenon of NKT cells is partly explained by cytokines produced by NKT cells. Therefore, roles of cytokines from activated NKT cells have been extensively examined; however, their roles on T cell homeostatic proliferation in lymphopenic condition have not been investigated. Here, we showed that alpha-GalCer enhanced homeostatic proliferation of CD8+ but not CD4+ T cells and this effect of alpha-GalCer was required for NKT cells. IL-4 was essential and sufficient for this NKT cell action on CD8+ T cell homeostatic proliferation. Importantly, the expression of IL-4Ralpha and STAT6 in CD8+ T cells was essential for the NKT activity, indicating a direct action of IL-4 on CD8+ T cells. Consistent with this, the level of IL-4Ralpha expression on memory phenotype CD8(+) T cells was higher than that on naive phenotype one and CD4+ T cells. Thus, these results showed the 'involvement' of IL-4 that is produced from activated NKT cells for CD8+ T cell homeostatic proliferation in vivo.  相似文献   

8.
Invariant NKT (iNKT) cells recognize lipid antigens presented by CD1d and respond rapidly by killing tumor cells and release cytokines that activate and regulate adaptive immune responses. They are essential for tumor rejection in various mouse models, but clinical trials in humans involving iNKT cells have been less successful, partly due to their rarity in humans compared with mice. Here we describe an accumulation of functional iNKT cells in human omentum, a migratory organ with healing properties. Analysis of 39 omental samples revealed that T cells are the predominant lymphoid cell type and of these, 10% expressed the invariant Vα24Jα18 TCR chain, found on iNKT cells, higher than in any other human organ tested to date. About 15% of omental hematopoietic cells expressed CD1d, compared with 1% in blood (p<0.001). Enriched omental iNKT cells killed CD1d+ targets and released IFN‐γ and IL‐4 upon activation. Omental iNKT‐cell frequencies were lower in patients with severe obesity (p=0.005), and with colorectal carcinoma (p=0.004) compared with lean healthy subjects. These data suggest a novel role for the omentum in immune regulation and tumor immunity and identify it as a potential source of iNKT cells for therapeutic use.  相似文献   

9.
CD4+CD25(hi)CD127(lo/-) regulatory T cells (Treg) have been implicated in the resolution of asthma-associated inflammation while the opposite role of CD4+ invariant NKT (iNKT) cells has been the subject of recent investigations. Studies here focused on mechanisms of interaction between CD4+ iNKT cells and Treg to further explore their roles in allergic asthma (AA). Flow cytometry analysis revealed a significant increase in the expression of the natural cytotoxicity receptors NKp30 and NKp46 by CD4+ iNKT cells in AA subjects compared to healthy controls (HC) and non-allergic asthmatics (NA). Subsequent intracellular staining showed that CD4+ iNKT cells also expressed higher levels of granzyme B and perforin in AA than HC. In in vitro killing assays, AA CD4+ iNKT cells selectively killed autologous Treg, but not CD4+CD25- T cells, more potently than HC and NA counterparts. This increased cytotoxicity positively correlated with asthma severity and granzyme B/perforin expression of CD4+ iNKT cells. Furthermore, it could be abrogated by either inhibition of the granzyme B-/perforin-dependent cell death pathway or oral corticosteroid administration. Altogether, these findings suggest that increased cytotoxicity of CD4+ iNKT cells against Treg might contribute to dysfunctional cellular interactions in AA.  相似文献   

10.
Mast cells are innate immune cells usually residing in peripheral tissues, where they are likely to activate T‐cell responses. Similar to other myeloid immune cells, mast cells can function as antigen‐presenting cells. However, little is known about the capacity of human mast cells to costimulate CD4+ T cells. Here, we studied the T‐cell stimulatory potential of human mast cells. Peripheral blood derived mast cells were generated and cocultured with isolated CD4+ T cells. In the presence of T‐cell receptor triggering using anti‐CD3, mast cells promoted strong proliferation of T cells, which was two‐ to fivefold stronger than the “T‐cell promoting capacity” of monocytes. The interplay between mast cells and T cells was dependent on cell–cell contact, suggesting that costimulatory molecules on the mast cell surface are responsible for the effect. However, in contrast to monocytes, the T‐cell costimulation by mast cells was independent of the classical costimulatory molecule CD28, or that of OX40L, ICOSL, or LIGHT. Our data show that mast cells can costimulate human CD4+ T cells to induce strong T‐cell proliferation, but that therapies aiming at disrupting the interaction of CD28 and B7 molecules do not inhibit mast cell mediated T‐cell activation.  相似文献   

11.
The glycosphingolipid sulfatide (SO3‐3Galβ1Cer) is a demonstrated ligand for a subset of CD1d‐restricted NKT cells, which could regulate experimental autoimmune encephalomyelitis, a murine model for multiple sclerosis, as well as tumor immunity and experimental hepatitis. Native sulfatide is a mixture of sulfatide isoforms, i.e. sulfatide molecules with different long‐chain bases and fatty acid chain lengths and saturation. Here, we demonstrate that sulfatide‐specific CD1d‐restricted murine NKT hybridomas recognized several different sulfatide isoforms. These included the physiologically relevant isoforms C24:1 and C24:0, major constituents of the myelin sheet of the nervous system, and C16:0, prominent in the pancreatic islet β‐cells. The most potent sulfatide isoform was lysosulfatide (lacking a fatty acid). Shortened fatty acid chain length (C24:1 versus C18:1), or saturation of the long fatty acid (C24:0), resulted in reduced stimulatory capacity, and fatty acid hydroxylation abolished the response. Moreover, sulfatide was not responsible for the natural autoreactivity toward splenocytes by XV19 T hybridoma cells. Our results reveal a promiscuity in the recognition of sulfatide isoforms by a CD1d‐restricted NKT‐cell clone, and suggest that sulfatide, a major component of the myelin sheet and pancreatic β‐cells, is one of several natural ligands for type II CD1d‐restricted NKT cells.  相似文献   

12.
NK T cells(NKT cells) share functional characteristics and homing properties that are distinct from conventional T cells. In this study, we investigated the contribution of CD28 in the functional development of γδ NKT and αβ NKT cells in mice. We show that CD28 promotes the thymic maturation of promyelocytic leukemia zinc finger+ IL‐4+ NKT cells and upregulation of LFA‐1 expression on NKT cells. We demonstrate that the developmental defect of γδ NKT cells in CD28‐deficient mice is cell autonomous. Moreover, we show in both wild‐type C57BL/6 mice and in downstream of tyrosine kinase‐1 transgenic mice, a mouse model with increased numbers of γδ NKT cells, that CD28‐mediated regulation of thymic IL‐4+ NKT cells promotes the differentiation of eomesodermin+ CD44high innate‐like CD8+ T cells. These findings reveal a previously unappreciated mechanism by which CD28 controls NKT‐cell homeostasis and the size of the innate‐like CD8+ T‐cell pool.  相似文献   

13.
Our understanding of human type 1 natural killer T (NKT) cells has been heavily dependent on studies of cells from peripheral blood. These have identified two functionally distinct subsets defined by expression of CD4, although it is widely believed that this underestimates the true number of subsets. Two recent studies supporting this view have provided more detail about diversity of the human NKT cells, but relied on analysis of NKT cells from human blood that had been expanded in vitro prior to analysis. In this study we extend those findings by assessing the heterogeneity of CD4+ and CD4 human NKT cell subsets from peripheral blood, cord blood, thymus and spleen without prior expansion ex vivo, and identifying for the first time cytokines expressed by human NKT cells from spleen and thymus. Our comparative analysis reveals highly heterogeneous expression of surface antigens by CD4+ and CD4 NKT cell subsets and identifies several antigens whose differential expression correlates with the cytokine response. Collectively, our findings reveal that the common classification of NKT cells into CD4+ and CD4 subsets fails to reflect the diversity of this lineage, and that more studies are needed to establish the functional significance of the antigen expression patterns and tissue residency of human NKT cells.  相似文献   

14.
The cell surface receptor CD155 influences a variety of immune processes by binding to its ligands CD226, CD96, or TIGIT. Here, we report that the interaction of CD155 with CD226 in the thymus of BALB/c mice has a dual function. It directly influences the dwell time of memory‐like CD8+ T cells, while it is indirectly involved in generating these cells. It was shown earlier that a massive emergence of memory‐like CD8 T cells in thymus crucially depends on abundant IL‐4, secreted in steady state by iNKT2 (where iNKT is invariant NKT) cells, a subclass of iNKT cells. Here, we show that absence of either CD155 or CD226 in BALB/c mice causes a profound shift in the iNKT subtype composition in thymus, expanding the frequency and numbers of iNKT1 cells at the expense of iNKT2 cells, as well as iNKT17 cells. This shift results in a drop of available IL‐4 and creates a scenario similar to that observed in C57BL/6 mice, where iNKT1 cells predominate and iNKT2 cells are much less frequent when compared with BALB/c mice. Yet also in C57BL/6 mice, lack of CD155 or CD226 provokes a further decline in iNKT2 cells, suggesting that the observed effects are not restricted to a particular inbred strain.  相似文献   

15.
16.
Our knowledge about the kinetics and dynamics of complex pathogen-specific CD8(+) T cell responses and the in vivo development of CD8(+) memory T cells has increased substantially over the past years; in comparison, relatively little is known about the CD4(+) T cell compartment. We monitored and directly compared the phenotypical changes of pathogen (Listeria monocytogenes)-specific CD8(+) and CD4(+) T cell responses under conditions leading to effective and long-lasting protective immunity. We found that the general kinetics of bacteria-specific CD8(+) and CD4(+) T cells during the effector and post-effector phases are synchronized. However, later during the memory phase, CD8(+) and CD4(+) T cell populations differ substantially. Whereas CD8(+) memory T cell populations with immediate effector function are readily detectable in lymphoid and non-lymphoid tissues and remain remarkably stable in size, antigen-specific CD4(+) effector-memory T cells decline continuously in frequency over time. These findings have important implications for the better understanding of the in vivo development of protective immunity towards intracellular pathogens.  相似文献   

17.
CD4+CD25+调节性T细胞(Tr)是体内自然发生的调节性T细胞的重要亚群,具有无反应性和免疫抑制两大特性,主要通过与靶细胞的直接接触而起作用,其在体内不仅参与自身免疫性疾病、移植排斥反应等,还在肿瘤的发生、发展及免疫治疗中发挥重要作用.近几年来,Tr在肿瘤免疫中的作用倍受关注.  相似文献   

18.
Mast cells (MCs) are immune cells residing in tissues where pathogens are first encountered. It has been indicated that MCs might also be involved in setting the outcome of T‐cell responses. However, little is known about the capacity of human MCs to express MHC class II and/or to capture and present antigens to CD4+ T cells. To study the T‐cell stimulatory potential of human MCs, CD34+ stem cell derived MCs were generated. These cells expressed HLA‐DR when stimulated with IFN‐γ, and, importantly, presented peptide and protein for activation of antigen‐specific CD4+ T cells. The interplay between MC and T cell led to increased HLA‐DR expression on MCs. MCs were present in close proximity to T cells in tonsil and expressed HLA‐DR and CD80, indicating their ability to present antigens to CD4+ T cells in T‐cell areas of human LNs. Our data show that MCs can present native antigens to human CD4+ T cells and that HLA‐DR expressing MCs are present in tonsil tissue, indicating that human MCs can directly activate T cells and provide a rationale to study the potential of MCs to prime and/or skew human T‐cell responses.  相似文献   

19.
Invariant NKT cells are important in the activation and regulation of immune responses. They can also function as CD1d-restricted killer cells. However, the role of activating innate NK-cell receptors expressed on NKT cells in triggering cytolytic function is poorly characterized. Here, we initially confirmed that the cellular stress-ligand receptor NKG2D is expressed on CD4- NKT cells, whereas most CD4+ NKT cells lack this receptor. Interestingly, NKG2D+ NKT cells frequently expressed perforin, and both NKG2D and perforin localized at the site of contact with NKG2D ligand-expressing target cells. CD4- NKT cells degranulated in response to NKG2D engagement in a redirected activation assay independent of stimulation via their invariant TCR. NKT cells killed P815 cells coated with anti-NKG2D mAb and CD1d-negative K562 tumor target cells in an NKG2D-dependent manner. Furthermore, NKG2D engagement co-stimulated TCR-mediated NKT-cell activation in response to endogenous CD1d-presented ligands or suboptimal levels of anti-CD3 triggering. These data indicate that the CD4- subset of human NKT cells can mediate direct lysis of target cells via NKG2D engagement independent of CD1d, and that NKG2D also functions as a co-stimulatory receptor in these cells. NKG2D thus plays both a direct and a co-stimulatory role in the activation of NKT cells.  相似文献   

20.
Anaplasma phagocytophilum is a Gram‐negative, obligate intracellular bacterium that exhibits a striking tropism for neutrophils. When we depleted mice of neutrophils, we found that murine susceptibility to anaplasmal infection was dependent on their presence. While serving as sites of bacterial replication, neutrophils do not seem to act as efficient killer cells in A. phagocytophilum infection, because mice deficient for antimicrobial effectors of neutrophils such as myeloperoxidase, granulocyte elastase, and cathepsin G were fully competent in pathogen elimination. To identify components of the immune system other than neutrophils that control A. phagocytophilum, we studied the course of infection in several gene‐deficient mouse strains. IFN‐γ production by NK cells was important for initial defense, but not critical for pathogen elimination. In contrast, bacterial clearance was strictly dependent on CD4+ T cells, but unexpectedly achieved in the absence of perforin, Fas/FasL and major Th1 cytokines such as IL‐12, IFN‐γ, and MCP‐1. These findings provide a novel paradigm for the control of an intracellular pathogen, which appears to be strikingly different from the CD4+ T cell‐, IL‐12‐, and IFN‐γ‐dependent immunity to other intracellular bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号