首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
To understand the mechanisms of remyelination and the reasons for regeneration failure is one of the major challenges in multiple sclerosis research. This requires a good knowledge and reliable analysis of experimental models. This work was undertaken to characterize the pattern of myelin protein expression during experimental remyelination. Acute demyelination of the corpus callosum was induced by feeding of 0.3% cuprizone for 6 weeks, followed by a 10-week remyelination period. We used a combination of Luxol fast blue (LFB) myelin staining, electron microscopy (EM) and immunohistochemistry for the myelin proteins 2',3'-cyclic nucleotide 3' phosphodiesterase (CNPase), myelin basic protein (MBP), proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein (MOG). Early remyelination was detected by the re-expression of CNPase, MBP and PLP as early as 4 days. MOG, as a marker for late differentiation of oligodendrocytes, was not detectable until 2 weeks of remyelination. EM data correlated well with the LFB myelin staining and myelin protein expression, with 50% of the axons being rapidly remyelinated within 2 weeks. While particularly MBP but also PLP and CNPase are re-expressed very early before significant remyelination is observed by EM, the late marker MOG shows a lag behind the remyelination detected by EM. The presented data indicate that immunohistochemistry for various myelin proteins expressed early and late during myelin formation is a suitable and reliable method to follow remyelination in the cuprizone model. Furthermore, investigation of early remyelination confirms that the intrinsic repair programme is very fast and switched on within days.  相似文献   

4.
The effects of basic fibroblast growth factor (bFGF) on myelin basic protein (MBP) gene expression and myelin-like membrane formation were investigated in oligodendrocyte cultures containing mainly mature oligodendrocytes expressing MBP. These cultures were obtained by selective detachment of the cells of the oligodendrocyte lineage from 40-day-old mixed cultures derived from newborn rat brain. They were further purified by a 3-day pretreatment with cytosine arabinoside (ARA-C) in order to kill cycling cells. After withdrawal of ARA-C, daily treatment of the cells with bFGF for 3 days induced a drastic decrease in MBP mRNA level compared to control cultures treated only with ARA-C. Moreover, the percentage of oligodendrocytes labelled with anti-MBP antibodies decreased by 50%, as well as that of oligodendrocytes expressing myelin oligodendrocyte glycoprotein (MOG), whereas proteolipid protein (PLP) immunolabelled cells were less affected. At the ultrastructural level, myelin-like membranes were still abundant in the ARA-C-and bFGF-treated cultures, but they were conspicuously uncompacted compared to cultures only pretreated with ARA-C. These results bring the first evidence that bFGF is able to down-regulate myelin protein gene expression in mature oligodendrocytes and to alter myelin structure. They imply that if bFGF is secreted after a demyelinating lesion of the central nervous system (CNS), this plasticity of mature oligodendrocytes will allow final remyelination of axons to complete only after this factor has returned to low levels. © 1995 Wiley-Liss, Inc.  相似文献   

5.
6.
7.
8.
White matter disturbance in the ventral prefrontal cortex (vPFC) in major depressive disorder (MDD) has been noted with diffusion tensor imaging (DTI). However, the cellular and molecular pathology of prefrontal white matter in MDD and potential influence of antidepressant medications is not fully understood. Oligodendrocyte morphometry and myelin-related mRNA and protein expression was examined in the white matter of the vPFC in MDD. Sections of deep and gyral white matter from the vPFC were collected from 20 subjects with MDD and 16 control subjects. Density and size of CNPase-immunoreactive (-IR) oligodendrocytes were estimated using 3-dimensional cell counting. While neither density nor soma size of oligodendrocytes was significantly affected in deep white matter, soma size was significantly decreased in the gyral white matter in MDD. In rhesus monkeys treated chronically with fluoxetine there was no significant effect on oligodendrocyte morphometry. Using quantitative RT-PCR to measure oligodendrocyte-related mRNA for CNPase, PLP1, MBP, MOG, MOBP, Olig1 and Olig2, in MDD there was a significantly reduced expression of PLP1 mRNA (which positively correlated with smaller sizes) and increased expression of mRNA for CNPase, OLIG1 and MOG. The expression of CNPase protein was significantly decreased in MDD. Altered expression of four myelin genes and CNPase protein suggests a mechanism for the degeneration of cortical axons and dysfunctional maturation of oligodendrocytes in MDD. The change in oligodendrocyte morphology in gyral white matter may parallel altered axonal integrity as revealed by DTI.  相似文献   

9.
Axonal injury is an important contributor to the behavioral deficits observed following traumatic brain injury (TBI). Additionally, loss of myelin and/or oligodendrocytes can negatively influence signal transduction and axon integrity. Apoptotic oligodendrocytes, changes in the oligodendrocyte progenitor cell (OPC) population and loss of myelin were evaluated at 2, 7 and 21 days following TBI. We used the central fluid percussion injury model (n = 18 and three controls) and the lateral fluid percussion injury model (n = 15 and three controls). The external capsule, fimbriae and corpus callosum were analysed. With Luxol Fast Blue and RIP staining, myelin loss was observed in both models, in all evaluated regions and at all post‐injury time points, as compared with sham‐injured controls (P ≤ 0.05). Accumulation of β‐amyloid precursor protein was observed in white matter tracts in both models in areas with preserved and reduced myelin staining. White matter microglial/macrophage activation, evaluated by isolectin B4 immunostaining, was marked at the early time points. In contrast, the glial scar, evaluated by glial fibrillary acidic protein staining, showed its highest intensity 21 days post‐injury in both models. The number of apoptotic oligodendrocytes, detected by CC1/caspase‐3 co‐labeling, was increased in both models in all evaluated regions. Finally, the numbers of OPCs, evaluated with the markers Tcf4 and Olig2, were increased from day 2 (Olig2) or day 7 (Tcf4) post‐injury (P ≤ 0.05). Our results indicate that TBI induces oligodendrocyte apoptosis and widespread myelin loss, followed by a concomitant increase in the number of OPCs. Prevention of myelin loss and oligodendrocyte death may represent novel therapeutic targets for TBI.  相似文献   

10.
Oligodendrocyte precursor (OP) cells give rise to mature oligodendrocytes (OL), which are necessary for myelination of axons during CNS development and following damage to the myelin sheath that occurs in demyelinating diseases. To facilitate studies designed to understand OP maturation and OL function, we have developed OP cells that can be grown continuously, expanded, and differentiated into mature OLs. Cultures of late passage mOP cells grown in proliferation medium are highly pure early stage oligodendrocyte precursors where > 90% assume a characteristic bipolar morphology. Immunocytochemical analysis using antibodies that recognize progressive stages of OP maturation (A2B5, NG2, GD3 and O4) confirmed that mOP cells have a stable early stage OP cell phenotype. In addition, mOP cells can be induced to differentiate into mature forms of oligodendrocytes in vitro and in vivo, as characterized morphologically by the presence of multiple processes with secondary and tertiary branches, and by immunostaining and quantitative real-time PCR for the mature oligodendrocyte markers MBP, MAG, PLP, and MOBP. Finally, differentiation of mOP cells was accompanied by up-regulation of mRNA encoding Olig2 but not Olig1, which is consistent with previous findings showing that Olig2 is necessary for specification of oligodendrocytes. These new mOP cells should significantly benefit in vitro and in vivo studies on OP maturation and function.  相似文献   

11.
Xiao L  Guo D  Hu C  Shen W  Shan L  Li C  Liu X  Yang W  Zhang W  He C 《Glia》2012,60(7):1037-1052
Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes is a prerequisite for remyelination after demyelination, and impairment of this process is suggested to be a major reason for remyelination failure. Diosgenin, a plant-derived steroid, has been implicated for therapeutic use in many diseases, but little is known about its effect on the central nervous system. In this study, using a purified rat OPC culture model, we show that diosgenin significantly and specifically promotes OPC differentiation without affecting the viability, proliferation, or migration of OPC. Interestingly, the effect of diosgenin can be blocked by estrogen receptor (ER) antagonist ICI 182780 but not by glucocorticoid and progesterone receptor antagonist RU38486, nor by mineralocorticoid receptor antagonist spirolactone. Moreover, it is revealed that both ER-alpha and ER-beta are expressed in OPC, and diosgenin can activate the extracellular signal-regulated kinase 1/2 (ERK1/2) in OPC via ER. The pro-differentiation effect of diosgenin can also be obstructed by the ERK inhibitor PD98059. Furthermore, in the cuprizone-induced demyelination model, it is demonstrated that diosgenin administration significantly accelerates/enhances remyelination as detected by Luxol fast blue stain, MBP immunohistochemistry and real time RT-PCR. Diosgenin also increases the number of mature oligodendrocytes in the corpus callosum while it does not affect the number of OPCs. Taking together, our results suggest that diosgenin promotes the differentiation of OPC into mature oligodendrocyte through an ER-mediated ERK1/2 activation pathway to accelerate remyelination, which implicates a novel therapeutic usage of this steroidal natural product in demyelinating diseases such as multiple sclerosis (MS).  相似文献   

12.
Chew LJ  King WC  Kennedy A  Gallo V 《Glia》2005,52(2):127-143
The developmental processes of the oligodendrocyte progenitor cell (OPC) lineage that are targeted by interferon-gamma (IFN-gamma) were studied in primary rat OPC cultures. Under conditions of thyroid hormone-mediated oligodendrocyte differentiation, IFN-gamma produced a dose-dependent apoptotic response in OPCs. The lowest dose tested (15 ng/ml or 75 U/ml) was nonapoptotic, but activated detectable STAT1 DNA-binding. At this dose, IFN-gamma reduced the percentage of mature O1+ cells and increased the percentage of immature A2B5+ OPCs. This was observed without significant change in total cell number and cytotoxicity, and was accompanied by an increase in BrdU-labeled A2B5+ and O4+ cells. FACS analysis confirmed a lack of apoptotic sub-G1 cells and revealed a greater percentage of S- and G2/M-phase OPCs with IFN-gamma treatment. Dual immunostaining with Ki-67 and Olig2 showed a smaller percentage of Olig2+ cells in G0 phase in IFN-gamma-treated OPCs, indicating loss of G1 control. Instead, increased levels and phosphorylation of the checkpoint protein p34cdc2 by IFN- suggested increased partial arrest in G2. IFN-gamma not only sustained expression of PCNA and the G1-S regulators retinoblastoma protein, cyclin D1, cyclin E, and cdk2, but also decreased p27 levels. In addition to changes in cell proliferation and differentiation, IFN-gamma attenuated myelin basic protein (MBP) expression significantly, which was associated with decreased expression of both MBP and Sox10 RNAs. These findings indicate that IFN-gamma not only maintains cell cycle activity that could predispose OPCs to apoptosis, but also overrides G1-G0 signals leading to thyroid hormone-mediated terminal differentiation and myelin gene expression.  相似文献   

13.
The proteolipid proteins play a major role in the structure of the CNS myelin sheath, but they have also been implicated in the oligodendrocyte development leading to myelination. Mutations in the PLP gene result in severe dysmyelination and a paucity of mature oligodendrocytes. The myelin deficient (md) rat, carrying a Thr75? Pro substitution present in both isoforms of proteolipid protein (PLP and DM20), is the most severely affected of the PLP mutants described to date. The expression of myelin associated genes was quantitated to determine the effect of the mutation on oligodendrocyte development in vivo. At 5 days postnatal, gene expression in the and rat approximated that in age-matched control rats, but as they matured, there was a progressive inhibition of gene expression in the and rats. The genes expressed late in the myelination program (PLP and MBP) were affected more dramatically than those expressed earlier in oligodendrocyte development (CNP and GPDH). The results indicate that the later stages of oligodendrocyte maturation and myelin elaboration are inhibited. © 1995 Wiley-Liss, Inc.  相似文献   

14.
15.
16.
17.
The role of astrocytes in the pathophysiology of multiple sclerosis (MS) is discussed controversially. Especially the formation of the glial scar is often believed to act as a barrier for remyelination. At the same time, astrocytes are known to produce factors that influence oligodendrocyte precursor cell (OPC) survival. To explore these mechanisms, we investigated the astrocytic reaction in an animal model induced by immunization with myelin oligodendrocyte glycoprotein (MOG) in Dark Agouti (DA) rats, which mimics most of the histological features of MS. We correlated the astroglial reaction by immunohistochemistry (IHC) for glial fibrillary acidic protein (GFAP) to the remyelination capacity by in situ hybridization for mRNA of proteolipid protein (PLP), indicative of OPCs, over the full course of the disease. PLP mRNA peaked in early remyelinating lesions while the amount of GFAP positive astrocytes was highest in remyelinated lesions. In shadow plaques, we found at the same time all features of a glial scar and numbers of OPCs and mature oligodendrocytes, which were nearly equal to that in unaffected white matter areas. To assess the plaque environment, we furthermore quantitatively analyzed factors expressed by astrocytes previously suggested to influence remyelination. From our data, we conclude that remyelination occurs despite an abundant glial reaction in this animal model. The different patterns of astrocytic factors and the occurrence of different astrocytic phenotypes during lesion evolution furthermore indicate a finely regulated, balanced astrocytic involvement leading to successful repair.  相似文献   

18.
The inflammatory cytokine tumour necrosis factor (TNF) can both induce oligodendrocyte and myelin pathology and promote proliferation of oligodendrocyte progenitor cells and remyelination. We have compared the response of the oligodendrocyte lineage to anterograde axonal (Wallerian) and terminal degeneration and lesion-induced axonal sprouting in the hippocampal dentate gyrus in TNF-transgenic mice with the response in genetically normal mice. Transectioning of the entorhino-dentate perforant path axonal projection increased hippocampal TNF mRNA expression in both types of mice, but to significantly larger levels in the TNF-transgenics. At 5 days after axonal transection, numbers of oligodendrocytes and myelin basic protein (MBP) mRNA expression in the denervated dentate gyrus in TNF-transgenic mice had increased to the same extent as in nontransgenic littermates. At this time, transgenics showed a tendency towards a greater increase in the number of juxtaposed, potentially proliferating oligodendrocytes. Noteworthy, at day 5 we also observed upregulation of MBP mRNA expression in adjacent hippocampal subregions with lesion-induced axonal sprouting, which were devoid of axonal degeneration, raising the possibility that sprouting axons provide trophic stimuli to the oligodendrocyte lineage. Twenty-eight days after lesioning, oligodendrocyte numbers and MBP mRNA expression were reduced to near normal levels. However, oligodendrocyte densities in the TNF-transgenic mice were significantly lower than in nontransgenics. We conclude that the early response of the oligodendrocyte lineage to axonal lesioning and lesion-induced axonal sprouting appears unaffected by the supranormal TNF levels in the TNF-transgenic mice. TNF may, however, have long-term inhibitory effects on the oligodendrocyte response to axonal lesioning.  相似文献   

19.
During normal brain development, axons are myelinated by mature oligodendrocytes (OLGs). Under pathological, demyelinating conditions within the central nervous system (CNS), axonal remyelination is only partially successful because oligodendrocyte precursor cells (OPCs) largely remain in an undifferentiated state resulting in a failure to generate myelinating OLGs. Tissue Transglutaminase (TG2) is a multifunctional enzyme, which amongst other functions, is involved in cell differentiation. Therefore, we hypothesized that TG2 contributes to differentiation of OPCs into OLGs and thereby stimulates remyelination. In vivo studies, using the cuprizone model for de- and remyelination in TG2(-/-) and wild-type mice, showed that during remyelination expression of proteolipid protein mRNA, as a marker for remyelination, in the corpus callosum lags behind in TG2(-/-) mice resulting in less myelin formation and, moreover, impaired recovery of motor behavior. Subsequent in vitro studies showed that rat OPCs express TG2 protein and activity which reduces when the cells have matured into OLGs. Furthermore, when TG2 activity is pharmacologically inhibited, the differentiation of OPCs into myelin-forming OLGs is dramatically reduced. We conclude that TG2 plays a prominent role in remyelination of the CNS, probably through stimulating OPC differentiation into myelin-forming OLGs. Therefore, manipulating TG2 activity may represent an interesting new target for remyelination in demyelinating diseases.  相似文献   

20.
Reactive gliosis, demyelination and proliferation of NG2+ oligodendrocyte precursor cells (OPC) are common responses to spinal cord injury (SCI). We previously reported that short-term progesterone treatment stimulates OPC proliferation whereas chronic treatment enhances OPC differentiation after SCI. Presently, we further studied the proliferation/differentiation of glial cells involved in inflammation and remyelination in male rats with SCI subjected to acute (3 days) or chronic (21 days) progesterone administration. Rats received several pulses of bromodeoyuridine (BrdU) 48 and 72 h post-SCI, and sacrificed 3 or 21 days post-SCI. Double colocalization of BrdU and specific cell markers showed that 3 days of SCI induced a strong proliferation of S100β+ astrocytes, OX-42+ microglia/macrophages and NG2+ cells. At this stage, the intense GFAP+ astrogliosis was BrdU negative. Twenty one days of SCI enhanced maturation of S100β+ cells into GFAP+ astrocytes, but decreased the number of CC1+ oligodendrocytes. Progesterone treatment inhibited astrocyte and microglia /macrophage proliferation and activation in the 3-day SCI group, and inhibited activation in the 21-day SCI group. BrdU/NG2 double labeled cells were increased by progesterone at 3 days, indicating a proliferation stimulus, but decreased them at 21 days. However, progesterone-enhancement of CC1+/BrdU+ oligodendrocyte density, suggest differentiation of OPC into mature oligondendrocytes. We conclude that progesterone effects after SCI involves: a) inhibition of astrocyte proliferation and activation; b) anti-inflammatory effects by preventing microglial activation and proliferation, and c) early proliferation of NG2+ progenitors and late remyelination. Thus, progesterone behaves as a glioactive factor favoring remyelination and inhibiting reactive gliosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号