首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Post-mortem cortices from patients diagnosed with Alzheimer's disease (AD) exhibit reduced levels of drebrin, an F-actin binding protein of dendritic spines and shafts. We used a mouse model of familial AD (FAD) to determine whether the density of cortical spines engaged in asymmetric (presumably excitatory) synapses and containing drebrin A is reduced and if so, whether this occurs prior to the emergence of beta amyloid deposits, when only soluble beta amyloid (Abeta) is present. Quantitative electron microscopic immunocytochemistry revealed that by 6 months, the proportion of postsynaptic spines with drebrin A within somatosensory cortex layer I was smaller for the FAD model mice, when compared to the corresponding region of WT mice (P < 0.0005). However, the areal density of postsynaptic spines containing drebrin A was relatively constant from 3 to 18 months and beyond for both genotypes, suggesting that drebrin A confers stability to postsynaptic spines. Further measurements confirmed that the reduced proportion of drebrin A-containing spines in brains of FAD mice at 6 months is due to the greater size and areal density of spine profiles lacking drebrin A. Thus, soluble Abeta could affect spines lacking drebrin A more strongly than spines containing drebrin A. At 6 months and older, a larger fraction of spinous drebrin A in 2xKI mice was located near the synaptic membrane, as compared to those of WT mice. This pattern may reflect an altered trafficking of synaptic molecules within spines, a factor adding to the decline of synaptic function and plasticity.  相似文献   

2.
Synaptic activities alter synaptic strengths at the axospinous junctions, and such changes are often accompanied by changes in the size of the postsynaptic spines. We have been exploring the idea that drebrin A, a neuron-specific actin-binding protein localized on the postsynaptic side of excitatory synapses, may be a molecule that links synaptic activity to the shape and content of spines. Here, we performed electron microscopic immunocytochemistry with the nondiffusible gold label to explore the relationship among levels of drebrin A, the NR2A subunit of N-methyl-D-aspartate receptors, and the size of spines in the perirhinal cortex of adult mouse brains. In contrast to the membranous localization within neonatal spines, most immunogold particles for drebrin A were localized to the cytoplasmic core region of spines in mature spines. This distribution suggests that drebrin within adult spines may reorganize the F-actin network at the spine core, in addition to its known neonatal role in spine formation. Drebrin A-immunopositive (DIP) spines exhibited larger spine head areas and longer postsynaptic densities (PSDs) than drebrin A-immunonegative (DIN) spines (P < 0.001). Furthermore, spine head area and PSD lengths correlated positively with drebrin A levels (r = 0.47 and 0.40). The number of synaptic NR2A immunolabels was also higher in DIP spines than in DIN spines, whereas their densities per unit lengths of PSD were not significantly different. These differences between the DIP and the DIN spines indicate that spine sizes and synaptic protein composition of mature brains are regulated, at least in part, by drebrin A levels.  相似文献   

3.
Mice with knock-in of two mutations that affect beta amyloid processing and levels (2xKI) exhibit impaired spatial memory by 9-12 months of age, together with synaptic plasticity dysfunction in the hippocampus. The goal of this study was to identify changes in the molecular and structural characteristics of synapses that precede and thus could exert constraints upon cellular mechanisms underlying synaptic plasticity. Drebrin A is one protein reported to modulate spine sizes and trafficking of proteins to and from excitatory synapses. Thus, we examined levels of drebrin A within postsynaptic spines in the hippocampus and entorhinal cortex. Our electron microscopic immunocytochemical analyses reveal that, by 6 months, the proportion of hippocampal spines containing drebrin A is reduced and this change is accompanied by an increase in the mean size of spines and decreased density of spines. In the entorhinal cortex of 2xKI brains, we detected no decrement in the proportion of spines labeled for drebrin A and no significant change in spine density at 6 months, but rather a highly significant reduction in the level of drebrin A immunoreactivity within each spine. These changes are unlike those observed for the somatosensory cortex of 2xKI mice, in which synapse density and drebrin A immunoreactivity levels remain unchanged at 6 months and older. These results indicate that brains of 2xKI mice, like those of humans, exhibit regional differences of vulnerability, with the hippocampus exhibiting the first signatures of structural changes that, in turn, may underlie the emergent inability to update spatial memory in later months.  相似文献   

4.
Greater than 90% of familial Alzheimer's disease (AD) is linked to mutations of presenilin (PS), and the loss of PS function altogether within mouse brains by conditional double knockout of the PS 1 and 2 genes (PS‐cDKO) leads to age‐dependent emergence of AD phenotypes, including neurodegeneration and reduced synaptic plasticity in the hippocampal CA1. The goal of our study was to identify the ultrastructural and molecular changes at synapses in the hippocampal CA1 of this PS‐cDKO mouse model of AD. We examined the asymmetric (excitatory) synapses formed on apical dendrites of CA1 pyramidal neurons at 2 months postnatal, an age when AD‐like symptoms emerge but brain morphology, as assessed by light microscopy, is still normal. Our quantitative electron microscopic analyses confirm that PS‐cDKO hippocampi at 2 months postnatal do not yet exhibit synapse losses or spine size alterations. However, immunocytochemistry reveals that the same region exhibits a 28% increase in the proportion of spines labeled for the NR2A subunits of NMDA receptors (NMDAR), with a 31% increase specifically at postsynaptic densities and a concomitant reduction of these subunits at nonsynaptic sites within spine heads. In contrast, no change in levels or the distribution pattern of NR2B subunit levels were detected within spine heads. Presynaptically, NR2A levels are elevated at axo‐spinous junctions and these may contribute to the timing‐dependent, long‐term depression. These observations point to an early‐onset trapping of NMDAR at synapses that are subtle but may underlie the reduced synaptic plasticity at 2 months of age and excitotoxicity at later stages. J. Comp. Neurol. 517:512–523, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
The actin-binding protein drebrin is localized in postsynaptic terminals in adult brain and is considered to be related to synaptic plasticity. Immunocytochemical study demonstrated that widespread drebrin immunoreactivity was observed in hippocampal formations of control human brains, while Alzheimer's disease (AD) brains showed remarkable reductions in this immunoreactivity. Western blot analysis demonstrated that drebrin E (116 kD) as well as drebrin A (125 kD) presented in adult human brains, and that these isoforms were decreased in parallel in AD brains. On the other hand, synaptic vesicle-specific 38-kD protein (SVP-38), a presynaptic marker was not so changed in AD brains in comparison with control brains by both techniques. These findings suggest that drebrin E and A in the adult human brain may be co-localized in postsynaptic terminals, and that drebrin may be more sensitive as a marker of synaptic damage than SVP-38, and that the disappearance of drebrin may contribute to the pathogenesis of memory disturbance in AD. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Drebrin A is a neuron-specific, actin binding protein. Evidence to date is from in vitro studies, consistently supporting the involvement of drebrin A in spinogenesis and synaptogenesis. We sought to determine whether drebrin A arrives at the plasma membrane of neurons, in vivo, in time to orchestrate spinogenesis and synaptogenesis. To this end, a new antibody was used to locate drebrin A in relation to electron microscopically imaged synapses during early postnatal days. Western blotting showed that drebrin A emerges at postnatal day (PNd) 6 and becomes progressively more associated with F-actin in the pellet fraction. Light microscopy showed high concentrations of drebrin A in the synaptic layers of the hippocampus and cortex. Electron microscopy revealed that drebrin A in these regions is located exclusively in dendrites both neonatally and in adulthood. In adulthood, nearly all of the synaptic drebrin A is within spines forming asymmetric excitatory synapses, verified by gamma-aminobutyric acid (GABA) negativity. At PNd7, patches of drebrin A immunoreactivity were discretely localized to the submembranous surfaces of dendrites forming slight protrusions-protospines. The drebrin A sites exhibited only thin postsynaptic densities and lacked axonal associations or were contacted by axons that contained only a few vesicles. Yet, because of their immunoreactivity to the NR2B subunit of N-methyl-D-aspartate receptors and immunonegativity of axon terminals to GABA, these could be presumed to be nascent, excitatory synapses. Thus, drebrin A may be involved in organizing the dendritic pool of actin for the formation of spines and of axospinous excitatory synapses during early postnatal periods.  相似文献   

7.
Calcium/calmodulin‐dependent protein kinase II (CaMKII) plays a key role in N‐methyl‐D‐aspartate (NMDA) receptor‐dependent long‐term synaptic plasticity; its location is critical for signal transduction, and may provide clues that further elucidate its function. We therefore examined the subcellular localization of CaMKII in CA1 stratum radiatum of adult rat hippocampus, by using immuno‐electron microscopy after chemical fixation. When tissue was fixed quickly, the concentration of CaMKIIα (assessed by pre‐embedding immunogold) was significantly higher in dendritic shafts than in spine heads. However, when tissue was fixed 5 minutes after perfusion with normal saline, the density of labeling decreased in dendritic shaft while increasing in spine heads, implying rapid translocation into the spine during brief perimortem stress. Likewise, in quickly fixed tissue, CaMKII within spine heads was found at comparable concentrations in the “proximal” half (adjacent to the spine neck) and the “distal” half (containing the postsynaptic density [PSD]), whereas after delayed fixation, label density increased in the distal side of the spine head, suggesting that CaMKII within the spine head moves toward the PSD during this interval. To estimate its distribution at the synapse in vivo, we performed postembedding immunogold staining for CaMKII in quick‐fixed tissue, and found that the enzyme did not concentrate primarily within the central matrix of the PSD. Instead, labeling density peaked ~40 nm inside the postsynaptic membrane, at the cytoplasmic fringe of the PSD. Labeling within 25 nm of the postsynaptic membrane concentrated at the lateral edge of the synapse. This lateral “PSD core” pool of CaMKII may play a special role in synaptic plasticity. J. Comp. Neurol. 521:3570‐3583, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Dendritic spines are tiny postsynaptic protrusions from a dendrite that receive most of the excitatory synaptic input in the brain. Functional and structural changes in dendritic spines are critical for synaptic plasticity, a cellular model of learning and memory. Conversely, altered spine morphology and plasticity are common hallmarks of human neurodevelopmental disorders, such as intellectual disability and autism. The advances in molecular and optical techniques have allowed for exploration of dynamic changes in structure and signal transduction at single‐spine resolution, providing significant insights into the molecular regulation underlying spine structural plasticity. Here, I review recent findings on: how synaptic stimulation leads to diverse forms of spine structural plasticity; how the associated biochemical signals are initiated and transmitted into neuronal compartments; and how disruption of single genes associated with neurodevelopmental disorders can lead to abnormal spine structure in human and mouse brains. In particular, I discuss the functions of the Ras superfamily of small GTPases in spatiotemporal regulation of the actin cytoskeleton and protein synthesis in dendritic spines. Multiple lines of evidence implicate disrupted Ras signaling pathways in the spine structural abnormalities observed in neurodevelopmental disorders. Both deficient and excessive Ras activities lead to disrupted spine structure and deficits in learning and memory. Dysregulation of spine Ras signaling, therefore, may play a key role in the pathogenesis of multiple neurodevelopmental disorders with distinct etiologies.  相似文献   

9.
Consumption of high‐energy diets may compromise health and may also impair cognition; these impairments have been linked to tasks that require hippocampal function. Conversely, food restriction has been shown to improve certain aspects of hippocampal function, including spatial memory and memory persistence. These diet‐dependent functional changes raise the possibility that the synaptic structure underlying hippocampal function is also affected. To examine how short‐term food restriction (FR) alters the synaptic structure of the hippocampus, we used quantitative electron microscopy to analyze the organization of neuropil in the CA1 stratum radiatum of the hippocampus in young rats, consequent to reduced food. While four weeks of FR did not modify the density, size, or shape of postsynaptic spines, the synapses established by these spines were altered, displaying increased mean length, and more frequent perforations of postsynaptic densities. That the number of perforated synapses (believed to be an indicator of synaptic enhancement) increased, and that the CA1 spine population had on average significantly longer PSDs suggests that synaptic efficacy of axospinous synapses also increased in the CA1. Taken together, our ultrastructural data reveal previously unrecognized structural changes at hippocampal synapses as a function of food restriction, supporting a link between metabolic balance and synaptic plasticity. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
11.
F‐actin‐binding protein drebrin has two major isoforms: drebrin A and drebrin E. Drebrin A is the major isoform in the adult brain and is highly concentrated in dendritic spines, regulating spine morphology and synaptic plasticity. Conversely, drebrin E is the major isoform in the embryonic brain and regulates neuronal morphological differentiation, but it is also expressed in neurogenic regions of the adult brain. The subventricular zone (SVZ) is one of the brain regions where adult neurogenesis occurs. Neuroblasts migrate to the olfactory bulb (OB) and integrate into existing neuronal networks, after which drebrin expression changes from E to A, suggesting that drebrin E plays a specific role in neuroblasts in the adult brain. Therefore, to understand the role of drebrin E in the adult brain, we immunohistochemically analyzed adult neurogenesis using drebrin‐null‐mutant (DXKO) mice. In DXKO mice, the number of neuroblasts and cell proliferation decreased, although cell death remained unchanged. These results suggest that drebrin E regulates cell proliferation in the adult SVZ. Surprisingly, the decreased number of neuroblasts in the SVZ did not result in less neurons in the OB. This was because the survival rate of newly generated neurons in the OB increased in DXKO mice. Additionally, when neuroblasts reached the OB, the change in the migratory pathway from tangential to radial was partly disturbed in DXKO mice. These results suggest that drebrin E is involved in a chain migration of neuroblasts.  相似文献   

12.
Dendritic spines: role of active membrane in modulating synaptic efficacy   总被引:2,自引:0,他引:2  
Dendritic spines have been increasingly implicated as sites for neuronal plasticity. Earlier-theoretical studies of dendritic-spine function have assumed passive membrane, and have consequently predicted that postsynaptic potentials in the dendrite are attenuated when the synapse is located on the spine head rather than on the dendritic shaft. Our studies show that active membrane in the spine head (e.g. voltage-dependent Na+ or Ca2+ channels) can produce amplification rather than attenuation of the postsynaptic potential. The presence and amount of amplification depend on the density of active channels and on the spine-neck resistance. For a given type of spine head, there is an optimal spine-neck resistance; a given change in neck resistance can therefore either increase or decrease the amplitude of postsynaptic potentials. These results support the idea that spines mediate synaptic plasticity and suggest a variety of modulatory mechanisms.  相似文献   

13.
Parkinson's disease (PD) is a neurodegenerative disorder associated with the progressive loss of nigrostriatal dopaminergic neurons. Levodopa is the most effective treatment for the motor symptoms of PD. However, chronic oral levodopa treatment can lead to various motor and nonmotor complications because of nonphysiological pulsatile dopaminergic stimulation in the brain. Examinations of autopsy cases with PD have revealed a decreased number of dendritic spines of striatal neurons. Animal models of PD have revealed altered density and morphology of dendritic spines of neurons in various brain regions after dopaminergic denervation or dopaminergic denervation plus levodopa treatment, indicating altered synaptic transmission. Recent studies using rodent models have reported dendritic spine head enlargement in the caudate‐putamen, nucleus accumbens, primary motor cortex, and prefrontal cortex in cases where chronic levodopa treatment following dopaminergic denervation induced dyskinesia‐like abnormal involuntary movement. Hypertrophy of spines results from insertion of alpha‐amino‐2,3‐dihydro‐5‐methyl‐3‐oxo‐4‐isoxazolepropanoic acid receptors into the postsynaptic membrane. Such spine enlargement indicates hypersensitivity of the synapse to excitatory inputs and is compatible with a lack of depotentiation, which is an electrophysiological hallmark of levodopa‐induced dyskinesia found in the corticostriatal synapses of dyskinetic animals and the motor cortex of dyskinetic PD patients. This synaptic plasticity may be one of the mechanisms underlying the priming of levodopa‐induced complications such as levodopa‐induced dyskinesia and dopamine dysregulation syndrome. Drugs that could potentially prevent spine enlargement, such as calcium channel blockers, N‐methyl‐D‐aspartate receptor antagonists, alpha‐amino‐2,3‐dihydro‐5‐methyl‐3‐oxo‐4‐isoxazolepropanoic acid receptor antagonists, and metabotropic glutamate receptor antagonists, are candidates for treatment of levodopa‐induced complications in PD. © 2017 International Parkinson and Movement Disorder Society  相似文献   

14.
Alterations in the density and morphology of dendritic spines are characteristic of multiple cognitive disorders. Elucidating the molecular mechanisms underlying spine alterations are facilitated by the use of experimental and analytical methods that permit concurrent evaluation of changes in spine density, morphology and composition. Here, an automated and quantitative immunocytochemical method for the simultaneous analysis of changes in the density and morphology of spines and excitatory glutamate receptors was established to analyze neuron maturation, in vitro. In neurons of long-term neuron-glia co-cultures, spine density as measured by drebrin cluster fluorescence, increased from DIV (days in vitro)10 to DIV18 (formation phase), remained stable from DIV18 to DIV21 (maintenance phase), and decreased from DIV21 to DIV26 (loss phase). The densities of spine-localized NMDAR and AMPAR clusters followed a similar trend. Spine head sizes as measured by the fluorescence intensities of drebrin clusters increased from DIV10 to DIV21 and decreased from DIV21 to DIV26. Changes in the densities of NR1-only, GluR2-only, and NR1+GluR2 spines were measured by the colocalizations of NR1 and GluR2 clusters with drebrin clusters. The densities of NR1-only spines remained stable from the maintenance to the loss phases, while GluR2-only and NR1+GluR2 spines decreased during the loss phase, thus suggesting GluR2 loss as a proximal molecular event that may underlie spine alterations during neuron maturation. This study demonstrates a sensitive and quantitative immunocytochemical method for the concurrent analysis of changes in spine density, morphology and composition, a valuable tool for determining molecular events involved in dendritic spine alterations.  相似文献   

15.
The structural plasticity of dendritic spines is considered to be an important basis of synaptic plasticity, learning, and memory. Here, we induced input-specific structural LTP (sLTP) in single dendritic spines in organotypic hippocampal slices from mice of either sex and performed ultrastructural analyses of the spines using efficient correlative light and electron microscopy. We observed reorganization of the PSD nanostructure, such as perforation and segmentation, at 2–3, 20, and 120 min after sLTP induction. In addition, PSD and nonsynaptic axon–spine interface (nsASI) membrane expanded unevenly during sLTP. Specifically, the PSD area showed a transient increase at 2–3 min after sLTP induction. The PSD growth was to a degree less than spine volume growth at 2–3 min and 20 min after sLTP induction but became similar at 120 min. On the other hand, the nsASI area showed a profound and lasting expansion, to a degree similar to spine volume growth throughout the process. These rapid ultrastructural changes in PSD and surrounding membrane may contribute to rapid electrophysiological plasticity during sLTP.SIGNIFICANCE STATEMENT To understand the ultrastructural changes during synaptic plasticity, it is desired to efficiently image single dendritic spines that underwent structural plasticity in electron microscopy. We induced structural long-term potentiation (sLTP) in single dendritic spines by two-photon glutamate uncaging. We then identified the same spines at different phases of sLTP and performed ultrastructural analysis by using an efficient correlative light and electron microscopy method. We found that postsynaptic density undergoes dramatic modification in its structural complexity immediately after sLTP induction. Meanwhile, the nonsynaptic axon–spine interface area shows a rapid and sustained increase throughout sLTP. Our results indicate that the uneven modification of synaptic and nonsynaptic postsynaptic membrane might contribute to rapid electrophysiological plasticity during sLTP.  相似文献   

16.
Dendritic spines are morphing structures believed to provide a cellular substrate for synaptic plasticity. It has been suggested that the actin cytoskeleton is the target of molecular mechanisms regulating spine morphology. Here we hypothesized that acidic calponin, an actin-binding protein, is one of the key regulators of actin filaments during spine plasticity. Our data showed that the overexpression of acidic calponin-GFP (green fluorescent protein) in primary cultures of rat hippocampal neurons causes an elongation of spines and an increase of their density as compared with those of GFP-expressing neurons. These effects required the actin-binding domains of acidic calponin. The close apposition of the presynatic marker synaptophysin to these long spines and the presence of specific postsynaptic markers actin, PSD-95, NR1, and GluR1 suggested the existence of functional excitatory synaptic contacts. Indeed, electrophysiological data showed that the postsynaptic overexpression of acidic calponin enhanced the frequency of miniature excitatory postsynaptic currents as compared with that of GFP-expressing neurons, but did not affect their properties such as amplitude, rise time, and half width. Studies in heterologous cells revealed that acidic calponin reorganized the actin filaments and stabilized them. Taken together, these findings show that acidic calponin regulates dendritic spine morphology and density, likely via regulation of the actin cytoskeleton reorganization and dynamic. Furthermore, the acidic calponin-induced spines are able to establish functional glutamatergic synapses. Such data suggest that acidic calponin is a key factor in the regulation of spine plasticity and synaptic activity.  相似文献   

17.
N-methyl-D-aspartate receptor (NMDAR) ontogeny and subunit expression are altered during developmental lead (Pb2+) exposure. However, it is unknown whether these changes occur at the synaptic or cellular level. Synaptic and extra-synaptic NMDARs have distinct cellular roles, thus, the effects of Pb2+ on NMDAR synaptic targeting may affect neuronal function. In this communication, we show that Pb2+ exposure during synaptogenesis in hippocampal neurons altered synaptic NMDAR composition, resulting in a decrease in NR2A-containing NMDARs at established synapses. Conversely, we observed increased targeting of the obligatory NR1 subunit of the NMDAR to the postsynaptic density (PSD) based on the increased colocalization with the postsynaptic protein PSD-95. This finding together with increased binding of the NR2B-subunit specific ligand [3H]-ifenprodil, suggests increased targeting of NR2B-NMDARs to dendritic spines as a result of Pb2+ exposure. During brain development, there is a shift of NR2B- to NR2A-containing NMDARs. Our findings suggest that Pb2+ exposure impairs or delays this developmental switch at the level of the synapse. Finally, we show that alter expression of NMDAR complexes in the dendritic spine is most likely due to NMDAR inhibition, as exposure to the NMDAR antagonist aminophosphonovaleric acid (APV) had similar effects as Pb2+ exposure. These data suggest that NMDAR inhibition by Pb2+ during synaptogensis alters NMDAR synapse development, which may have lasting consequences on downstream signaling.  相似文献   

18.
In area CA1 of the mature hippocampus, synaptogenesis occurs within 30 minutes after the induction of long‐term potentiation (LTP); however, by 2 hours many small dendritic spines are lost, and those remaining have larger synapses. Little is known, however, about associated changes in presynaptic vesicles and axonal boutons. Axons in CA1 stratum radiatum were evaluated with 3D reconstructions from serial section electron microscopy at 30 minutes and 2 hours after induction of LTP by theta‐burst stimulation (TBS). The frequency of axonal boutons with a single postsynaptic partner was decreased by 33% at 2 hours, corresponding perfectly to the 33% loss specifically of small dendritic spines (head diameters <0.45 μm). Docked vesicles were reduced at 30 minutes and then returned to control levels by 2 hours following induction of LTP. By 2 hours there were fewer small synaptic vesicles overall in the presynaptic vesicle pool. Clathrin‐mediated endocytosis was used as a marker of local activity, and axonal boutons containing clathrin‐coated pits showed a more pronounced decrease in presynaptic vesicles at both 30 minutes and 2 hours after induction of LTP relative to control values. Putative transport packets, identified as a cluster of less than 10 axonal vesicles occurring between synaptic boutons, were stable at 30 minutes but markedly reduced by 2 hours after the induction of LTP. APV blocked these effects, suggesting that the loss of axonal boutons and presynaptic vesicles was dependent on N‐methyl‐D‐aspartic acid (NMDA) receptor activation during LTP. These findings show that specific presynaptic ultrastructural changes complement postsynaptic ultrastructural plasticity during LTP. J. Comp. Neurol. 521:3898–3912, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
In adult brain the majority of AMPA glutamate receptor (GluR) subunits contain GluR2. In knock-out (KO) mice the absence of GluR2 results in consequences for synaptic plasticity including cognitive impairments. Here the morphology of dendritic spines and their synaptic contacts was analysed via three-dimensional reconstruction of serial electron micrographs from dentate gyrus (DG) of adult wild type (WT) and GluR2 KO mice. Pre-embedding immunocytochemical staining was used to examine the distribution and subcellular localization of AMPA receptor GluR1 and N -methyl- d -aspartate receptor NR1 subunits. There were no significant changes in synapse density in the DG of GluR2 KO compared with WT mice. However, in GluR2 KO mice there was a significant decrease in the percentage of synapses on mushroom spines but an increase in synapses on thin spines. There was also a large decrease in the proportion of synapses with complex perforated/segmented post-synaptic densities (PSDs) (25 vs. 78% in WT) but an increase in synapses with macular PSDs (75 vs. 22%). These data were coupled in GluR2 KO mice with significant decreases in volume and surface area of mushroom spines and their PSDs. In both GluR2 KO and WT mice, NR1 and GluR1 receptors were present in dendrites and spines but there was a significant reduction in NR1 labelling of spine membranes and cytoplasm in GluR2 KO mice, and a small decrease in GluR1 immunolabelling in membranes and cytoplasm of spines in GluR2 KO compared with WT mice. Our data demonstrate that the absence of GluR2 has a significant effect on both DG synapse and spine cytoarchitecture and the expression of NR1 receptors.  相似文献   

20.
The posterodorsal medial amygdala (MePD) is responsive to androgens and participates in the integration of olfactory/vomeronasal stimuli for the display of sexual behavior in rats. Adult gonadectomy (GDX) affects the MePD structural integrity at the same time that impairs male mating behavior. At the cellular level, dendritic spines modulate excitatory synaptic transmission, strength, and plasticity. Here, we describe the effect of GDX on the number and shape of dendritic spines in the right and left MePD using confocal microscopy and 3D image reconstruction. Age‐matched adult rats were intact (n = 6), submitted to a sham procedure (n = 4) or castrated and studied 90 days after GDX (n = 5). The MePD neurons have a density of 1.1 spines/dendritic μm composed of thin, mushroom‐like, stubby/wide, and few ramified or atypical spines. Irrespective of brain hemisphere, GDX decreased the dendritic spine density in the MePD, but induced different effects on each spine type. That is, compared to control groups, GDX reduced (i) the number (up to 50%) of thin, mushroom‐like, and ramified spines, and (ii) the size and the neck length of thin spines as well as the head diameter of ramified spines. Besides, GDX increased the number of stubby/wide and atypical spines (up to 140% and 400%, respectively). These data show that GDX promotes a cellular and synaptic reorganization in a spine‐specific manner in the MePD. By altering the number and shape of these connectional elements, GDX can affect the neural transmission and hinder the function of integrated brain circuitries in the male brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号