首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Th17 cells are a heterogeneous population of pro‐inflammatory T cells that have been shown to mediate immune responses against intestinal bacteria. Th17 cells are highly plastic and can transdifferentiate to Th1/17 cells or unconventional Th1 cells, which are highly pathogenic in animal models of immune‐mediated diseases such as inflammatory bowel diseases. A recent European Journal of Immunology article by Liu et al. (Eur. J. Immunol. 2015. 45:1010–1018) showed, surprisingly, that Th1 cells have a similar plasticity, and could transdifferentiate to Th17 cells. Thus, IFN‐γ‐producing Th1 effector cells specific for an intestinal microbial antigen were shown to acquire IL‐17‐producing capacities in the gut in a mouse model of colitis, and in response to TGF‐β and IL‐6 in vitro. TGF‐β induced Runx1, and together with IL‐6 was shown to render the ROR‐γt and IL‐17 promoters in Th1 cells accessible for Runx1 binding. In this commentary, we discuss how this unexpected plasticity of Th1 cells challenges our view on the generation of Th1/17 cells with the capacity to co‐produce IL‐17 and IFN‐γ, and consider possible implications of this Th1‐to‐Th17‐cell conversion for therapies of inflammatory bowel diseases and protective immune responses against intracellular pathogens.  相似文献   

3.
4.
Branching morphogenesis of the mouse submandibular gland (SMG) is dependent on cell‐cell conversations between and within epithelium and mesenchyme. Such conversations are typically mediated in other branching organs (lung, mammary glands, etc.) by hormones, growth factors, cytokines, and the like in such a way as to translate endocrine, autocrine, and paracrine signals into specific gene responses regulating cell division, apoptosis, and histodifferentiation. We report here the protein expression in embryonic SMGs of four signal transduction pathways: TGF‐α/EGF/EGF‐R; IGF‐II/IGF‐IR/IGF‐IIR; TGF‐βs and cognate receptors; TNF, IL‐6, and cognate receptors. Their in vivo spatiotemporal expression is correlated with specific stages of progressive SMG development and particular patterns of cell proliferation, apoptosis, and mucin expression. Functional necessity regarding several of these pathways was assessed in mice with relevant null mutations (TGF‐β2, TGF‐β3, EGF‐R). Among many observations, the following seem of particular importance: (1) TGF‐α and EGF‐R, but not EGF, are found in the Initial and Pseudoglandular Stages of SMG development; (2) ductal and presumptive acini lumena formation was associated with apoptosis and TNF/TNF‐R1 signalling; (3) TGF‐β2 and TGF‐β3 null mice have normal SMG phenotypes, suggesting the presence of other pathways of mitostasis; (4) EGF‐R null mice displayed an abnormal SMG phenotype consisting of decreased branching. These and other findings provide insight into the design of future functional studies. Anat Rec 256:252–268, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
6.
7.
We have previously demonstrated that exosomes from dendritic cells (DCs) secreting TGF‐β1 (sTGF‐β1‐EXOs) delay the development of murine inflammatory bowel disease (IBD). In this study, we isolated exosomes from DCs expressing membrane‐associated TGF‐β1 (mTGF‐β1‐EXOs) and found mTGF‐β1‐EXOs had more potent immunosuppressive activity than sTGF‐β1‐EXOs in vitro. Treatment of mice with mTGF‐β1‐EXOs inhibited the development and progression of myelin oligodendrocyte glycoprotein (MOG) peptide‐induced EAE even after disease onset. Treatment of mice with mTGF‐β1‐EXOs also impaired Ag‐specific Th1 and IL‐17 responses, but promoted IL‐10 responses ex vivo. Treatment with mTGF‐β1‐EXOs decreased the frequency of Th17 cells in EAE mice, which might be associated with the down‐regulation of the p38, ERK, Stat3, and NF‐κB activation and IL‐6 expression in DCs. Treatment with mTGF‐β1‐EXOs maintained the regulatory capacity of Treg cells, and adoptive transfer of CD4+Foxp3+ Treg cells from mTGF‐β1‐EXO‐treated EAE mice dramatically prevented the development of EAE in the recipients. Moreover, treatment with mTGF‐β1‐EXOs from C57BL/6 mice effectively prevented and inhibited proteolipid protein (PLP) peptide‐induced EAE in BALB/c mice. These results indicate that mTGF‐β1‐EXOs possess powerful immunosuppressive ability and can effectively inhibit the development and progression of EAE in different strains of mice.  相似文献   

8.
The responsiveness of DCs and their precursors to transforming growth factor beta1 (TGF‐β1) affects the nature of differentiating DC subsets, which are essential for the severity of atopic dermatitis (AD). To evaluate TGF‐β signaling in monocytes and monocyte‐derived DCs of AD patients compared with that of controls, in vitro generated Langerhans cell (LC) like DCs, expression of TGF‐β receptors, phospho‐Smad2/3 and Smad7 were evaluated. Furthermore, TNF‐α expression and synergistic effects of TNF‐α upon TGF‐β signaling and DC generation were evaluated. We found LC‐like DC differentiation of monocytes from AD patients in response to TGF‐β1 was remarkably reduced and TGF‐β1 receptor expression was significantly lower compared with that of healthy controls. Attenuated TGF‐β1 responsiveness mirrored by lower phospho‐Smad2/3 expression after TGF‐β1 stimulation and higher expression of inhibitory Smad7 was observed in monocytes from AD patients. During DC generation, mRNA expression of Smad7 was relatively higher in LC‐like DCs of AD patients. Lower TNF‐α expression of monocytes from AD patients might further contribute to attenuated TGF‐β signaling in the disease since TNF‐α had synergistic effects on TGF‐β1 signaling and LC generation through mediating the degradation of Smad7. Our results demonstrate alleviated TGF‐β1 signaling together with the amount of soluble co‐factors might direct the nature of differentiating DCs.  相似文献   

9.
10.
It has been shown that while commensal bacteria promote Th1, Th17 and Treg cells in lamina propria (LP) in steady‐state conditions, they suppress mucosal Th2 cells. However, it is still unclear whether there are specific commensal organisms down‐regulating Th2 responses, and the mechanism involved. Here we demonstrate that commensal A4 bacteria, a member of the Lachnospiraceae family, which produce an immunodominant microbiota CBir1 antigen, inhibits LP Th2‐cell development. When transferred into the intestines of RAG?/? mice, CBir1‐specific T cells developed predominately towards Th1 cells and Th17 cells, but to a lesser extent into Th2 cells. The addition of A4 bacterial lysates to CD4+ T‐cell cultures inhibited production of IL‐4. A4 bacteria stimulated dendritic cell production of TGF‐β, and blockade of TGF‐β abrogated A4 bacteria inhibition of Th2‐cell development in vitro and in vivo. Collectively, our data show that A4 bacteria inhibit Th2‐cell differentiation by inducing dendritic cell production of TGF‐β.  相似文献   

11.
Transforming Growth Factor β (TGF‐β) is crucial for valve development and homeostasis. The long form of Latent TGF‐β binding protein 1 (LTBP1L) covalently binds all TGF‐β isoforms and regulates their bioavailability. Ltbp1L expression analysis during valvulogenesis revealed two patterns of Ltbp1L production: an early one (E9.5–11.5) associated with endothelial‐to‐mesenchymal transformation (EMT); and a late one (E12.5 to birth) contemporaneous with valve remodeling. Similarly, histological analysis of Ltbp1L?/? developing valves identified two different pathologies: generation of hypoplastic endocardial cushions in early valvulogenesis, followed by development of hyperplastic valves in late valvulogenesis. Ltbp1L promotes valve EMT, as Ltbp1L absence yields hypoplastic endocardial cushions in vivo and attenuated EMT in vitro. Ltbp1L?/? valve hyperplasia in late valvuogenesis represents a consequence of prolonged EMT. We demonstrate that Ltbp1L is a major regulator of Tgf‐β activity during valvulogenesis since its absence results in a perturbed Tgf‐β pathway that causes all Ltbp1L?/? valvular defects. Developmental Dynamics, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
Regulatory B (Breg) cells have been shown to play a critical role in immune homeostasis and in autoimmunity models. We have recently demonstrated that combined anti‐T cell immunoglobulin domain and mucin domain‐1 and anti‐CD45RB antibody treatment results in tolerance to full MHC‐mismatched islet allografts in mice by generating Breg cells that are necessary for tolerance. Breg cells are antigen‐specific and are capable of transferring tolerance to untreated, transplanted animals. Here, we demonstrate that adoptively transferred Breg cells require the presence of regulatory T (Treg) cells to establish tolerance, and that adoptive transfer of Breg cells increases the number of Treg cells. Interaction with Breg cells in vivo induces significantly more Foxp3 expression in CD4+CD25? T cells than with naive B cells. We also show that Breg cells express the TGF‐β associated latency‐associated peptide and that Breg‐cell mediated graft prolongation post‐adoptive transfer is abrogated by neutralization of TGF‐β activity. Breg cells, like Treg cells, demonstrate preferential expression of both C‐C chemokine receptor 6 and CXCR3. Collectively, these findings suggest that in this model of antibody‐induced transplantation tolerance, Breg cells promote graft survival by promoting Treg‐cell development, possibly via TGF‐β production.  相似文献   

14.
15.
16.
The inhibitory receptor killer cell lectin‐like receptor G1 (KLRG1) and the integrin αE (CD103) are expressed by CD8+ T cells and both are specific for E‐cadherin. However, KLRG1 ligation by E‐cadherin inhibits effector T‐cell function, whereas binding of CD103 to E‐cadherin enhances cell–cell interaction and promotes target cell lysis. Here, we demonstrate that KLRG1 and CD103 expression in CD8+ T cells from untreated and virus‐infected mice are mutually exclusive. Inverse correlation of KLRG1 and CD103 expression was also found in human CD8+ T cells‐infiltrating hepatocellular carcinomas. As TGF‐β is known to induce CD103 expression in CD8+ T cells, we examined whether this cytokine also regulates KLRG1 expression. Indeed, our data further reveal that TGF‐β signaling in mouse as well as in human CD8+ T cells downregulates KLRG1 expression. This finding provides a rationale for the reciprocal expression of KLRG1 and CD103 in different CD8+ T‐cell subsets. In addition, it points to the limitation of KLRG1 as a marker for terminally differentiated CD8+ T cells if lymphocytes from tissues expressing high levels of TGF‐β are analyzed.  相似文献   

17.
18.
MicroRNAs (miRNAs) are involved in the tumourigenesis of various cancers by regulating their downstream targets. To identify the changes of miRNAs in oral squamous cell carcinoma (OSCC), we investigated the expression profiles of miRNAs in 40 pairs of OSCC specimens and their matched non‐tumour epithelial tissues. Our data revealed higher miR‐455‐5p expression in the tumour tissues than in the normal tissues; the expression was also higher in oral cancer cell lines than in normal keratinocyte cell lines. MiR‐455‐5p knockdown reduced both the anchorage‐independent growth and the proliferative ability of oral cancer cells, and these factors increased in miR‐455‐5p‐overexpressing cells. Furthermore, by analysing the array data of patients with cancer and cell lines, we identified ubiquitin‐conjugating enzyme E2B (UBE2B) as a target of miR‐455‐5p, and further validated this using 3′‐untranslated region luciferase reporter assays and western blot analysis. We also demonstrated that UBE2B suppression rescued the impaired growth ability of miR‐455‐5p‐knockdown cells. Furthermore, we observed that miR‐455‐5p expression was regulated, at least in part, by the transforming growth factor‐β (TGF‐β) pathway through the binding of SMAD3 to specific promoter regions. Notably, miR‐455‐5p expression was associated with the nodal status, stage, and overall survival in our patients, suggesting that miR‐455‐5p is a potential marker for predicting the prognosis of patients with oral cancer. In conclusion, we reveal that miR‐455‐5p expression is regulated by the TGF‐β‐dependent pathway, which subsequently leads to UBE2B down‐regulation and contributes to oral cancer tumourigenesis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号