首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The responses to the synthetic antigens, L-glutamic acid(60)-L- alanine(30)-L-tyrosine(10) (GAT) and L-glutamic acid(50)-L-tyrosine(50) (GT) are controlled by genes in the I region of the mouse H-2 complex (1-3). Preimmunization of the mice bearing the H-2(p,q,s) nonresponder haplotypes with GAT stimulates the development of suppressor T cells that inhibit in vivo or in vitro antibody responses to GAT complexed to the immunogenic carrier, methylated bovine serum albumin (GAT-MBSA) (4). The copolymer GT is not immunogenic in any inbred mouse strain tested, and has a suppressive effect on the antibody responses to GT-MBSA in mouse strains bearing the H-2(d,f,k,s) haplotypes; suppressor T cells have been demonstrated to be responsible for specific GT suppression (3). We have obtained specific suppressive extracts from thymus and spleen cells of GAT-or GT-primed suppressor strains (5,6). The specific suppressive T-cell factors in the active extracts have been characterized (6,7) and appear similar to the carrier-specific suppressor factor described by Tada and Taniguchi (8). These products belong to a family of newly identified molecules coded for by the I region of the H-2 complex with affinity for antigen and helper (9,10) or suppressive (5-8) regulatory activity on the immune response. Recently, Tada et al. have reported that the keyhole limpet hemocyanin (KLH)-specific suppressor factor is coded for by the I-J subregion of the H-2 complex (11). We now demonstrate also that a GT-specific suppressor factor extracted from the spleens and thymuses of B10.BR (H-2(k)) mice bears determinants controlled by the I-J subregion of the H-2 complex.  相似文献   

2.
Earlier studies from our laboratory demonstrated that the terpolymer of L-glutamic acid, L-alanine, and L-tyrpsine (GAT) stimulated the development of T cells capable of specifically suppressing the antibody responses in vivo and in vitro of nonresponder strains (bearing the H-2(s), H-2(q), and H-2(p) haplotypes) to GAT complexed with an immunogenic carrier, methylated bovine serum albumin, MBSA (1,2). We then extended these findings to another antigen, the copolymer of L-glutamic acid and L-tyrosine (GT). None of 19 inbred or congenic resistant mouse strains developed antibody responses to GT after immunization with this synthetic polypeptide in adjuvants. All the strains investigated, however, developed IgG plaque-forming cells (PFC) primary responses to GT complexed with MBSA (3). This permitted us to determine that: (a) preimmunization with GT suppressed the response to GT-MBSA in certain but not in all strains; (b) the suppression could be transferred by thymocytes and spleen cells from GT-primed animals; (c) the development of GT-specific suppressor cells is under dominant control of H-2- linked gene(s) which have been designated specific immune suppressor genes (Is genes); (d) the Is genes are antigen specific since GAT-MBSA responses are suppressed by GAT in strains carrying the H-2(q) haplotype, while GT-MBSA responses are not suppressed by the related polymer GT in these same strains (3,4). The experiments reported in this study map the Is genes responsible for GT-specific suppression within the H-2 complex. The data indicate that the K and D loci are not concerned with GT-specific suppression, and that this phenomenon is controlled by complementing or interacting genes which map on either side of cross-over events between the IB and IC subregions.  相似文献   

3.
The cellular requirements for the development of primary IgG GAT-specific PFC responses in cultures of spleen cells from responder, C57Bl/6, mice stimulated with GAT and GAT-MBSA and in cultures of spleen cells from nonresponder, SJL and B10.S, mice stimulated with GAT-MBSA were investigated. Macrophages were required for development of responses to GAT and GAT-MBSA in cultures of spleen cells from responder mice and for responses to GAT-MBSA in cultures of spleen cells from nonresponder mice. Macrophages from nonresponder mice supported the development of responses to GAT by nonadherent responder spleen cells, indicating that the failure of nonresponder mice to respond to GAT is not due to a macrophage defect. Furthermore, responder macrophages supported the responses of nonadherent, nonresponder spleen cells to SRBC and GAT-MBSA, but not to GAT. This indicates that the capacity to respond to GAT is a function of the nonadherent population which is composed of thymus-derived (T) helper cells and precursors of antibody-producing cells. Treatment of spleen cells with anti-theta serum and complement before culture initiation abolished PFC responses to GAT and GAT-MBSA thus establishing the requirement for T cells in the development of PFC responses to these antigens. Since precursors of antibody-producing cells in nonresponder mice are capable of synthesizing antibody specific for GAT after stimulation with GAT-MBSA and since the response to GAT is thymus-dependent, it appears that nonresponder mice lack GAT-specific helper T cell function.  相似文献   

4.
The ability of spleen cells from (responder X nonresponder)F(1) mice immunized with various GAT-M, GAT-MBSA, and soluble GAT to develop IgG GAT-specific PFC responses in vitro after stimulation with responder and nonresponder parental and F(1) GAT-M, was investigated. F(1) spleen cells from mice immunized with F(1) GAT-M or GAT-MBSA developed secondary responses to responder and nonresponder parental and F(1) GAT- M, but not to unrelated third party GAT-M. Spleen cells from F(1) mice immunized with either parental GAT-M developed secondary responses to F(1) GAT-M and only the parental GAT-M used for immunization in vivo. Soluble GAT-primed F(1) spleen cells responded to F(1) and responder parental, but not nonresponder parental, GAT-M. Simultaneous immunization in vivo with the various GAT-M or GAT-MBSA plus soluble GAT modulated the response pattern of these F(1) spleen cells such that they developed secondary responses only to F(1) and parental responder GAT-M regardless of the response pattern observed after immunization with the various GAT-M or GAT-MBSA alone. These observations demonstrate the critical importance of the physical state of the GAT used for immunization in determining the subsequent response pattern of immune F(1) spleen cells to the parental and F(1) GAT-M. Further, suppressor T cells, capable of inhibiting primary responses to GAT by virgin F(1) spleen cells stimulated by nonresponder parental GAT-M, were demonstrated in spleens of F(1) mice immunized with soluble GAT, but not those primed with F(1) GAT-M. Because responder parental mice develop both helper and suppressor T cells after immunization with GAT-M, and soluble GAT preferentially stimulates suppressor T cells whereas GAT-M stimulate helper T cells in nonresponder parental mice, these observations suggest that distinct subsets of T cells exist in F(1) mice which behave phenotypically as responder and nonresponder parental T cells after immunization with soluble GAT and GAT- M.  相似文献   

5.
The development of inbred strains of mutant mice has proven useful in ascribing specific gene functions to particular genetic loci within the regions and subregions of the H-2 complex. The B6.C-H-2bm12 (bm12) strain is of particular interest in that, compared to parental C57Bl/6Kh (B6) mice, it bears a presumptive single gene mutation altering the Ab beta chain encoded by the I-A subregion. Our data show that bm12 mice have gained the ability to respond to poly(Glu50Tyr50)(GT) and have lost the ability to make plaque-forming cell or delayed-type hypersensitivity responses to the closely related copolymer, poly(Glu60Ala30Tyr10)(GAT), although retaining the ability to mount a GAT-specific T cell proliferative response. This is in sharp contrast to the parental B6 strain, which is a GT nonresponder and a GAT responder. Thus, this study is the first to report the establishment of responder status as a consequence of mutation. Possible mechanisms accounting for the gain/loss of GT/GAT responsiveness in the context of a two-step helper T cell model are discussed.  相似文献   

6.
The in vivo effects of intravenous administration of alloantisera directed to I-J subregion coded determinants were investigated. In confirmation and extension of our previous results, anti-I-Jk [B10.A(3R) anti-B10.A(5R)] and anti-I-Js ([B10.A(3R) X B10.S(9R)]F1 anti-B10.HTT) antisera, when administered in 1 to 10 microliter amounts at the time of immunization, led to twofold increases in the IgM and IgG plaque-forming cells (PFC) responses to suboptimal doses of sheep erythrocytes in A/J (I-Jk) and SJL (I-Js) mice, respectively. To assess whether this immunopotentiation was due to a decrease in specific suppression, experiments were carried out using the polypeptide antigens random linear terpolymer of L-glutamic acid60, L-alanine30, and L-tyrosine10 (GAT) and random linear copolymer of L-glutamic acid50-L-tyrosine50 (GT), since administration of GAT to the nonresponder strain SJL, or GT to the nonresponder strain CBA fails to induce a primary PFC response and stimulates specific suppressor T cells able to prevent PFC responses to subsequent challenge with the immunogens GAT-methylated bovine serum albumin (MBSA) or GT-MBSA, respectively. The current study demonstrates that CBA (I-Jk) mice given 100 microgram GT in Maalox-pertussis adjuvant on day 0, and 10 microliter anti-I-Jk antiserum i.v. on days 0, 1, and 2, develop a significant primary specific PFC response on day 7. A similar responsiveness to 10 microgram GAT is found in SJL mice treated with 10 microliter anti-I-Js antiserum for 3 days. This same active anti-I-Js antiserum does not permit CBA mice to respond to GT, demonstrating the specificity of the anti-I-J effect. These data suggest that anti-I-J antiserum treatment at the time of antigen administration reduces suppressor responses to GAT or GT, permitting primary PFC responses. To directly demonstrate such an effect on suppressor activity, SJL or CBA mice treated, respectively, with GAT or GT to induce suppressor cells active on GAT-MBSA or GT-MBSA responses after adoptive transfer to normal syngeneic recipients were also given anti-I-J antisera (10 microliter/day) for 3 days, at which time their spleen cells were tested for suppressive activity upon transfer. Cells from such treated mice failed to show detectable suppressive activity upon transfer to syngeneic recipients challenged with GAT-MBSA or GT-MBSA, confirming the hypothesis of an in vivo effect of anti-I-J antiserum on suppressor activity.  相似文献   

7.
In recent studies we have found that GAT not only fails to elicit a GAT-specific response in nonresponder mice but also specifically decreases the ability of nonresponder mice to develop a GAT-specific PFC response to a subsequent challenge with GAT bound to the immunogenic carrier, MBSA. Studies presented in this paper demonstrate that B cells from nonresponder, DBA/1 mice rendered unresponsive by GAT in vivo can respond in vitro to GAT-MBSA if exogenous, carrier-primed T cells are added to the cultures. The unresponsiveness was shown to be the result of impaired carrier-specific helper T-cell function in the spleen cells of GAT-primed mice. Spleen cells from GAT-primed mice specifically suppressed the GAT-specific PFC response of spleen cells from normal DBA/1 mice incubated with GAT-MBSA. This suppression was prevented by pretreatment of GAT-primed spleen cells with anti-θ serum plus C or X irradiation. Identification of the suppressor cells as T cells was confirmed by the demonstration that suppressor cells were confined to the fraction of the column-purified lymphocytes which contained θ-positive cells and a few non-Ig-bearing cells. The significance of these data to our understanding of Ir-gene regulation of the immune response is discussed.  相似文献   

8.
Mice which are genetic nonresponders to the random terpolymer of L- glutamic acid60-L-alanine30-L-tyrosine10 (GAT) not only fail to develop GAT-specific antibody responses when stimulated with soluble GAT either in vivo or in vitro, but develop GAT-specific T cells which suppress the GAT-specific plaque-forming cell response of normal nonresponder mice stimulated with GAT complexed to methylated bovine serum albumin (MBSA).Thus, both responder and nonresponder mice have T cells which recognize GAT. However, nonresponder mice can develop GAT-specific helper T cells if immunized with GAT bound to MBSA or to macrophages. The relevance of Ir gene-controlled responses is discussed.  相似文献   

9.
Injection of mice with L-glutamic acid50-L-tyrosine50 (GT)- or L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT)-specific suppressor T-cell factor (GT-TsF or GAT-TsF) up to 5 wk before antigenic challenge challenge suppresses GT-methylated bovine serum albumin (MBSA) and GAT-MBSA plaque-forming cells responses. T suppressor cells are responsible for the suppression induced by the suppressive extract as demonstrated by adoptive transfer and sensitivity to anti-Thy-1 and complement treatment. We conclude that suppressive extract induces specific suppressor T cells. The material responsible for generation of suppressor T cells is a product of the I subregion of the H-2 complex. We have excluded that suppressive quantities of antigens are present in the extract. A/J mice, which can neither be suppressed by GT nor make GT-TsF can be suppressed by BALB/c GT-tsf. Spleen cells from BALB/c GT TsF-primed A/J mice can adoptively transfer suppression to normal syngeneic recipients. A/J mice appear to be genetically defective in cells involved in factor production. These results are discussed in the light of a two-step model for induction of antigen-specific suppressor cells.  相似文献   

10.
The synthetic terpolymer of L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) fails to stimulate development of GAT-specific antibody responses in nonresponder strains of mice, but does stimulate the development of GAT-specific suppressor T cells that inhibit the development of normal anti-GAT antibody responses to GAT complexed to methylated bovine serum albumin (GAT-MBSA). Furthermore, extracts prepared from lymphoid cells of GAT-primed, but not control, nonresponder mice inhibit the development of antibody responses to GAT-MBSA by normal nonresponder mice. This suppression is specific, dose-dependent, and can be readily analyzed in vitro. The suppressive factor is a T-cell product. An extract from GAT-primed DBA/1 mice inhibits the response to GAT-MBSA by spleen cells from histoincompatible strains of mice that are nonresponders to GAT, but not strains that are responders to GAT.  相似文献   

11.
In the present studies we have confirmed that the random copolymer of L- glutamic acid50-L-tyrosine50 (GT) fails to induce an antibody response in a large number of inbred strains of mice. Nevertheless, GT complexed to methylated bovine serum albumin (MBSA) elicits a GT-specific IgG PFC response in vivo. Furthermore, injection of BALB/c mice with 10 to 100 mug of GT specifically decreases their ability to develop anti-GT PFC responses to a subsequent challenge with GT-MBSA. GT-specific tolerance can be transferred to normal, syngeneic recipients by spleen cells or thymocytes of GT-primed animals. These results indicate that the stimulation of suppressor cells can be observed in nonresponder mice with another synthetic polypeptide besides GAT. Various parameters of GT-specific immunosuppression in BALB/c mice are described. The application of these techniques to the study of the genetic factors controlling the stimulation of specific immune suppression is discussed.  相似文献   

12.
The synthetic terpolymer of L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) fails to stimulate development of GAT-specific antibody responses in nonresponder mice but stimulates development of GAT-specific suppressor T cells that inhibit the development of normal anti-GAT plaque-forming cell responses to GAT complexed to methylated bovine serum albumin (MBSA). Extracts from lymphoid cells of GAT-primed but not control, nonresponder (DBA/1) mice contain a T-cell factor (GAT- TsF) that also specifically suppresses responses to GAT-MBSA by normal syngeneic spleen cells. The experiments reported in this communication demonstrate that: (a) extracts from all GAT-primed nonresponder mice tested contain GAT-TsF; (b) non-H-2 genes do not restrict the production of GAT-TsF; (c) all nonresponder strains of mice regardless of their non-H-2 genes are suppressed by GAT-TsF from all other strains bearing the nonresponder H-2p,q,s haplotypes; (d) suppression of GAT- MBSA responses by both syngeneic and allogeneic nonresponder spleen cells is mediated by a molecule encoded by the H-2 gene complex; and (e) both syngeneic and allogeneic nonresponder mice are suppressed by purified GAT-TsF that lacks immunoreactive GAT.  相似文献   

13.
Virgin spleen cells develop comparable primary antibody responses in vitro to syngeneic or allogeneic macrophages (Mphi) bearing the terpolymer L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT), whereas immune spleen cells primed with syngeneic or allogeneic GAT-Mphi develop secondary responses preferentially when stimulated with GAT-Mphi syngeneic to the GAT-Mphi used for priming in vivo. These restrictions are mediated by products of the I-A subregion of the H-2 complex and are operative at the level of the GAT-Mphi-immune helper T-cell interactions. To investigate why these immune spleen cells fail to develop a significant antibody response to GAT-Mphi other than those used for in vivo immunization and determine the mechanism by which the restriction is maintained, spleen cells from virgin and syngeneic or allogeneic GAT-Mphi-primed mice were co-cultured in the presence of GAT-Mphi of various haplotypes. Antibody responses to GAT developed only in the presence of GAT-Mphi syngeneic to the Mphi used for in vivo priming; responses in cultures with GAT-Mphi allogeneic to the priming Mphi, whether these Mphi were syngeneic or allogeneic with respect to the responding spleen cells, were suppressed. The suppression was mediated by GAT-specific radiosensitive T cells. Thus, development of GAT-specific suppressor T cells appears to be a natural consequence of the immune response to GAT in responder as well as nonresponder mice. The implications of stimulation of genetically restricted immune helper T cells, and antigen-specific, but unrestricted, suppressor T cells after immunization with GAT-Mphi in vivo are discussed in the context of regulatory mechanisms in antibody responses.  相似文献   

14.
T-cell derived suppressor factors (TsF) specific for the random copolymers L-glutamic acid60-L-alanine30-Ltyrosine10 and L-glutamic acid60-L-alanine40, referred to as GAT and GA, respectively, were prepared and partially purified on the approprate antigen immunoadsorbents. GAT-TsF obtained from nonresponder DBA/1 (H-2q) and SJL (H-2s) mice were passed over immunoadsorbents prepared from normal guinea pig serum (NGPS) or guinea pig anti-idiotype antiserum (anti-CGAT) specific for a common cross-reactive idiotype found on most anti-GAT antibodies in all mouse strains tested. Both the directly suppressive activity of the GAT-TsF and the ability of GAT-TsF to induce new suppressor T cells (Ts2) in vitro were adsorbed to and fully recoverable from the guinea pig anti-CGAT-Sepharose immunoadsorbent, while the TsF passed through the control NGPS-Sepharose without appreciable binding. The SJL GAT-TsF specifically eluted from anti-CGAT-immunoadsrobents was shown to still posses I-J determinants. These data provide evidence suggesting a sharing of V region structures between B-cell antibody and T-cell suppressor factor specific for an antigen (GAT) under Ir gene control, in agreement with earlier studies on T and B-cell alloreceptors, T-cell helper factors, and T and B-cell receptors for conventional antigens.  相似文献   

15.
An experimental condition was established in vivo for selectively eliminating hapten-reactive suppressor T-cell activity generated in mice primed with a para-azobenzoate (PAB)-mouse gamma globulin (MGG)-conjugate and treated with PAB-nonimmunogenic copolymer of D-amino acids (D- glutamic acid and D-lysine; D-GL). The elimination of suppressor T-cell activity with PAB-D-GL treatment from the mixed populations of hapten- reactive suppressor and helper T cells substantially increased apparent helper T-cell activity. Moreover, the inhibition of PAB-reactive suppressor T-cell generation by the pretreatment with PAB-D-GL before the PAB-MGG-priming increased the development of PAB-reactive helper T-cell activity. The analysis of hapten-specificity of helper T cells revealed that the reactivity of helper cells developed in the absence of suppressor T cells was more specific for primed PAB-determinants and their cross-reactivities to structurally related determinants such as meta-azobenzoate (MAB) significantly decreased, as compared with the helper T-cell population developed in the presence of suppressor T lymphocytes. In addition, those helper T cells generated in the absence of suppressor T cells were highly susceptible to tolerogenesis by PAB-D- GL. Similarly, the elimination of suppressor T lymphocytes also enhanced helper T-cell activity in a polyclonal fashion in the T-T cell interactions between benzylpenicilloyl (BPO)-reactive T cells and PAB- reactive T cells after immunization of mice with BPO-MGG-PAB. Thus inhibition of BPO-reactive suppressor T-cell development by the BPO-v-GL- pretreatment resulted in augmented generation of PAB-reactive helper T cells with higher susceptibility of tolerogenesis to PAB-D-GL. Thus, these results support the notion that suppressor T cells eventually suppress helper T-cell activity and indicate that the function of suppressor T cells related to helper T-cell development is to inhibit the increase in the specificity and apparent affinity of helper T cells in the primary immune response. The hapten-reactive suppressor and helper T lymphocytes are considered as a model system of T cells that regulate the immune response, and the potential applicability of this system to manipulating various T cell-mediated immune responses is discussed in this context.  相似文献   

16.
Responder and nonresponder mice primed with poly-(L-glutamic acid,L- lysine,L-phenylalanine) (GLPhe), the response to which is under the control of immune response (Ir) genes, were used as a source of both types of helper T cells required for a T15 idiotype dominated T- dependent anti-phosphorylcholine (PC) response. It was found that the activity of one of the helper T cells needed for an anti-PC response was under major histocompatibility complex (MHC)-linked Ir gene control, and only GLPhe-primed responder mice could be used as a source of these cells. These T cells (ThMHC) whose presence is required for in vivo T-B collaboration are found in normal and anti-mu-treated mice, and their activity depends on the hapten being physically linked to the carrier molecule. By contrast, the activity of the second helper T cell (ThId) required for a T15-dominated anti-PC response was present in both GLPhe-primed responder and nonresponder mice. The ThId cell set that is missing or deficient in anti-mu treated mice can be restored by the addition of T cells from normal, carrier-primed donors and restimulating with the priming carrier. When T cells from GLPhe-primed donors are used as a source of ThId cells, both responder and nonresponder donors provide helper cells capable of inducing syngeneic B cells to produce a T15 dominated anti-Pc response. These results are interpreted to suggest that idiotype recognizing helper T cells (ThId) recognize antigen independent of known Ir gene products.  相似文献   

17.
Responses to the synthetic terpolymer L-glutamic acid, L-lysine, L-tyrosine (GLT) in the mouse are controlled by H-2-1inked Ir-GLTgenes. (Responder × nonresponder) F(1) hybrid mice, themselves phenotypic responders, can be primed with GLT to develop specific helper cells capable of interacting with 2,4-dinitrophenyl hapten (DNP)-primed F(1) B cells in response to DNP-GLT. Unlike the indiscriminant ability of F(1) helper T cells for conventional antigens (i.e. not Ir gene-controlled), which can help B cells of either parental type (as well as F(1)) equally well, GLT-primed F(1) T cells can only provide help under normal circumstances for B lymphocytes of responder parent origin; they are unable to communicate effectively with nonresponder parental B cells (1, and the present studies). The present studies reveal, however, that the induction of a parental cell-induced allogeneic effect during priming of F(1) mice to GLT actually dictates the direction of cooperating preference that will be displayed by such F(1) helper cells for B cells of one parental type or the other. Thus, F(1) T cells, primed to GLT under the influence of an allogeneic effect induced by parental BALB/c cells, develop into effective helpers for nonresponder A/J B cells, but fail to develop effective helpers for responder BALB/c B cells, and vice-versa. In contrast, F(1) T cells, primed to GLT under the influence of an allogeneic effect induced by either parental type, display significantly enhanced levels of helper activity for B cells derived from F(1) donors. These results are interpreted to reflect the existence of two interdependent events provoked by the allogeneic effect: one event augments the differentiation of GLT-specific helper T cells belonging to the subset corresponding to the opposite parental type; this would explain the development of increased helper activity provided to partner B cells of opposite parental type (as well as of F(1) origin). The second event, we postulate, involves the production of responses against the receptors which normally self-recognize native cell interaction determinants; this form of anti-idiotype response is restricted against self- recognizing receptors of the same parental type used for induction of the allogeneic effect, hence explaining diminished helper activity of such F(1) cells for partner B lymphocytes of corresponding parental type.  相似文献   

18.
Primary responses to the linear polymers of L-glutamic acid, L-tyrosine, and L-alanine are restricted to the IgG class of antibodies. The appearance of specific IgM antibodies against these antigens is dependent upon secondary immunization, in contrast to many classical antigenic systems. The presence of an IgM response was verified by a direct plaque-forming cell assay, the inhibition of direct plaques by an antiserum specific for mouse micron-chain, and the physical separation of IgM and IgG GAT-specific antibodies by gel filtration. Preimmunization of the appropriate nonresponder strain with GAT or GT inhibits both the secondary IgM and IgG responses to GAT-MBSA and GT-MBSA, respectively. The tolerance observed is due to the induction of suppressor cells as demonstrated by cell transfer experiments.  相似文献   

19.
We investigated the antigenic requirements for restimulation of H-2- restricted cytolytic T lymphocytes (CTL) in vitro to determine whether H-2 I region-restricted helper T cells are required in these responses. In one set of experiments, we studied the in vitro response of (responder x nonresponder)F(1) female T cells to the male antigen H-Y. We chose to examine this response because it has been suggested that the defect in nonresponder strains is a failure of helper T cells to recognize H-Y in association with nonresponder I region determinants. However, we find that nonresponder male stimulator cells are as effective as F(1) male stimulator cells at inducing H-Y-specific CTL responses. This finding calls into question reports that secondary CTL responses to H-Y are dependent upon the activation of H-Y- specific helper T cells restricted to responder type I region determinants. In a second set of experiments, we examined the requirements for restimulation of H-2-restricted T cells specific for minor-histocompatibility antigens from long-term mixed lymphocyte cultures. These cultures were established by repeatedly restimulating cultures of specific T cells with H- 2-matched stimulator cells expressing foreign minor histocompatibility antigens. We found that H-2D-restricted T ceils, including CTL, could be restimulated with cells that were matched with the responding cells at only the D region genes. This response did not appear to result from positive allogeneic effects or from antigen processing and “representation” by responder type APC that might contaminate the cultures. Thus, we find no evidence for a requirement for I region-restricted helper T cells in these CTL responses. However, helper T cells are required because we find that CTL lines derived by limit-dilution cloning from these long-term MLC are absolutely dependent upon exogenous helper factors for growth. The most simple interpretation of these results is that the helper cells are restricted to H-2 antigens other than I region antigens or to antigens that code outside of the H-2 complex. Finally, we show that factor-dependent CTL lines must recognize their specific antigen to proliferate, even in the presence of exogenous factors. The requirement of activated CTL for antigen to proliferate provides an explanation for how specific CTL can be selectively enriched in MLC by specific antigen stimulation. Furthermore, it is at variance with reports that memory CTL or activated CTL require only interleukin 2 for restimulation.  相似文献   

20.
A combination of in vitro and in vivo techniques were used to explore the mode of action of both crude and purified suppressive extracts specific for the random copolymer L-giutamic acid(60)-L-alanine(30)-L-tyrosine(10) (GAT- T(s)F) obtained from nonresponder DBA/1 (H-2(q)) mice. Normal DBA/1 spleen cells were incubated under modified Mishell-Dutton culture conditions for 2 days together with crude or purified GAT-T(s)F, and in the presence or absence of free GAT. These cells were then washed extensively and 3 × 10(6) viable cells transferred to syngeneic recipients, which were challenged at the same time with the immunogenic form of GAT complexed to methylated bovine serum albumin (GAT-MBSA). GAT-specific IgG plaque-forming cells (PFC) in the spleen were assayed 7 days later. In agreement with earlier in vitro studies on the action of GAT-T(s)F, it was demonstrated that under these conditions, low concentrations of GAT-T(s)F stimulated the development of cells which, aider transfer, are able to suppress the GAT PFC response to GAT-MBSA. The cells responsible for this suppression were shown to be T lymphocytes by using nylon wool-purified T cells for suppressor cell induction and by eliminating suppressive activity in cells cultured with crude GAT-T(s)F by treatment with anti-Thy 1.2 plus C before transfer. The suppressor T cells act in a specific manner failing to suppress significantly either anti-sheep erythrocyte or trinitrophenyl-ovalbumin primary PFC responses. For the induction of GAT-specific suppressor T cells in culture, a moiety bearing H- 2(K(q) or I(q)) determinants and also GAT, either bound to the crude GAT- T(s)F or added in nanogram amounts to antigen (GAT)-free purified GAT-T(s)F, were both required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号