首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Over the last decade, routine neuromonitoring of ICP and CPP has been extended with new on-line techniques such as microdialysis, tissue oxygen (ptiO(2)), acid-base balance (ptiCO(2), pH) and CBF measurements, which so far have not lead to clear-cut therapy approaches in the neurointensive care unit. This is partially due to the complex pathophysiology following a wide-range of brain injuries, and the lack of suitable animal models allowing simultaneous, clinically relevant neuromonitoring under controlled conditions. Therefore, a controlled cortical impact (CCI) model in large animals (pig) has been developed. After placement of microdialysis, ptiO(2), temperature and ICP catheters, an unilateral CCI injury (2.6-2.8 m/sec velocity, 9 mm depth, 400 ms dwell time) was applied and neuromonitoring continued for 10 h. CCI caused a rapid drop in CPP, ptiO(2) and glucose, whereas ICP, glutamate and lactate increased significantly. Most parameters returned to baseline values within hours. Lactate stayed elevated significantly throughout the experiment, but the lactate-to-pyruvate ratio (LPR) changed only slightly, indicating no severely ischemic CBF. Contralateral parameters were not affected significantly. Evaluation of brain water content and histology (12 h post-CCI) showed ipsilateral brain swelling by 5% and massive cell damage underneath the injury site which correlated with changes of ICP, CPP, glutamate, lactate, and ptiO(2) within the first hours post-CCI. Moderate controlled cortical contusion in pigs induced a complex pattern of pathophysiological processes which led to 'early' histological damage. Thus, this new large animal model will enable us to investigate the effect of therapeutic interventions on multi-parametric neuromonitoring and histological outcome, and to translate the data into clinical practice.  相似文献   

2.
Abstract Hypotension after traumatic brain injury (TBI) worsens outcome. We published the first report of TBI plus hemorrhagic shock (HS) in mice using a volume-controlled approach and noted increased neuronal death. To rigorously control blood pressure during HS, a pressure-controlled HS model is required. Our hypothesis was that a brief, severe period of pressure-controlled HS after TBI in mice will exacerbate functional deficits and neuropathology versus TBI or HS alone. C57BL6 male mice were randomized into four groups (n=10/group): sham, HS, controlled cortical impact (CCI), and CCI+HS. We used a pressure-controlled shock phase (mean arterial pressure [MAP]=25-27?mm Hg for 35?min) and its treatment after mild to moderate CCI including, a 90?min pre-hospital phase, during which lactated Ringer's solution was given to maintain MAP >70?mm Hg, and a hospital phase, when the shed blood was re-infused. On days 14-20, the mice were evaluated in the Morris water maze (MWM, hidden platform paradigm). On day 21, the lesion and hemispheric volumes were quantified. Neuropathology and hippocampal neuron counts (hematoxylin and eosin [H&E], Fluoro-Jade B, and NeuN) were evaluated in the mice (n=60) at 24?h, 7 days, or 21 days (n=5/group/time point). HS reduced MAP during the shock phase in the HS and CCI+HS groups (p<0.05). Fluid requirements during the pre-hospital phase were greatest in the CCI+HS group (p<0.05), and were increased in HS versus sham and CCI animals (p<0.05). MWM latency was increased on days 14 and 15 after CCI+HS (p<0.05). Swim speed and visible platform latency were impaired in the CCI+HS group (p<0.05). CCI+HS animals had increased contusion volume versus the CCI group (p<0.05). Hemispheric volume loss was increased 33.3% in the CCI+HS versus CCI group (p<0.05). CA1 cell loss was seen in CCI+HS and CCI animals at 24?h and 7 days (p<0.05). CA3 cell loss was seen after CCI+HS (p<0.05 at 24?h and 7 days). CA1 cell loss at 21 days was seen only in CCI+HS animals (p<0.05). Brief, severe, pressure-controlled HS after CCI produces robust functional deficits and exacerbates neuropathology versus CCI or HS alone.  相似文献   

3.
The purpose of this study was to investigate the increased susceptibility of the brain, after a controlled mild cortical impact injury, to a secondary ischemic insult. The effects of the duration and the timing of the secondary insult after the initial cortical injury were studied. Rats anesthetized with isoflurane underwent a 3?m/sec, 2.5-mm deformation cortical impact injury followed by hypotension to 40?mm Hg induced by withdrawing blood from a femoral vein. The duration of hypotension was varied from 40 to 60?min. The timing of 60?min of hypotension was varied from immediately post-injury to 7 days after the injury. Outcome was assessed by behavioral tasks and histological examination at 2 weeks post-injury. A separate group of animals underwent measurement of the acute physiology including mean blood pressure (MAP), intracranial pressure (ICP), and cerebral blood flow (CBF) using a laser Doppler technique. Increasing durations of hypotension resulted in marked expansion of the contusion, from 6.5±1.8?mm3 with sham hypotension to 27.1±3.9?mm3 with 60 min of hypotension. This worsening of the contusion was found only when then hypotension occurred immediately after injury or at 1?h after injury. CA3 neuron loss followed a similar pattern, but the injury group differences were not significant. Motor tasks, including beam balance and beam walking, were significantly worse following 50 and 60?min of hypotension. Performance on the Morris water maze task was also significantly related to the injury group. Studies of the acute cerebral hemodynamics demonstrated that CBF was significantly more impaired during hypotension in the animals that underwent the mild TBI compared to those that underwent sham TBI. The perfusion deficit was worst at the impact site, but also significant in the pericontusional brain. With 50 and 60?min of hypotension, CBF did not recover following resuscitation at the impact site, and recovered only transiently in the pericontusional brain. These results demonstrate that mild TBI, like more severe levels of TBI, can impair the brain's ability to maintain CBF during a period of hypotension, and result in a worse outcome.  相似文献   

4.
Low-level laser light therapy (LLLT) exerts beneficial effects on motor and histopathological outcomes after experimental traumatic brain injury (TBI), and coherent near-infrared light has been reported to improve cognitive function in patients with chronic TBI. However, the effects of LLLT on cognitive recovery in experimental TBI are unknown. We hypothesized that LLLT administered after controlled cortical impact (CCI) would improve post-injury Morris water maze (MWM) performance. Low-level laser light (800?nm) was applied directly to the contused parenchyma or transcranially in mice beginning 60-80?min after CCI. Injured mice treated with 60?J/cm2 (500?mW/cm2×2?min) either transcranially or via an open craniotomy had modestly improved latency to the hidden platform (p<0.05 for group), and probe trial performance (p<0.01) compared to non-treated controls. The beneficial effects of LLLT in open craniotomy mice were associated with reduced microgliosis at 48?h (21.8±2.3 versus 39.2±4.2 IbA-1+ cells/200×field, p<0.05). Little or no effect of LLLT on post-injury cognitive function was observed using the other doses, a 4-h administration time point and 7-day administration of 60?J/cm2. No effect of LLLT (60?J/cm2 open craniotomy) was observed on post-injury motor function (days 1-7), brain edema (24?h), nitrosative stress (24?h), or lesion volume (14 days). Although further dose optimization and mechanism studies are needed, the data suggest that LLLT might be a therapeutic option to improve cognitive recovery and limit inflammation after TBI.  相似文献   

5.
Experimental studies suggest that nitric oxide produced by endothelial nitric oxide synthase (NOS3) plays a role in maintaining cerebral blood flow (CBF) after traumatic brain injury (TBI). The purpose of this study was to determine if common variants of the NOS3 gene contribute to hypoperfusion after severe TBI. Fifty-one patients with severe TBI were studied. Cerebral hemodynamics, including global CBF by the stable xenon computed tomography (CT) technique, internal carotid artery flow volume (ICA-FVol), and flow velocity in intracranial vessels, were measured within 12?h of injury, and at 48?h after injury. A blood sample was collected for DNA analysis, and genotyping of the following variants of the NOS3 gene was performed: -786T>C, 894G>T, and 27bp VNTR. Cerebral hemodynamics were most closely related to the-786T>C genotype. CBF averaged 57.7±3.0?mL/100?g/min with the normal T/T genotype, 47.0±2.5?mL/100?g/min with the T/C, and 37.3±8.8?mL/100?g/min with the C/C genotype (p=0.0146). Cerebrovascular resistance followed an inverse pattern with the highest values occurring with the C/C genotype (p=0.0027). The lowest ICA-FVol of 124±43?mL/min was found at 12?h post-injury in the more injured hemisphere of the patients with the C/C genotype (p=0.0085). The mortality rate was 20% in patients with the T/T genotype and 17% with the T/C genotype. In contrast, both of the patients with the C/C genotype were dead at 6 months post-injury (p=0.022). The findings in this study support the importance of NO produced by NOS3 activity in maintaining CBF after TBI, since lower CBF values were found in patients having the -786C allele. The study suggests that a patient's individual genetic makeup may contribute to the brain's response to injury and determine the patient's chances of surviving the injury. The results here will need to be studied in a larger number of patients, but could explain some of the variability in outcome that occurs following severe TBI.  相似文献   

6.
Cyclosporin A (CsA) has been shown to be neuroprotective in mature animal models of traumatic brain injury (TBI), but its effects on immature animal models of TBI are unknown. In mature animal models, CsA inhibits the opening of the mitochondrial permeability transition pore (MPTP), thereby maintaining mitochondrial homeostasis following injury by inhibiting calcium influx and preserving mitochondrial membrane potential. The aim of the present study was to evaluate CsA's ability to preserve mitochondrial bioenergetic function following TBI (as measured by mitochondrial respiration and cerebral microdialysis), in two immature models (focal and diffuse), and in two different species (rat and piglet). Three groups were studied: injured+CsA, injured+saline vehicle, and uninjured shams. In addition, we evaluated CsA's effects on cerebral hemodynamics as measured by a novel thermal diffusion probe. The results demonstrate that post-injury administration of CsA ameliorates mitochondrial dysfunction, preserves cerebral blood flow (CBF), and limits neuropathology in immature animals 24?h post-TBI. Mitochondria were isolated 24?h after controlled cortical impact (CCI) in rats and rapid non-impact rotational injury (RNR) in piglets, and CsA ameliorated cerebral bioenergetic crisis with preservation of the respiratory control ratio (RCR) to sham levels. Results were more dramatic in RNR piglets than in CCI rats. In piglets, CsA also preserved lactate pyruvate ratios (LPR), as measured by cerebral microdialysis and CBF at sham levels 24?h after injury, in contrast to the significant alterations seen in injured piglets compared to shams (p<0.01). The administration of CsA to piglets following RNR promoted a 42% decrease in injured brain volume (p<0.01). We conclude that CsA exhibits significant neuroprotective activity in immature models of focal and diffuse TBI, and has exciting translational potential as a therapeutic agent for neuroprotection in children.  相似文献   

7.
Progressive tissue loss and delayed cognitive deficits are seen in rats during the initial year after experimental traumatic brain injury (TBI). As much as 10% of parenchymal volume is lost even in the contralateral hemisphere by 1 year after controlled cortical impact (CCI) in rats. Progressive declines in cerebral blood flow (CBF) are also associated with advanced age and neurodegenerative diseases. Surprisingly, the long-term effects of TBI on CBF remain undefined. CBF was quantified by continuous arterial spin-labeled magnetic resonance imaging (MRI) and measurements of spin-lattice relaxation time in a slice through the plane of injury at 1 year after experimental TBI produced by CCI (n = 4) or sham surgery (n = 4) in rats. CBF was quantified in six regions of interest (ROIs) that were anatomically identified on the control images in each hemisphere and included a medial cortical segment (contusion-enriched, beneath the impact site, on the ipsilateral side) cortex, hippocampus, thalamus, amygdala/pyriform cortex, and hemisphere. At 1 year after injury, CBF was dramatically (96%) reduced in structures within the large cystic lesion that was seen in three of four rats and variably included cortex and hippocampus. Overall, there was an 80% reduction in CBF in the ipsilateral medial cortical segment comparing CCI and sham groups. Similarly, 52% and 67% reductions were seen in CBF in the cortical and hippocampal ROIs ipsilateral to impact (CCI vs. sham), respectively. These are regions both with marked CBF disturbances early after injury and that ultimately suffer considerable tissue loss over the 1-year interval. However, at 1 year after CCI, CBF was not different from sham in other ROIs, including ipsilateral thalamus, or either contralateral hippocampus or hemisphere. We conclude that, at 1 year after CCI, CBF is reduced in anatomic structures at or near the impact site, including injured cortex and hippocampus, and this translates into a reduction in hemispheric CBF. However, despite both significant occult tissue loss ipsilateral and contralateral to the injury and delayed cognitive deficits, widespread reductions in CBF are not observed. This suggests the possibility of remodeling or repackaging of the brain that preserves CBF outside of the cystic lesion.  相似文献   

8.
Activating presynaptic group II metabotropic glutamate (mGlu II) receptors reduces synaptic glutamate release. Attenuating glutamatergic transmission without blocking ionotropic glutamate receptors, thus avoiding unfavorable psychomimetic side effects, makes mGlu II receptor agonists a promising target in treating brain-injured patients. Neuroprotective effects of LY379268 were investigated in rats following controlled cortical impact injury (CCI). At 30 min after CCI, rats received a single intraperitoneal injection of LY379268 (10 mg/kg/body weight) or NaCl. Changes in EEG activity and pericontusional cortical perfusion were determined before trauma, at 4, 24, and 48 h, and 7 days after CCI. Brain edema and contusion volume were determined at 24 h and 7 days after CCI, respectively. Before brain removal pericontusional cortical glutamate, glucose, and lactate were measured via microdialysis. During the early period following CCI, EEG activity and cortical perfusion were significantly reduced in rats receiving LY379268. At 7 days, cortical perfusion was significantly increased in rats treated with LY379268, while EEG activity was depressed as in control rats. While brain edema remained unchanged at 24 h, cortical contusion was significantly decreased by 56% at 7 days after CCI. Cortical glutamate, glucose, and lactate were not influenced. Significant reductions in EEG activity and contusion volume by LY379268 do not appear mediated by attenuated excitotoxicity and energetic impairment. Overall, an additional decrease in cortical perfusion seems to interfere with the anti-edematous potential of LY379268 during the early period following CCI, while an increase in perfusion in LY379268-treated rats at 7 days might contribute to tissue protection.  相似文献   

9.
The number of patients who are on long-term anticoagulation therapy while experiencing traumatic brain injury (TBI) is rising. This experimental study evaluated whether warfarin pre-treatment increases brain hemorrhage and worsens functional outcome after TBI, and whether the rapid reversal of anticoagulation after TBI prevents warfarin-exacerbated brain damage. Normal CD-1 mice (C) and mice pre-treated with warfarin (W) to an International Normalized Ratio of 3.5±0.9 underwent TBI using a controlled cortical impact model. Mean hemorrhage volume 24?h after TBI was 1.2±0.4?μL in C mice and 10.9±6.9?μL in W mice (p=0.029, n=4 per group). In a second study, anticoagulated mice received either saline (W-S) or prothrombin complex concentrate (W-PCC, 100?U/kg) intravenously 60?min after TBI. Anticoagulation reversal using PCC (W-PCC mice) reduced hemorrhage volumes as compared to W-S animals (7.3±6.0 versus 19.8±14.0?μL, p=0.045, n=8 per group). In a third study, we examined motor deficits and lesion volume in C, W-S, and W-PCC mice until 33 days after injury. Functional outcome and lesion volume were no different between groups (n=10 per group). In conclusion, we characterized an experimental model of TBI occurring during warfarin anticoagulation. Anticoagulation led to higher intracerebral blood volumes, but did not significantly worsen functional outcome. The rapid reversal of anticoagulation may be effective in preventing excess bleeding.  相似文献   

10.
The aim of this study was to describe, in rats, brain energy metabolites changes after different levels of head trauma (T) complicated by hypoxia-hypotension (HH). Male Sprague Dawley rats (n = 7 per groups) were subjected to T by impact-acceleration with 450-g weight drop from 1.50 or 1.80 m (T 1.50 or T 1.80), or to a 15-min period of HH (controlled hemorrhage to mean arterial pressure [MAP] of 40 mm Hg, and mechanical ventilation with N(2) 90%/O(2) 10%), or to their association (T followed by HH). Invasive MAP, intraparenchymental intracranial pressure (ICP), and cerebral blood flow (CBF using Laser Doppler flowmetry) were recorded during the 5 post-traumatic hours. Cerebral microdialysis was used to measure each hour interstitial brain glucose, lactate, pyruvate, and glutamate. For the entire period, the levels of cerebral glucose, pyruvate, and glutamate were not statistically different between groups. In addition, there were no differences associated with the lactate-glucose ratio. Lactate was significantly higher overtime only in T 1.80 + HH group (p < 0.001 vs. every other groups). The lactate-pyruvate ratio increased with trauma level, and was significantly different vs. sham for the entire study period in T 1.50 + HH, in T 1.80, and in T 1.80 + HH. There was no correlation between CBF variations and the lactate-pyruvate ratio (r(2) = 0.00001). The cerebral perfusion pressure was greater than 70 mm Hg in all groups. The prolonged post-traumatic impairment in brain energy metabolism may be related to traumatic brain injury (TBI) severity. It became worse when T was complicated by HH, but was not related to changes in CBF.  相似文献   

11.
Therapeutic hypothermia (TH) is still being explored as a therapeutic option after traumatic brain injury (TBI) but clinical data has not supported its efficacy. Experimental approaches were promising, but clinical data did not support its efficacy in the treatment of TBI. A novel approach of pharyngeal selective brain cooling (pSBC), recently introduced by our group, has been accompanied by superior neurofunctional, sensorimotor, and cognitive outcomes. This work is now extended by data on histomorphological and physical outcomes after pSBC in a model of experimental TBI. Male Sprague-Dawley rats were subjected to lateral fluid-percussion (LFP) brain injury, and randomized to the following experimental groups: (1) TBI with pSBC, (2) TBI without pSBC, and (3) sham animals. On day post-injury (DPI) 14, the animals were sacrificed and their brains were harvested for immunohistochemistry using the following antibodies: (1) glial fibrillary acidic protein (GFAP), (2) neurofilament (NF), and (3) synaptophysin (SY). In pSBC animals brain temperature was selectively lowered to 33?±?0.5°C within 15?min post-injury, and maintained for 180?min after induction, while keeping rectal temperatures at physiological levels. Animals that had undergone pSBC showed a significantly faster recovery of body weight starting on DPI 3, and had gained substantially more weight than TBI-only animals on DPI 14 (p?相似文献   

12.
OBJECT: In previous studies at their laboratory the authors showed that cytidinediphosphocholine (CDP-choline), an intermediate of phosphatidylcholine synthesis, decreases edema formation and blood-brain barrier disruption following traumatic brain injury (TBI). In the present study the authors investigate whether CDP-choline protects hippocampal neurons after controlled cortical impact (CCI)-induced TBI in adult rats. METHODS: After adult male Sprague-Dawley rats had been anesthetized with halothane, a moderate-grade TBI was induced with the aid of a CCI device set at a velocity of 3 m/second, creating a 2-mm deformation. Sham-operated rats, which underwent craniectomy without impact served as controls. The CDP-choline (100, 200, and 400 mg/kg body weight) or saline was injected into the animals twice (once immediately postinjury and once 6 hours postinjury). Seven days after the injury, the rats were neurologically evaluated and killed, and the number of hippocampal neurons was estimated by examining thionine-stained brain sections. By 7 days postinjury, there was a significant amount of neuronal death in the ipsilateral hippocampus in the CA2 (by 53 +/- 7%, p < 0.05) and CA3 (by 59 +/- 9%, p < 0.05) regions and a contusion (volume 34 +/- 8 mm3) in the ipsilateral cortex compared with sham-operated control animals. Rats subjected to TBI also displayed severe neurological deficit at 7 days postinjury. Treating rats with CDP-choline (200 and 400 mg/kg, intraperitoneally) significantly prevented TBI-induced neuronal loss in the hippocampus, decreased cortical contusion volume, and improved neurological recovery. CONCLUSIONS: Treatment with CDP-choline decreased brain damage following TBI.  相似文献   

13.
Cognitive impairments are pervasive and persistent sequelae of human traumatic brain injury (TBI). In vivo models of TBI, such as the controlled cortical impact (CCI) and fluid percussion (FP), are utilized extensively to produce deficits reminiscent of those seen clinically with the hope that empirical study will lead to viable therapeutic interventions. Both CCI and FP produce spatial learning acquisition deficits, but only the latter has been reported to impair working memory in rats tested in the Morris water maze (MWM). We hypothesized that a CCI injury would impair working memory similarly to that produced by FP, and that delayed and chronic treatment with the D2 receptor agonist bromocriptine would attenuate both working memory and spatial learning acquisition deficits. To test these hypotheses, isoflurane-anesthetized adult male rats received either a CCI (2.7 mm deformation, 4 m/sec) or sham injury, and 24 h later were administered bromocriptine (5 mg/kg, i.p.) or vehicle, with continued daily injections until all behavioral assessments were completed. Motor function was assessed on beam balance and beam walking tasks on postoperative days 1-5 and cognitive function was evaluated in the MWM on days 11-15 for working memory (experiment 1) and on days 14-18 for spatial learning acquisition (experiment 2). Histological examination (hippocampal CA1 and CA3 cell loss/survival and cortical lesion volume) was conducted 4 weeks after surgery. All injured groups exhibited initial impairments in motor function, working memory, and spatial learning acquisition. Bromocriptine did not affect motor function, but did ameliorate working memory and significantly attenuated spatial acquisition deficits relative to the injured vehicle-treated controls. Additionally, the injured bromocriptine-treated group exhibited significantly more morphologically intact CA3 neurons than the injured vehicle-treated group (55.60 +/- 3.10% vs. 38.34 +/- 7.78% [p = 0.03]). No significant differences were observed among TBI groups in CA1 cell survival (bromocriptine, 40.26 +/- 4.74% vs. vehicle, 29.13 +/- 6.63% [p = 0.14]) or cortical lesion volume (bromocriptine, 17.78 +/- 0.62 mm3 vs. vehicle, 19.01 +/- 1.49 mm3 [p > 0.05]). These data reveal that CCI produces working memory deficits in rats that are similar to those observed following FP, and that the delayed and chronic bromocriptine treatment regimen conferred cognitive and neural protection after TBI.  相似文献   

14.
OBJECT: Disturbed ionic and neurotransmitter homeostasis are now recognized as probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brain injury (TBI). Evidence obtained in animal models indicates that posttraumatic neuronal excitation by excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with measurements of intracranial pressure (ICP), patient outcome, and levels of dialysate glutamate and lactate, and cerebral blood flow (CBF) to determine the role of ischemia in this posttraumatic ion dysfunction. METHODS: Eighty-five patients with severe TBI (Glasgow Coma Scale Score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed using flame photometry, and dialysate glutamate and dialysate lactate levels were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients, respectively. Cerebral blood flow studies (stable xenon computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, dialysate potassium values were increased (dialysate potassium > 1.8 mM) for 3 hours or more. A mean amount of dialysate potassium greater than 2 mM throughout the entire monitoring period was associated with ICP above 30 mm Hg and fatal outcome, as were progressively rising levels of dialysate potassium. The presence of dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate (p < 0.0001) levels. Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). CONCLUSIONS: Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase in dialysate potassium, together with dialysate glutamate and lactate, supports the concept that glutamate induces ionic flux and consequently increases ICP, which the authors speculate may be due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered vasoreactivity in cerebral blood vessels caused by higher levels of potassium after trauma. Additional studies in which potassium-sensitive microelectrodes are used are needed to validate these ionic events more clearly.  相似文献   

15.
Background: Normovolemic hemodilution (HD) in adult animal studies has shown exacerbation of traumatic brain injury (TBI) lesion volumes. Similar studies in juvenile rats have not been reported and outcomes are likely to be different. This study investigated the effects of normovolemic hemodilution (21% hematocrit) in a juvenile TBI (jTBI) model. Methods: Twenty 17‐day‐old rats underwent moderate cortical contusion impact injury (CCI) and were divided into four groups: CCI/hemodilution (HD) (group HD), CCI/no HD (group C), Sham/HD (group SHD), and Sham/no HD (group S). Regional laser Doppler flowmetry (LDF), edema formation (MRI‐T2WI), water mobility assessed using diffusion weighted imaging (MRI‐DWI), open field activity tests, and histological analyses were evaluated for lesion characteristics. Results: Hemodilution significantly increased blood flow in the HD compared to the C group after TBI. T2WI revealed a significantly increased extravascular blood volume in HD at 1, 7, and 14 days post‐CCI. Edematous tissue and total contusional lesion volume were higher in HD‐treated animals at 1 and 14 days. DWI revealed that HD, SHD, and C groups had elevated water mobility compared to S groups in the ipsilateral cortex and striatum. Histology showed a larger cortical lesion in the C than HD group. Open field activity was increased in HD, C, and SHD groups compared to the S group. Conclusions: Hemodilution results in significant brain hyperemia with increased edema formation, extravascular blood volume, and water mobility after jTBI. Hemodilution results in less cortical damage but did not alter behavior. Hemodilution is likely not to be clinically beneficial following jTBI.  相似文献   

16.
Experimental human fetal neural progenitor cell (hfNPC) transplantation has proven to be a promising therapeutic approach after traumatic brain injury (TBI). However, the long-term efficacy and safety, which are both highly important for clinical translation of this approach, have thus far not been investigated. This study investigated the effect of local (L, 1?×?10(5) cells) and systemic (S, 5?×?10(5) cells) administration of PKH-26-labeled pre-differentiated hfNPCs over a period of 12 weeks, beginning 24?h after severe controlled cortical impact TBI in Sprague-Dawley rats. Accelerating rotarod testing revealed a trend toward functional improvement beginning 1 week after transplantation, and persisting until the end of the experiment. The traumatic lesion volume as quantified by magnetic resonance imaging was smaller in both treatment groups compared to control (C) animals (C?=?54.50?mm(3), L?=?32?mm(3), S?=?37.50?mm(3)). Correspondingly, neuronal (NeuN) staining showed increased neuronal survival at the border of the lesion in both transplanted groups (S?=?92.4%; L?=?87.2%; 72.5%). Histological analysis of the brain compartments revealed transiently increased angiogenesis and reduced astroglial reaction during the first 4 weeks post-transplantation. PKH-26-positive cells were detected exclusively after local transplantation without any evidence of tumor formation. However, graft differentiation was seen only in very rare cases. In conclusion, transplantation of hfNPCs improved the long-term functional outcome after TBI, diminished trauma lesion size, and increased neuronal survival in the border zone of the lesion. This therapeutic effect was not likely due to cell replacement, but was associated with transiently increased angiogenesis and reduced astrogliosis.  相似文献   

17.
Disrupted regulation of extracellular glutamate in the central nervous system contributes to and can exacerbate the acute pathophysiology of traumatic brain injury (TBI). Previously, we reported increased extracellular glutamate in the striatum of anesthetized rats 2 days after diffuse brain injury. To determine the mechanism(s) responsible for increased extracellular glutamate, we used enzyme-based microelectrode arrays (MEAs) coupled with specific pharmacological agents targeted at in vivo neuronal and glial regulation of extracellular glutamate. After TBI, extracellular glutamate was significantly increased in the striatum by (~90%) averaging 4.1±0.6?μM compared with sham 2.2±0.4?μM. Calcium-dependent neuronal glutamate release, investigated by local application of an N-type calcium channel blocker, was no longer a significant source of extracellular glutamate after TBI, compared with sham. In brain-injured animals, inhibition of glutamate uptake with local application of an excitatory amino acid transporter inhibitor produced significantly greater increase in glutamate spillover (~ 65%) from the synapses compared with sham. Furthermore, glutamate clearance measured by locally applying glutamate into the extracellular space revealed significant reductions in glutamate clearance parameters in brain-injured animals compared with sham. Taken together, these data indicate that disruptions in calcium-mediated glutamate release and glial regulation of extracellular glutamate contribute to increased extracellular glutamate in the striatum 2 days after diffuse brain injury. Overall, these data suggest that therapeutic strategies used to regulate glutamate release and uptake may improve excitatory circuit function and, possibly, outcomes following TBI.  相似文献   

18.
Age is a consistent predictor of poor outcome following traumatic brain injury (TBI). Although the elderly population has one of the highest rates of TBI-related hospitalization and death, few preclinical studies have attempted to model and treat TBI in the aged population. Recent studies have indicated that nicotinamide (NAM), a soluble B-group vitamin, improved functional recovery in experimental models of TBI in young animals. The purpose of the present study was to examine the preclinical efficacy of NAM in middle-aged rats. Groups of middle-aged (14-month-old) rats were assigned to NAM (500?mg/kg or 50?mg/kg) or saline alone (1?mL/kg) treatment conditions, and received unilateral cortical contusion injuries (CCI) and injections at 1?h and 24?h following injury. The animals were tested on a variety of tasks to assess vestibulomotor (tapered beam) and cognitive performance (reference and working memory in the Morris water maze), and were evaluated for lesion size, blood-brain barrier compromise, astrocytic activation, and edema formation. In summary, the preclinical efficacy of NAM as a treatment following CCI in middle-aged rats differs from that previously documented in younger rats; while treatment with 50?mg/kg NAM appeared to have no effect, the 500-mg/kg dose worsened performance in middle-aged animals. Histological indicators demonstrated more nuanced group differences, indicating that NAM may positively impact some of the cellular cascades following injury, but were not substantial enough to improve functional recovery. These findings emphasize the need to examine potential treatments for TBI utilizing non-standard populations, and may explain why so many treatments have failed in clinical trials.  相似文献   

19.
A reliable method for measuring injury volume after traumatic brain injury (TBI) is of great importance when studying pharmacological protective agents in the field of head trauma research. Utilization of 2,3,5-triphenyltetrazolium chloride (TTC) has gained extensive acceptance in stroke research and has recently been applied to injury volume measurement in the lateral fluid percussion model. The present study was undertaken to apply this method to the controlled cortical impact (CCI) model and to study the role of brain edema. Male Sprague-Dawley rats were subjected to CCI brain injury at a velocity of 3 m/sec and 1 mm (mild), 2 mm (moderate), and 3 mm (severe injury) deformation, while rats in the control group were subjected to the same surgical procedure but received no injury. Absolute and corrected injury volumes with TTC staining and brain edema measurements with the wet-dry method were evaluated at 1, 2, 3, 4, and 7 days after TBI. The most prominent injury volume in the moderate injury group (2 mm deformation) was seen at postinjury day 1 and 2 (day 1, absolute: 49.1+/-5.6, corrected: 40.5+/-7.9; day 2, absolute: 46+/-6.9, corrected: 40.2+/-10.5), whereas the smallest injury volume was found at postinjury day 7 (absolute: 24.9+/-7, corrected: 27.4+/-7.4). The time course of brain edema studies demonstrates that brain edema formation peaks at postinjury day 1. A statistically significant reduction of injury volume was observed after postinjury day 4. We also observed that due to the presence of brain edema absolute injury volume is more than corrected injury volume in the first 3 days after injury as opposed to injury volume at postinjury day 7. These results suggest that the measurement of injury volume with TTC staining should be corrected for brain edema in the CCI brain injury model.  相似文献   

20.
We measured quantitative cortical mantle cerebral blood flow (CBF) by stable xenon computed tomography (CT) within the first 12?h after severe traumatic brain injury (TBI) to determine whether neurologic outcome can be predicted by CBF stratification early after injury. Stable xenon CT was used for quantitative measurement of CBF (mL/100?g/min) in 22 cortical mantle regions stratified as follows: low (0-8), intermediate (9-30), normal (31-70), and hyperemic (>70) in 120 patients suffering severe (Glasgow Coma Scale [GCS] score ≤8) TBI. For each of these CBF strata, percentages of total cortical mantle volume were calculated. Outcomes were assessed by Glasgow Outcome Scale (GOS) score at discharge (DC), and 1, 3, and 6 months after discharge. Quantitative cortical mantle CBF differentiated GOS 1 and GOS 2 (dead or vegetative state) from GOS 3-5 (severely disabled to good recovery; p<0.001). Receiver operating characteristic (ROC) curve analysis for percent total normal plus hyperemic flow volume (TNHV) predicting GOS 3-5 outcome at 6 months for CBF measured <6 and <12?h after injury showed ROC area under the curve (AUC) cut-scores of 0.92 and 0.77, respectively. In multivariate analysis, percent TNHV is an independent predictor of GOS 3-5, with an odds ratio of 1.460 per 10 percentage point increase, as is initial GCS score (OR=1.090). The binary version of the Marshall CT score was an independent predictor of 6-month outcome, whereas age was not. These results suggest that quantitative cerebral cortical CBF measured within the first 6 and 12?h after TBI predicts 6-month outcome, which may be useful in guiding patient care and identifying patients for randomized clinical trials. A larger multicenter randomized clinical trial is indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号