首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neural cell adhesion molecule, NCAM, plays a key role in neural development and plasticity mediating cell adhesion and signal transduction. By screening a combinatorial library of synthetic peptides with NCAM purified from postnatal day 10 rat brains, we identified a nonapeptide, termed NCAM binding peptide 10 (NBP10) and showed by nuclear magnetic resonance analysis that it bound the NCAM IgI module of NCAM. NBP10 modulated cell aggregation as well as neurite outgrowth induced specifically by homophilic NCAM binding. Moreover, both monomeric and multimeric forms of NBP10 stimulated neurite outgrowth from primary hippocampal neurons. The neurite outgrowth response to NBP10 was inhibited by a number of compounds previously shown to inhibit neurite outgrowth induced by homophilic NCAM binding, including voltage-dependent calcium channel antagonists, suggesting that NBP10 induced neurite outgrowth by activating a signal transduction pathway similar to that activated by NCAM itself. Moreover, an inhibitor of intracellular calcium mobilization, TMB-8, prevented NBP10-induced neurite outgrowth suggesting that NCAM-dependent neurite outgrowth also requires mobilization of calcium from intracellular calcium stores in addition to calcium influx from extracellular sources. By single-cell calcium imaging we further demonstrated that NBP10 was capable of inducing an increase in intracellular calcium in PC12E2 cells. Thus, the NBP10 peptide is a new tool for the study of molecular mechanisms underlying NCAM-dependent signal transduction and neurite outgrowth, and could prove to be a useful modulator of regenerative processes in the peripheral and central nervous system.  相似文献   

2.
Elucidation of mechanisms by which receptor protein tyrosine phosphatases (PTPs) regulate neurite outgrowth will require characterization of ligand-receptor interactions and identification of ligand-induced signalling components mediating neurite outgrowth. The first identified ligand of the leucocyte common antigen-related (LAR) receptor PTP consists of a 99-residue ectodomain isoform, termed LARFN5C, which undergoes homophilic binding to LAR and promotes neurite outgrowth. We employed peptide mapping of LARFN5C to identify an active neurite-promoting domain of LAR. A peptide mimetic consisting of 37 residues (L59) and corresponding to the fifth LAR fibronectin type III (FNIII) domain prevented LARFN5C homophilic binding, demonstrated homophilic binding to itself and promoted neurite outgrowth of mouse E16-17 hippocampal neurons and of dorsal root ganglia explants. Response to L59 was partially lost when using neurons derived from LAR-deficient (-/-) mice or neurons treated with LAR siRNA, consistent with homophilic interaction of L59 with LAR. L59 neurite-promoting activity was decreased in the presence of inhibitors of Src, Trk, PLCgamma, PKC, PI3K and MAPK. L59 activated Src (a known substrate of LAR), FAK and TrkB and also activated downstream signalling intermediates including PKC, ERK, AKT and CREB. BDNF augmented the maximal neurite-promoting activity of L59, a finding consistent with the presence of shared and distinct signalling pathways activated by L59 with BDNF and L59 with TrkB. These studies are the first to identify an ectodomain of LAR (located within the fifth FNIII domain) capable of promoting neurite outgrowth and point to novel approaches for promotion of neurite outgrowth.  相似文献   

3.
Neurons of the CNS and PNS differ in their response to fibronectin (FN) and proteolytic fragments of FN. The 33 kDa C-terminal cell and heparin-binding fragment of FN, in particular, is a strong promoter of CNS neurite outgrowth. To define further the neurite-promoting activity of the 33 kDa fragment, and to investigate further the differences between PNS and CNS responses to FN and the 33 kDa fragment, we contrasted neurite outgrowth by CNS and PNS neurons on three synthetic peptides representing sequences from this fragment of FN: two heparin-binding peptides, FN-C/H I and FN-C/H II (McCarthy et al., 1990), and an integrin-binding peptide, CS1 (Humphries et al., 1987). Spinal cord (SC) neurons, from the CNS, differed from dorsal root ganglion (DRG) neurons, from the PNS, with respect to substratum preference for heparin-binding versus integrin-binding peptides. SC neurite outgrowth was greatest on the heparin-binding peptide FN-C/H II, while DRG neurite outgrowth was greatest on the a4 beta 1 integrin-binding peptide CS1. To test whether the difference in substratum preference was due to differences in the molecular mechanism by which SC and DRG neurons interact with the 33 kDa fragment of FN, anti-beta 1 integrin antibodies and/or soluble heparin were added to the cultures as potential inhibitors of integrin-mediated or proteoglycan-mediated interactions with FN. SC neurite outgrowth was much more sensitive to the effect of heparin than anti-beta 1 integrin, indicating SC neurite outgrowth may involve predominantly a heparin-sensitive mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Molecular cues involved in directional neurite outgrowth and axonal differentiation of embryonic hippocampal neurons were studied on substrates coated in a striped 5 μm pattern with synthetic peptides from a neurite outgrowth (RDIAEIIKDI, P1543) and cell attachment (CDPGYIGSR, P364) domain of the B2- and B1-chains of laminin, respectively. Both peptides supported neuronal attachment, but only the B2-chain-derived P1543 promoted expression of a mature neuronal phenotype. Directional neurite outgrowth and axonal differentiation of embryonic hippocampal neurons were selectively induced by striped substrates of the B2-chain-derived P1543. Axonal differentiation was determined by expression of a phosphorylated epitope of the 200 kDa neurofilament protein in the longer “axonal” neurite of the bipolar embryonic hippocampal neurons. Ethanol (100 mM), a neuroactive compound known to delay neuronal development, impaired both directional neurite outgrowth and expression of a phosphorylated epitope of the 200 kDa neurofilament protein on a patterned P1543 substratum. The present results provide direct evidence that a 10 amino acid peptide (P1543), derived from a neurite outgrowth domain of the B2-chain of laminin, may be an axonal guidance and differentiation factor for embryonic hippocampal neurons in vitro. Published by Elsevier Science Ltd.  相似文献   

5.
A.G.M. Bulloch   《Brain research》1987,412(1):6-17
The present study tested the ability of 3 peptides (somatostatin, arginine-vasopressin (AVP) and arginine-vasotocin (AVT)) to enhance neurite outgrowth from regenerating Helisoma neurons. The buccal ganglia from Helisoma were incubated either short-term in saline or longer-term (2-5 days) in medium and the extent of neurite outgrowth (induced by nerve crush) by a buccal neuron (neuron 5) was determined. Neurite outgrowth was consistently enhanced by both somatostatin and its extended analog somatostatin, but was unaffected by either AVT or AVP. The enhanced outgrowth due to somatostatin was associated with stronger electrical synapse formation between the two neurons 5, this being attributable to lower coupling resistance rather than a change in non-junctional resistance. Both the enhancement of neurite outgrowth and the increased efficacy of electrical coupling due to somatostatin were prevented by a somatostatin inhibitor. An immunohistochemical survey produced evidence for neurons containing a somatostatin-like peptide in both the cerebral ganglia and the enteric nervous system of Helisoma. It is concluded that somatostatin can act neurotrophically in the nervous system.  相似文献   

6.
Antennapedia homeobox peptide has been reported to enhance neurite outgrowth and branching. Thus it is of interest to investigate whether antennapedia peptide is capable of modulating the expression of genes related to different events of neuronal development. In this paper we report the enhancement of a 68 KDa neurofilament subunit, choline acetyltransferase and acetylcholinesterase expression in spinal cord neurons, elicited by antennapedia peptide. Modulation of gene expression is different with respect to each gene product analyzed, suggesting a specific action of the peptide on diverse genes controlling different events of neuronal differentiation.  相似文献   

7.
The neural cell adhesion molecule (NCAM) plays an important role in synaptic plasticity in embryonic and adult brain. Recently, it has been demonstrated that NCAM is capable of binding and hydrolyzing extracellular ATP. The purpose of the present study was to evaluate the role of extracellular ATP in NCAM-mediated cellular adhesion and neurite outgrowth. We here show that extracellularly added adenosine triphosphate (ATP) and its structural analogues, adenosine-5'-O-(3-thiothiophosphate), beta, gamma-methylenadenosine-5'-triphosphate, beta, gamma-imidoadenosine-5-triphosphate, and UTP, in varying degrees inhibited aggregation of hippocampal neurons. Rat glial BT4Cn cells are unable to aggregate when grown on agar but acquire this capacity when transfected with NCAM. However, addition of extracellular ATP to NCAM-transfected BT4Cn cells inhibited aggregation. Furthermore, neurite outgrowth from hippocampal neurons in cultures allowing NCAM-homophilic interactions was inhibited by addition of extracellular nucleotides. These findings indicate that NCAM-mediated adhesion may be modulated by extracellular ATP. Moreover, extracellularly added ATP stimulated neurite outgrowth from hippocampal neurons under conditions non-permissive for NCAM-homophilic interactions, and neurite outgrowth stimulated by extracellular ATP could be inhibited by a synthetic peptide corresponding to the so-called cell adhesion molecule homology domain (CHD) of the fibroblast growth factor receptor (FGFR) and by FGFR antibodies binding to this domain. Antibodies against the fibronectin type-III homology modules of NCAM, in which a putative site for ATP binding and hydrolysis is located, also abolished the neurite outgrowth-promoting effect of ATP. The non-hydrolyzable analogues of ATP all strongly inhibited neurite outgrowth. Our results indicate that extracellular ATP may be involved in synaptic plasticity through a modulation of NCAM-mediated adhesion and neurite outgrowth.  相似文献   

8.
The basement membrane protein laminin-1 is a potent stimulator of neurite outgrowth for a variety of neuronal cell types. Previous studies have identified neurite outgrowth activity in several distinct regions of the laminin-1 molecule. In this study, 545 overlapping 12- to 14-mer synthetic peptides, corresponding to most of the amino acid sequence of the alpha1, beta1, and gamma1 chains of laminin-1, were screened for cell attachment and neurite outgrowth activity using primary cultures of mouse cerebellar granule neurons and two neuronal cell lines. We identified 48 peptides derived from novel regions of the laminin-1 molecule that were positive for neural cell adhesion activity. Only the cerebellar cells were found to have true neurite outgrowth activity with certain of the peptides, whereas some peptides induced short spike-like process with the cell lines. Although 23 of these peptides were active on all 3 cell types screened, 25 others showed cell-type specificity in their activity. These studies show that (1) there are multiple and distinct sites on laminin-1 for cell adhesion and neurite-like outgrowth and (2) that there are neural cell-type-specific active domains. The multiple active sites found explains, in part, the potent activity of laminin-1 on neurite outgrowth.  相似文献   

9.
Thrombin is a multifunctional protease. Recent studies on cultured neuronal cells have suggested a function for thrombin in the development and maintenance of the nervous system. Thrombin has been found to induce neurite retraction and reverse stellation in neuroblastoma cell lines and rat astrocytes, respectively. The major focus of our study was to investigate the potential role of thrombin in peripheral nervous system development using the rat embryonic dorsal root ganglion model. We found a dose dependent inhibition of neurite outgrowth from explant dorsal root ganglion cultures upon exposure to 2 to 200 nM thrombin. This effect was reversed by the specific thrombin inhibitor, hirudin. A synthetic peptide that imitates the fully active receptor, thrombin receptor activating peptide, was also found to inhibit neurite outgrowth from dorsal root ganglia. bis-Benzimide stained neuronal cultures did not show any evidence of cell death after exposure to thrombin or thrombin receptor activating peptides. Immunohistochemical studies revealed specific staining of the thrombin receptor on neurons, with intense labeling along neurites. Enriched neuronal cultures exposed to thrombin and thrombin receptor activating peptides revealed rapid activation of phospholipase Cγ-1, a second messenger associated with the thrombin receptor. These findings are the first to describe the localization of the thrombin receptor to dorsal root ganglion neurons. We propose that receptor activation is associated with thrombin induced inhibition of neurite outgrowth.  相似文献   

10.
Due to the increasing number of drugs and untested environmental compounds introduced into commercial use, there is recognition for a need to develop reliable and efficient screening methods to identify compounds that may adversely impact the nervous system. One process that has been implicated in neurodevelopment is neurite outgrowth; the disruption of which can result in adverse outcomes that persist later in life. Here, we developed a green fluorescent protein (GFP) labeled neurite outgrowth assay in a high-content, high-throughput format using induced pluripotent stem cell (iPSC) derived human spinal motor neurons and cortical glutamatergic neurons. The assay was optimized for use in a 1536-well plate format. Then, we used this assay to screen a set of 84 unique compounds that have previously been screened in other neurite outgrowth assays. This library consists of known developmental neurotoxicants, environmental compounds with unknown toxicity, and negative controls. Neurons were cultured for 40 h and then treated with compounds at 11 concentrations ranging from 1.56 nM to 92 μM for 24 and 48 h. Effects of compounds on neurite outgrowth were evaluated by quantifying total neurite length, number of segments, and maximum neurite length per cell. Among the 84 tested compounds, neurite outgrowth in cortical neurons and motor neurons were selectively inhibited by 36 and 31 compounds, respectively. Colchicine, rotenone, and methyl mercuric (II) chloride inhibited neurite outgrowth in both cortical and motor neurons. It is interesting to note that some compounds like parathion and bisphenol AF had inhibitory effects on neurite outgrowth specifically in the cortical neurons, while other compounds, such as 2,2′,4,4′-tetrabromodiphenyl ether and caffeine, inhibited neurite outgrowth in motor neurons. The data gathered from these studies show that GFP-labeled iPSC-derived human neurons are a promising tool for identifying and prioritizing compounds with developmental neurotoxicity potential for further hazard characterization.  相似文献   

11.
Vasoactive intestinal peptide (VIP) is a neuropeptide which has been shown to exhibit a wide range of neurotrophic effects both in vivo and in vitro. For the purpose of clarifying the effect of VIP on spinal cord neurons, we studied the effect of VIP on neurite outgrowth of fetal rat ventral and dorsal portions of spinal cord in cultures. VIP-treated ventral spinal cord cultures (VSCC), compared with control VSCC, had a significant neurite outgrowth at 10(-8), 10(-6), and 10(-4) M. The effect was considered to be concentration dependent. Morphological changes of the dorsal spinal cord cultures (DSCC) remained unchanged by VIP treatment. Because of their close sequence homology with VIP, PHI-27 (peptide, histidylisoleucine amide) and secretin were also examined with the same experimental conditions as was VIP. Both PHI-27 and secretin had neurite promoting effects in VSCC at 10(-8) and 10(-6) M, respectively. However, there were no neurite promoting effects in DSCC in both of them at any concentrations. VIP had the most potent effect on neurite outgrowth in VSCC, followed by PHI-27, and secretin in their effectiveness concentrations. Our data showing VIP, PHI-27 and secretin have neurotrophic action on VSCC and suggest that a potential therapeutic use of VIP and its related peptides in treating diseases that involve degeneration and death of spinal motor neurons, such as motor neuropathy and amyotrophic lateral sclerosis.  相似文献   

12.
The neural cell adhesion molecule (NCAM) plays a pivotal role in neural development, regeneration, and plasticity. NCAM mediates adhesion and subsequent signal transduction through NCAM-NCAM binding. Recently, a peptide ligand termed P2 corresponding to a 12-amino-acid sequence in the FG loop of the second Ig domain of NCAM was shown to mimic NCAM homophilic binding as reflected by induction of neurite outgrowth in hippocampal neurons. We demonstrate here that in concentrations between 0.1 and 10 microM, P2 also induced neuritogenesis in primary dopaminergic and cerebellar neurons. Furthermore, it enhanced the survival rate of cerebellar neurons although not of mesencephalic dopaminergic neurons. Moreover, our data indicate that the protective effect of P2 in cerebellar neurons was due to an inhibition of the apoptotic process, in that caspase-3 activity and the level of DNA fragmentation were lowered by P2. Finally, treatment of neurons with P2 resulted in phosphorylation of the ser/thr kinase Akt. Thus, a small peptide mimicking homophilic NCAM interaction is capable of inducing differentiation as reflected by neurite outgrowth in several neuronal cell types and inhibiting apoptosis in cerebellar granule neurons.  相似文献   

13.
The phenotypic expression of various neural cells is influenced by extracellular matrix (ECM) molecules. This study aims to develop a three-dimensional gel tailored to support neurite extension from neural cells. Laminin-derived (LN) oligopeptides CDP-GYIGSR, a 19-mer IKVAV containing sequence, GRGDSP, a cocktail of the three aforementioned LN peptides (PEPMIX), and a control peptide sequence GGGGG were covalently linked to an agarose hydrogel backbone using the bi-functional coupling agent 1′1, carbonyldiimidazole. Embryonic day 9 chick DRGs and PC12 cells were suspended in three dimensions in underivatized and derivatized agarose gels and neurite extension was analyzed. Agarose gels derivatized with CDPGYIGSR and PEPMIX enhanced neurite outgrowth from DRGs while GRGDSP and IKVAV derivatized gels inhibited neurite extension when compared to underivatized agarose gels. The IKVAV derivatized gels significantly enhanced neurite outgrowth from PC12 cells in comparison to underivatized and other LN peptide derivatized gels. Agarose hydrogels carrying covalently immobilized LN oligopeptides thus evoke specific responses from cells which contain receptors to the peptides used. Agarose hydrogels derivatized with neurite promoting peptide sequences may find applications in various models of in vivo regeneration of nervous tissue. © 1995 Wiley-Liss, Inc.  相似文献   

14.
Responses of rat embryonic septal cells to reconstituted basement membrane, laminin, and laminin A chain-derived synthetic peptides were studied in culture. Dissociated fetal E16/17 septal cells were grown for three days on differently coated plastic substrata. Reconstituted basement membrane (Matrigel), laminin, and a 19-amino acid synthetic peptide CSRARKQAASIKVAVSADR-NH2 (PA22-2) from the laminin A chain sequence mediated cell-substratum adhesion and promoted neurite outgrowth. In contrast, cells did not attach to or form processes on uncoated plastic or on plastic substrata coated with synthetic, laminin-derived control peptides. Polyethylenimine (PEI) supported the adhesion and survival of fetal septal cells; however, when laminin was added to the medium during cell plating or 18 hr afterward, a dose-dependent increase was observed in neurite outgrowth of cells attached to this substratum. Cells grown for 6 days on PEI in the presence of laminin showed a determined increase in the number of cholinergic neurons as marked by acetylcholinesterase staining. These data suggest that the subpopulation of cholinergic septal neurons present in the septal cells studied here were also responding to laminin. The results of this in vitro study suggest potential uses for basement membrane, laminin, or synthetic peptides, such as PA22-2, in fetal septal grafts to enhance regeneration in the damaged septo-hippocampal system.  相似文献   

15.
Axonal regeneration can be influenced by a conditioning lesion (an axonal injury made prior to a second test lesion). Previously, sympathetic neurons in vivo were shown to respond to a conditioning lesion with decreased neurite outgrowth, in contrast to the enhanced outgrowth observed in all other peripheral neurons examined. The present experiments tested the effects of a conditioning lesion on neurite outgrowth in vitro from the superior cervical ganglion (SCG) and the impact of several factors on that response. Ganglia axotomized 1 week earlier and then explanted in Matrigel or collagen gel responded with a significant increase in neurite extension compared to sham-operated ganglia. A distal axotomy produced by unilateral removal of the salivary glands (sialectomy) caused an increase in neurite outgrowth similar to that of a proximal axotomy. These conditioning lesions induced both an increase in the rate of elongation, and, in the case of the proximally axotomized SCG, a shorter initial delay of outgrowth. The enhanced outgrowth following sialectomy was specific to the nerve containing the majority of axons projecting to the salivary glands, suggesting that the conditioning lesion effect is restricted to previously injured neurons. Deletion of the gene for leukemia inhibitory factor (LIF), a gene induced by axotomy, did not abolish the conditioning lesion effect in SCG explants or dissociated cell cultures. In conclusion, sympathetic neurons are capable of responding to a conditioning lesion with increased neurite outgrowth. The hypothesis that the neuronal cell body response to axotomy plays an important role in the conditioning lesion response is discussed.  相似文献   

16.
A neurite outgrowth domain of the gamma1-chain of laminin-1 (RDIAEIIKDI) promotes axon guidance of rat hippocampal neurons, regulates the nuclear movement phase of neuronal migration, and binds to the cellular prion protein (Liesi et al. [1995] J. Neurosci. Res. 134:447-486; Matsuzawa et al. [1998] J. Neurosci. Res. 53:114-124; Graner et al. [2000] Brain Res. Mol. Brain Res. 76:85-92). Using electrophysiology and neuronal culture experiments, we show that this 10 amino acid peptide or its smaller domains induces potassium currents in primary central neurons. Both these currents and the neurotoxicity of high concentrations of the 10 amino acid peptide antigen are prevented by pertussis toxin. The smallest peptide domain capable of inducing both potassium currents and promoting neurite outgrowth of human spinal cord neurons is a tri-peptide KDI. Our results indicate that KDI may be the biologically active domain of the gamma1 laminin, capable of modulating electrical activity and survival of central neurons via a G-protein coupled mechanism. These results expand the wide variety of functions already reported for the members of the laminin-gene family. They suggest that biologically active peptide domains of the gamma1 laminin may provide tools to promote neuronal regeneration after injuries and to enhance neuronal survival during aging and neuronal degeneration.  相似文献   

17.
Functional regeneration of brainstem-spinal pathways occurs in the developing chick when the spinal cord is severed prior to embryonic day (E) 13. Functional spinal cord regeneration is not observed in animals injured after E13. This developmental transition from a permissive to a restrictive repair period may be due to the formation of an extrinsic inhibitory environment preventing axonal growth, and/or an intrinsic inability of mature neurons to regenerate. Here, we investigated the capacity of specific populations of brainstem-spinal projection neurons to regrow neurites in vitro from young (E8) versus mature (E17) brainstem explants. A crystal of carbocyanine dye (DiI) was implanted in ovo into the E5 cervical spinal cord to retrogradely label brainstem-spinal projection neurons. Three or 12 days later, discrete regions of the brainstem containing DiI-labeled neurons were dissected to produce explant cultures grown in serum-free media on laminin substrates. The subsequent redistribution of DiI into regenerating processes permitted the study of in vitro neurite outgrowth from identified brainstem-spinal neurons. When explanted on E8, i.e., an age when brainstem-spinal neurons are normally elongating through the spinal cord and are capable of in vivo functional regeneration, robust neurite outgrowth was observed from all brainstem populations, including rubro-, reticulo-, vestibulo-, and raphe-spinal neurons. In contrast, when explanted on E17, robust neurite outgrowth was seen only from raphe-spinal neurons. Neurite outgrowth from raphe-spinal neurons was 5-hydroxy-tryptamine immunoreactive. This study demonstrates that in growth factor-free environments with permissive growth substrates, neurite outgrowth from brainstem-spinal neurons is dependent on both neuronal age and phenotype.  相似文献   

18.
Axons are guided along their trajectories during development by many different systems of adhesion, attraction, and repulsion. Thus, many distinct, and potentially competing, receptor systems respond to environmental cues, and the information must be coordinated inside the growth cone to ensure that extension follows the appropriate path. In this brief review we bring together two studies, each of which has defined different aspects of a pathway through which N-cadherin regulates beta1-integrin function allowing for coordinated responses to environmental cues during neurite extension. First we review progress in defining the binding to cells and the subsequent effects on adhesion and neurite outgrowth of the chondroitin sulfate proteoglycan, neurocan. Neurocan binds to a cell surface glycosyltransferase associated with N-cadherin (but not integrin), initiating a signal which results in loss of cadherin and integrin-function-suggesting that these two adhesion receptor systems engage in cross-talk, allowing coordinate regulation. Second, we review the use of "Trojan" peptides, peptides which mimic specific sequences in the cytoplasmic domain of N-cadherin attached to a cell permeation sequence, to reveal protein-protein interactions critical to cadherin-integrin cross-talk. One peptide mimicking a 20 amino acid sequence in the juxtamembrane region of N-cadherin has the same effect as neurocan, blocking both cadherin- and integrin-mediated adhesion and neurite outgrowth. Both neurocan and the peptide cause the release of the non-receptor tyrosine kinase Fer from the cadherin complex and its binding to the integrin complex. These data define an epigenetic pathway through which environmental cues are capable of coordinately regulating the activity of two developmentally important adhesion systems.  相似文献   

19.
Islet neogenesis-associated protein (INGAP) peptide is a candidate therapeutic for diabetes and corrects sensory dysfunction in experimental diabetes in mice. In this study, we investigated the mechanism of action by which INGAP peptide promotes neurite outgrowth in sensory neurons of the dorsal root ganglia. Treatment of dorsal root ganglia primary dispersed cultures with INGAP peptide led to the displacement of fluorescently labeled forskolin from adenylate cyclase, the cyclic AMP-generating enzyme that has been implicated in neuritogenesis. The addition of forskolin or dibutyryl cyclic AMP enhanced the effects of INGAP peptide on neurite outgrowth in dorsal root ganglia explant cultures. Furthermore, pharmacological inhibition of adenylate cyclase with SQ22,536 or of protein kinase A with H89 or KT5720 significantly reduced the neurite-promoting effects of INGAP peptide. These results suggest that INGAP peptide-induced neurite outgrowth in the dorsal root ganglia partially involves cyclic AMP-dependent activation of protein kinase A.  相似文献   

20.
A quantitative method for analysis of in vitro neurite outgrowth   总被引:1,自引:0,他引:1  
The adult mammalian CNS is extremely limited in its ability to regenerate axons following injury. Glial scar, neuroinflammatory processes and molecules released from myelin impair axonal regrowth and contribute to the lack of neural regeneration. An in vitro assay that quantitates neurite outgrowth from cultured neurons as a model of neuronal regenerative potential is described. Specifically, the neurite outgrowth from primary neurons (rat cerebellar granule neurons; CGNs) and a neuronal cell line (NG108-15) were quantitatively measured after optimization of culture conditions. After cultures were fixed and immunostained to label neurons and nuclei, microscope images were captured and an image analysis algorithm was developed using Image-Pro Plus software to allow quantitative analysis. The algorithm allowed the determination of total neurite length, number of neurons, and number of neurons without neurites. The algorithm also allows for end-user control of thresholds for staining intensity and cell/nuclei size. This assay represents a useful tool for quantification of neurite outgrowth from a variety of neuronal sources with applications that include: (1) assessment of neurite outgrowth potential; (2) identification of molecules that can block or stimulate neurite outgrowth in conventional culture media; and (3) identification of agents that can overcome neurite outgrowth inhibition by inhibitory substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号