首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Interface integrity can be maintained by setting the composite in a layering technique and using liners.

Objective

The aim of this in vitro study was to verify the effect of resin-modified glass-ionomer cement (RMGIC) lining and composite layering technique on the bond strength of the dentin/resin adhesive interface of lateral walls of occlusal restorations.

Material and Methods

Occlusal cavities were prepared in 52 extracted sound human molars, randomly assigned into 4 groups: Group 2H (control) – no lining + two horizontal layers; Group 4O: no lining + four oblique layers; Group V-2H: RMGIC lining (Vitrebond) + two horizontal layers; and Group V-4O: RMGIC lining (Vitrebond) + four oblique layers. Resin composite (Filtek Z250, 3M ESPE) was placed after application of an adhesive system (Adper™ Single Bond 2, 3M ESPE) dyed with a fluorescent reagent (Rhodamine B) to allow confocal microscopy analysis. The teeth were stored in deionized water at 37oC for 24 hours before being sectioned into 0.8 mm slices. One slice of each tooth was randomly selected for Confocal Laser Scanning Microscopy (CLSM) analysis. The other slices were sectioned into 0.8 mm x 0.8 mm sticks to microtensile bond strength test (MPa). Data were analyzed by two-way ANOVA and Fisher’s test.

Results

There was no statistical difference on bond strength among groups (p>0.05). CLSM analysis showed no significant statistical difference regarding the presence of gap at the interface dentin/resin among groups.

Conclusions

RMGIC lining and composite layering techniques showed no effect on the microtensile bond strength and gap formation at the adhesive interface of lateral walls of high C-factor occlusal restorations.  相似文献   

2.

Objective:

To evaluate the influence of saliva contamination on shear bond strength and the bond failure pattern of 3 adhesive systems (Transbond XT, AdheSE and Xeno III) on orthodontic metallic brackets bonded to human enamel.

Material and Methods:

Seventy-two permanent human molars were cut longitudinally in a mesiodistal direction, producing seventy-two specimens randomly divided into six groups. Each system was tested under 2 different enamel conditions: no contamination and contaminated with saliva. In T, A and X groups, the adhesive systems were applied to the enamel surface in accordance with manufacturer''s instructions. In TS, AS and XS groups, saliva was applied to enamel surface followed by adhesive system application. The samples were stored in distilled water at 37°C for 24 h, and then tested for shear bond strength in a universal testing machine (Emic, DL 2000) running at a crosshead speed of 1 mm/min. After bond failure, the enamel surfaces were observed under an optical microscope at 40x magnification.

Results:

The control and contaminated groups showed no significant difference in shear bond strength for the same adhesive system. However, shear bond strength of T group (17.03±4.91) was significantly higher than that of AS (8.58±1.73) and XS (10.39±4.06) groups (p<0.05). Regarding the bond failure pattern, TS group had significantly higher scores of no adhesive remaining on the tooth in the bonding area than other groups considering the adhesive remnant index (ARI) used to evaluate the amount of adhesive left on the enamel.

Conclusion:

Saliva contamination showed little influence on the 24-h shear bond strength of orthodontic brackets.  相似文献   

3.

Objectives

The aim of this study was to evaluate the strength of the bond between newly introduced self-adhesive resin cements and tooth structures (i.e., enamel and dentin).

Methods

Three self-adhesive cements (SmartCem2, RelyX Unicem, seT SDI) were tested. Cylindrical-shaped cement specimens (diameter, 3 mm; height, 3 mm) were bonded to enamel and dentin. Test specimens were incubated at 37 °C for 24 h. The shear bond strength (SBS) was tested in a Zwick Roll testing machine. Results were analyzed by one-way ANOVA and t-test. Statistically significant differences were defined at the α = 0.05 level. Bond failures were categorized as adhesive, cohesive, or mixed.

Results

The SBS values ranged from 3.76 to 6.81 MPa for cements bonded to enamel and from 4.48 to 5.94 MPa for cements bonded to dentin (p > 0.05 between surfaces). There were no statistically significant differences between the SBS values to enamel versus dentin for any given cement type. All cements exhibited adhesive failure at the resin/tooth interface.

Conclusions

Regardless of their clinical simplicity, the self-adhesive resin cements examined in this study exhibit limited bond performance to tooth structures; therefore, these cements must be used with caution.  相似文献   

4.

STATEMENT OF PROBLEM

The poor chemical bonding of a denture base resin to cast titanium framework often introduces adhesive failure and increases microleakage.

PURPOSE

This study evaluated the shear bond strengths of a heat cure denture base resin to commercially pure titanium, Ti-6Al-4V alloy and a cobalt-chromium alloy using two adhesive primers.

MATERIAL AND METHODS

Disks of commercially pure titanium, Ti-6Al-4V alloy and a cobalt-chromium alloy were cast. Specimens without the primer were also prepared and used as the controls. The shear bond strengths were measured on a screw-driven universal testing machine.

RESULTS

The primers significantly (P < .05) improved the shear bond strengths of the heat cure resin to all metals. However, the specimens primed with the Alloy primer® (MDP monomer) showed higher bond strength than those primed with the MR bond® (MAC-10 monomer) on titanium. Only adhesive failure was observed at the metal-resin interface in the non-primed specimens, while the primed specimens showed mixed failure of adhesive and cohesive failure.

CONCLUSIONS

The use of appropriate adhesive metal primers makes it possible not only to eliminate the need for surface preparation of the metal framework before applying the heat cure resins, but also reduce the need for retentive devices on the metal substructure. In particular, the Alloy primer®, which contains the phosphoric acid monomer, MDP, might be clinically more acceptable for bonding a heat cure resin to titanium than a MR bond®, which contains the carboxylic acid monomer, MAC-10.  相似文献   

5.

Objective

The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM.

Material and Methods

Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group): direct composite resin restoration (Alert) with etch-and-rinse adhesive system (Bond 1 primer/adhesive), Group 2: indirect composite restoration (Estenia) luted with a resin cement (Cement-It) combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond), Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively) onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student''s t-test. The failure modes of all groups were also evaluated.

Results

The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7) showed better results compared to the other groups (p<0.05). Group 4 showed the weakest bond strength (p>0.05). The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure.

Conclusion

The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces.  相似文献   

6.

Objective:

To evaluate the effect of optional phosphoric acid etching on the shear bond strength (SBS) of two self-etch adhesives to enamel and dentin.

Material and Methods:

Ninety-six bovine mandibular incisors were ground flat to obtain enamel and dentin substrates. A two-step self-etch adhesive (FL-Bond II) and a one-step self-etch adhesive (BeautiBond) were applied with and without a preliminary acid etching to both the enamel and dentin. The specimens were equally and randomly assigned to 4 groups per substrate (n=12) as follows: FL-Bond II etched; FL-Bond II un-etched; BeautiBond etched; BeautiBond un-etched. Composite cylinders (Filtek Z100) were bonded onto the treated tooth structure. The shear bond strength was evaluated after 24 hours of storage (37ºC, 100% humidity) with a testing machine (Ultra-tester) at a speed of 1 mm/min. The data was analyzed using a two-way ANOVA and post-hoc Tukey''s test with a significance level of p<0.05. A field emission scanning electron microscope was used for the failure mode analysis.

Results:

Both adhesives evidenced a significant decrease in the dentin SBS with the use of an optional phosphoric acid-etching step (p<0.05). Preliminary phosphoric acid etching yielded significantly higher enamel SBS for FL-Bond II (p<0.05) only, but not for BeautiBond. FL-Bond II applied to un-etched dentin demonstrated the highest mean bond strength (37.7±3.2 MPa) and BeautiBond applied to etched dentin showed the lowest mean bond strength (18.3±6.7 MPa) among all tested groups (p<0.05).

Conclusion:

The use of a preliminary acid-etching step with 37.5% phosphoric acid had a significant adverse effect on the dentin bond strength of the self-etch adhesives evaluated while providing improvement on the enamel bond strength only for FL-Bond II. This suggests that the potential benefit that may be derived from an additional etching step with phosphoric acid does not justify the risk of adversely affecting the bond strength to dentin.  相似文献   

7.

PURPOSE

The accuracy of a gypsum model (GM), which was taken using a conventional silicone impression technique, was compared with that of a polyurethane model (PM), which was taken using an iTero™ digital impression system.

MATERIALS AND METHODS

The maxillary first molar artificial tooth was selected as the reference tooth. The GMs were fabricated through a silicone impression of a reference tooth, and PMs were fabricated by a digital impression (n=9, in each group). The reference tooth and experimental models were scanned using a 3 shape convince™ scan system. Each GM and PM image was superimposed on the registered reference model (RM) and 2D images were obtained. The discrepancies of the points registered on the superimposed images were measured and defined as GM-RM group and PM-RM group. Statistical analysis was performed using a Student''s T-test (α=0.05).

RESULTS

A comparison of the absolute value of the discrepancy revealed a significant difference between the two groups only at the occlusal surface. The GM group showed a smaller mean discrepancy than the PM group. Significant differences in the GM-RM group and PM-RM group were observed in the margins (point a and f), mesial mid-axial wall (point b) and occlusal surfaces (point c and d).

CONCLUSION

Under the conditions examined, the digitally fabricated polyurethane model showed a tendency for a reduced size in the margin than the reference tooth. The conventional gypsum model showed a smaller discrepancy on the occlusal surface than the polyurethane model.  相似文献   

8.

Background

This paper aimed to study the effect of two enamel protective agents on the shear bond strength (SBS) of orthodontic brackets bonded with conventional and self-etching primer (SEP) adhesive systems.

Methods

The two protective agents used were resin infiltrate (ICON) and Clinpro; the two adhesive systems used were self-etching primer system (Transbond Plus Self Etching Primer + Transbond XT adhesive) and a conventional adhesive system (37% phosphoric acid etch + Transbond XT primer + Transbond XT adhesive ). Sixty premolars divided into three major groups and six subgroups were included. The shear bond strength was tested 72 h after bracket bonding. Adhesive remnant index scores (ARI) were assessed. Statistical analysis consisted of a one-way ANOVA for the SBS and Kruskal-Wallis test followed by Mann-Whitney test for the ARI scores.

Results

In the control group, the mean SBS when using the conventional adhesive was 21.1 ± 7.5 MPa while when using SEP was 20.2 ± 4.0 MPa. When ICON was used with the conventional adhesive system, the SBS was 20.2 ± 5.6 MPa while with SEP was 17.6 ± 4.1 MPa. When Clinpro was used with the conventional adhesive system, the SBS was 24.3 ± 7.6 MPa while with SEP was 11.2 ± 3.5 MPa. Significant differences in the shear bond strength of the different groups (P = .000) was found as well as in the ARI scores distribution (P = .000).

Conclusion

The type of the adhesive system used to bond the orthodontic brackets, either conventional or self-etching primer, influenced the SBS, while the enamel protective material influenced the adhesive remnant on the enamel surface after debonding.  相似文献   

9.

Objective

The oral environment is subject to biofilm accumulation and cariogenic challenge, and few studies exist on the effect of these factors on the bond strength of adhesive systems. The aim of this study was to test if the exposure of adhesive interfaces to cariogenic challenge under biofilm accumulation could promote higher degradation than the exposure to biofilm accumulation alone.

Material And Methods

Five molars were ground until exposure of medium dentin and then restored (Single Bond 2 and Z250 3M ESPE). The tooth/resin sets were cut to obtain beam-shaped specimens, which were distributed according to the aging conditions (n=20): water for 24 h (control); biofilm under cariogenic challenge for 3, 5 or 10 days; biofilm without cariogenic challenge for 10 days; and water for 3 months. Microcosm biofilms were formed from human saliva and grown in a saliva analogue medium, supplemented or not with sucrose to promote cariogenic challenge. Specimens were tested for microtensile bond strength, and failure modes were classified using light microscopy. Bond strength data were analyzed using ANOVA and failure modes were analyzed using ANOVA on ranks (α=0.05).

Results

No significant differences in bond strength were detected among the aging methods (P=0.248). The aging period was associated with an increase in the frequency of adhesive failures for the groups aged for 10 days or longer (P<0.001).

Conclusion

Aging leads to a higher prevalence of interfacial adhesive failures, although this effect is not associated with cariogenic challenge or reduction in bond strengths.  相似文献   

10.

PURPOSE

Bonding agents (BA) are the crucial weak link of composite restorations. Since the commercial materials'' compositions are not disclosed, studies to formulize the optimum ratios of different components are of value. The aim of this study was to find a proper formula of BAs.

MATERIALS AND METHODS

This explorative experimental in vitro study was composed of 4 different sets of extensive experiments. A commercial BA and 7 experimental formulas were compared in terms of degree of conversion (5 experimental formulas), shear bond strength, mode of failure, and microleakage (3 experimental formulas). Statistical analyses were performed (α=.05). The DC of selected formula was tested one year later.

RESULTS

The two-way ANOVA indicated a significant difference between the shear bond strength (SBS) of two tissues (dentin vs. enamel, P=.0001) in a way that dentinal bonds were weaker. However, there was no difference between the four materials (P=.283). The adhesive mode of failure was predominant in all groups. No differences between the microleakage of the four materials at occlusal (P=.788) or gingival (P=.508) sites were detected (Kruskal-Wallis). The Mann-Whitney U test showed a significant difference between the microleakage of all materials (3 experimental formulas and a commercial material) together at the occlusal site versus the gingival site (P=.041).

CONCLUSION

A formula with 62% bisphenol A-glycidyl methacrylate (Bis-GMA), 37% hydroxy ethyl methacrylate (HEMA), 0.3% camphorquinone (CQ), and 0.7% dimethyl-para-toluidine (DMPT) seems a proper formula for mass production. The microleakage and SBS might be respectively higher and lower on dentin compared to enamel.  相似文献   

11.

PURPOSE

This study evaluated the adhesion of 10-MDP containing self-etch and self-adhesive resin cements to dentin with and without the use of etch-and-rinse technique.

MATERIALS AND METHODS

Human third molars (N=180) were randomly divided into 6 groups (n=30 per group). Conventional (Panavia F2.0, Kuraray-PAN) and self-adhesive resin cements (Clearfil SA, Kuraray-CSA) were bonded to dentin surfaces either after application of 3-step etch-and-rinse (35% H3PO4 + ED Primer) or two-step self-etch adhesive resin (Clearfil SE Bond). Specimens were subjected to shear bond strength test using the universal testing machine (0.5 mm/min). The failure types were analyzed using a stereomicroscope and quality of hybrid layer was observed under a scanning electron microscope. The data (MPa) were analyzed using two-way ANOVA and Tukey''s tests (α=.05).

RESULTS

Overall, PAN adhesive cement showed significantly higher mean bond strength (12.5 ± 2.3 - 14.1 ± 2.4 MPa) than CSA cement (9.3 ± 1.4 - 13.9 ± 1.9 MPa) (P<.001). Adhesive failures were more frequent in CSA cement groups when used in conjunction with two-step self-adhesive (68%) or no adhesive at all (66%). Hybrid layer quality was inferior in CSA compared to PAN cement in all conditions.

CONCLUSION

In clinical situations where bonding to dentin substrate is crucial, both conventional and self-adhesive resin cements based on 10-MDP can benefit from etch-and-rinse technique to achieve better quality of adhesion in the early clinical period.  相似文献   

12.

Objectives

The aims of this study were to evaluate the effect of resin composite (Filtek Z250 and Filtek Flow Z350) and adhesive system [(Solobond Plus, Futurabond NR (VOCO) and Adper Single Bond (3M ESPE)] on the microtensile (µTBS) and microshear bond strength (µSBS) tests on enamel, and to correlate the bond strength means between them.

Material and methods

Thirty-six extracted human molars were sectioned to obtain two tooth halves: one for µTBS and the other one for µSBS. Adhesive systems and resin composites were applied to the enamel ground surfaces and light-cured. After storage (37ºC/24 h) specimens were stressed (0.5 mm/ min). Fracture modes were analyzed under scanning electron microscopy. The data were analyzed using two-way ANOVA and Tukey''s test (α=0.05).

Results

The correlation between tests was estimated with Pearson''s product-moment correlation statistics (α =0.05). For both tests only the main factor resin composite was statistically significant (p<0.05). The correlation test detected a positive (r=0.91) and significant (p=0.01) correlation between the tests.

Conclusions

The results were more influenced by the resin type than by the adhesives. Both microbond tests seem to be positive and linearly correlated and can therefore lead to similar conclusions.  相似文献   

13.

PURPOSE

To compare the shear bond strength of various veneering materials to grade II commercially pure titanium (CP-Ti).

MATERIALS AND METHODS

Thirty specimens of CP-Ti disc with 9 mm diameter and 10 mm height were divided into three experimental groups. Each group was bonded to heat-polymerized acrylic resin (Lucitone 199), porcelain (Triceram), and indirect composite (Sinfony) with 7 mm diameter and 2 mm height. For the control group (n=10), Lucitone 199 were applied on type IV gold alloy castings. All samples were thermocycled for 5000 cycles in 5-55℃ water. The maximum shear bond strength (MPa) was measured with a Universal Testing Machine. After the shear bond strength test, the failure mode was assessed with an optic microscope and a scanning electron microscope. Statistical analysis was carried out with a Kruskal-Wallis Test and Mann-Whitney Test.

RESULTS

The mean shear bond strength and standard deviations for experimental groups were as follows: Ti-Lucitone 199 (12.11 ± 4.44 MPa); Ti-Triceram (11.09 ± 1.66 MPa); Ti-Sinfony (4.32 ± 0.64 MPa). All of these experimental groups showed lower shear bond strength than the control group (16.14 ± 1.89 MPa). However, there was no statistically significant difference between the Ti-Lucitone 199 group and the control group, and the Ti-Lucitone 199 group and the Ti-Triceram group. Most of the failure patterns in all experimental groups were adhesive failures.

CONCLUSION

The shear bond strength of veneering materials such as heat-polymerized acrylic resin, porcelain, and indirect composite to CP-Ti was compatible to that of heatpolymerized acrylic resin to cast gold alloy.  相似文献   

14.

PURPOSE

Over the past years, the adhesion of fiber posts luted with simplified adhesive systems has been a matter of great interest. The aim of this study was to assess the post retentive potential of a self-adhesive resin cement using different adhesive systems to compare the push-out bond strengths of fiber posts.

MATERIALS AND METHODS

The post spaces of 56 mandibular premolar roots were prepared and divided into 4 experimental groups and further divided into 2 subgroups according to testing time (n=7). The fiber posts (Rely X Fiber Post) were luted with a self-adhesive resin cement (RelyX Unicem) and one of the following adhesive systems: no adhesive, a total-etch adhesive resin (Single Bond), a two-step self-etch adhesive resin (Clearfil SE Bond) and a one-step self-etch adhesive resin (Clearfil S3 Bond). Each root was cut horizontally, and 1.5 mm thick six root segments were prepared. Push-out tests were performed after one week or three months (0.5 mm/min). Statistical analysis were performed with three-way ANOVA (α=.05).

RESULTS

Cervical root segments showed higher bond strength values than middle segments. Adhesive application increased the bond strength. For one week group, the total-etch adhesive resin Single Bond showed higher bond strength than the self-adhesive resin cement RelyX Unicem applied without adhesive resin at middle region. For 3 months group, the two-step self-etch adhesive resin Clearfil SE Bond showed the highest bond strength for both regions. Regarding the time considered, Clearfil SE Bond 3 months group showed higher bond strength values than one week group.

CONCLUSION

Using the adhesive resins in combination with the self-adhesive resin cement improves the bond strengths. The bond strength values of two-step self-etch adhesive resin Clearfil SE Bond improved as time passes.  相似文献   

15.

Objective

To evaluate the shear bond strength of one-step self-etch adhesives with different co-solvent ingredients to dry or moist dentin.

Materials and methods

A total of 60 extracted teeth were used in this study, and were divided according to the adhesive systems and dentin conditions into 6 groups of 10 teeth each [Xeno III – dry dentin, Xeno III – moist dentin, Adper Prompot L-Pop – dry dentin, Adper Prompot L-Pop – moist dentin, iBond – dry dentin, and iBond – moist dentin]. Resin composite cylinder was built up on each specimen, and then thermocycled. A shear load was applied to the specimens using universal testing (Instron machine) at a cross-head speed of 0.5 mm/min until failure occurred. Data were statistically analyzed by one-way ANOVA and Bonferroni multiple comparison test at 95% confidence level.

Results and conclusion

Based on the findings of this study: The highest mean shear bond strength to dry dentin was seen when Xeno III containing ethanol co-solvent ingredient was used. The highest mean shear bond strength to moist dentin was seen when iBond which contains acetone co-solvent ingredient was used. In the absence of a co-solvent ingredient in self-etch adhesive (Adper Prompot L-Pop), the mean shear bond strengths to dry and moist dentin were low with no significant difference between them.  相似文献   

16.

Introduction:

Disinfection of dentin surfaces is desirable so long as it does not interfere with subsequent bonding of adhesive resins.

Objective:

To test the null hypothesis that bond strengths to dentin are not affected by previous application of an iodine disinfecting solution.

Materials and Methods:

Twenty-four extracted non-carious molars were selected. Occlusal enamel was removed producing a flat dentin substrate. Test teeth were all treated with 2% Iodine disclosing/disinfecting solution (I2DDS) for 20 sec and rinsed for 20 sec followed by the application of self- or total- etching bonding systems, generating five adhesive groups (n=3): Single Bond;; Prime & Bond NT; Clearfil SE Bond; Opti-Bond Plus. The control groups (n=3 per adhesive) had no disclosing/disinfectant application prior to adhesive application. A 4-mm thick resin restoration was built up on each tooth for microtensile testing. Statistical analyses between experimental and control groups were performed by student''s t-test (α = 0.05).

Results:

In general, experimental groups (previously treated with I2DDS) showed significantly lower bond strength values when compared with their respective controls (p<0.05), except for group Prime &Bond I2 that did not significantly differ from its control (p>0.05).

Conclusion:

Acetone-base adhesive systems seem not to be affected by the application of I2DDS prior to etching and bonding procedures.  相似文献   

17.

Background:

Erbium, chromium: Yttrium, scandium, gallium, garnet (Er, Cr: YSGG) laser has been successfully used in the ablation of dental hard and soft tissues. It has been reported that this system is also useful for preparing tooth surfaces and etching, but no consensus exist in the literature regarding the advantage of lasers over conventional tooth preparation technique.

Materials and Methods:

Labial surfaces of 25 extracted human maxillary central incisors were divided into two halves. Right half was prepared with diamond bur and left half with Er, Cr; YSGG laser and a reduction of 0.3–0.5 mm was carried out. Topography of prepared surfaces of five teeth were examined under scanning electron microscope (SEM). The remaining samples were divided into 4 groups of 10 specimens each based on the surface treatment received: One group was acid etched and other was nonetched. Composite resin cylinders were bonded on prepared surfaces and shear bond strength was assessed using a universal testing machine.

Results:

The SEM observation revealed that the laser prepared surfaces were clean, highly irregular and devoid of a smear layer. Bur prepared surfaces were relatively smooth but covered with smear layer.Highest bond strength was shown by laser prepared acid etched group, followed by bur prepared the acid etched group. The bur prepared nonacid etched group showed least bond strength.

Conclusions:

Er, Cr: YSGG laser can be used for preparing tooth and bond strength value achieved by laser preparation alone without surface treatment procedure lies in the range of clinical acceptability.Key Words: Acid etching, bond strength, erbium, chromium: Yttrium, scandium, gallium, garnet laser, laser etching, scanning electron microscope  相似文献   

18.

Objective

To determine the influence of the light curing units on the shear bond strength of orthodontic brackets.

Material and Methods

Seventy-two premolars were divided into six groups (n=12): Group I: brackets bonded with Transbond and polymerization with halogen light; Group II: Transbond and LED; Group III: Fuji Ortho and halogen light; Group IV: Fuji Ortho and LED; Group V: Fuji Ortho, without acid and halogen light; Group VI: Fuji Ortho, without acid and LED. The groups were tested to shear strength in a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed statistically by ANOVA and Tukey’s test.

Results

The composite resin presented higher shear bond strength than the resin-modified glass ionomer cement (p<0.05). The halogen light and LED sources produced similar shear bond strength (p>0.05).

Conclusion

The shear bond strength was influenced by the material but not by the light-curing unit. The use of LED reduced the experimental time by approximately 60%, with the same curing efficiency.  相似文献   

19.
Ozone is an important disinfecting agent, however its influence on enamel adhesion has not yet been clarified.

Objective:

Evaluate the influence of ozone pretreatment on the shear strength of an etch-and-rinse and a self-etch system to enamel and analyze the respective failure modes.

Material and Methods:

Sixty sound bovine incisors were used. Specimens were randomly assigned to four experimental groups (n=15): Group G1 (Excite® with ozone) and group G3 (AdheSE® with ozone) were prepared with ozone gas from the HealOzone unit (Kavo®) for 20 s prior to adhesion, and groups G2 (Excite®) and G4 (AdheSE®) were used as control. Teeth were bisected and polished to simulate a smear layer just before the application of the adhesive systems. The adhesives were applied according to the manufacturer''s instructions to a standardized 3 mm diameter surface, and a composite (Synergy D6, Coltene Whaledent) cylinder with 2 mm increments was build. Specimens were stored in 100% humidity for 24 h at 37º C and then subjected to a thermal cycling regimen of 500 cycles. Shear bond tests were performed with a Watanabe device in a universal testing machine at 5 mm/min. The failure mode was analyzed under scanning electron microscope. Means and standard deviation of shear bond strength (SBS) were calculated and difference between the groups was analyzed using ANOVA, Kolmogorov-Smirnov, Levene and Bonferroni. Chi-squared statistical tests were used to evaluate the failure modes.

Results:

Mean bond strength values and failure modes were as follows: G1- 26.85±6.18 MPa (33.3% of adhesive cohesive failure); G2 - 27.95±5.58 MPa (53.8% of adhesive failures between enamel and adhesive); G3 - 15.0±3.84 MPa (77.8% of adhesive failures between enamel and adhesive) and G4 - 13.1±3.68 MPa (36.4% of adhesive failures between enamel and adhesive).

Conclusions:

Shear bond strength values of both adhesives tested on enamel were not influenced by the previous application of ozone gas.  相似文献   

20.

PURPOSE

The aim of this study was to evaluate the influence of resin cement thickness on the microtensile bond strength between zirconium-oxide ceramic and resin cement.

MATERIALS AND METHODS

Thirty-two freshly extracted molars were transversely sectioned at the deep dentin level and bonded to air-abraded zirconium oxide ceramic disks. The specimens were divided into 8 groups based on the experimental conditions (cement type: Rely X UniCem or Panavia F 2.0, cement thickness: 40 or 160 µm, storage: thermocycled or not). They were cut into microbeams and stored in 37℃ distilled water for 24 h. Microbeams of non-thermocycled specimens were submitted to a microtensile test, whereas those of thermocycled groups were thermally cycled for 18,000 times immediately before the microtensile test. Three-way ANOVA and Sheffe''s post hoc tests were used for statistical analysis (α=95%).

RESULTS

All failures occurred at the resin-zirconia interface. Thermocycled groups showed lower microtensile bond strength than non-thermocycled groups (P<.001). Differences in cement thickness did not influence the resin-zirconia microtensile bond strength given the same resin cement or storage conditions (P>.05). The number of adhesive failures increased after thermocycling in all experimental conditions. No cohesive failure was observed in any experimental group.

CONCLUSION

When resin cements of adhesive monomers are applied over air-abraded zirconia restorations, the degree of fit does not influence the resin-zirconia microtensile bond strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号