首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cortactin in tumor invasiveness   总被引:3,自引:0,他引:3  
Weaver AM 《Cancer letters》2008,265(2):189-166
Cortactin is a cytoskeletal protein and src kinase substrate that is frequently overexpressed in cancer. Animal studies suggest that cortactin overexpression increases tumor aggressiveness, possibly through promotion of tumor invasion and metastasis. Recently, many studies have documented a role for cortactin in promoting cell motility and invasion, including a critical role in invadopodia, actin rich-subcellular protrusions associated with degradation of the extracellular matrix by cancer cells. Here, I review the evidence and potential mechanisms for cortactin as a critical mediator of tumor cell invasion.  相似文献   

2.
Astro V  Asperti C  Cangi MG  Cangi G  Doglioni C  de Curtis I 《Oncogene》2011,30(15):1841-1849
Migration of cells and degradation of the extracellular matrix (ECM) are required for efficient tumor cell invasion, but the underlying molecular mechanisms are only partially known. The PPFIA1 gene for liprin-α1 is frequently amplified in human breast cancers. We recently demonstrated that liprin-α1 is an important regulator of cell edge dynamics during motility. We show, herein, that the liprin-α1 protein is highly expressed in human breast tumors. Functional analysis shows that liprin-α1 is specifically required for the migration and invasion of highly invasive human breast cancer MDA-MB-231 cells. We used time-lapse analysis to demonstrate defects in the motility of liprin-α1-depleted cells that include a striking instability of the lamellipodia. Liprin-α1 levels altered by either RNA interference or overexpression affected also cell spreading and the number of invadopodia per cell, but not the density of invadopodia per unit of surface area. On the other hand, silencing of liprin-α1 inhibited the degradation of the ECM, whereas its overexpression enhanced degradation, resulting in significant negative or positive effects, respectively, on the area of degradation per invadopodium. Transfection of fluorescent-labeled cortactin revealed that depletion of liprin-α1 also affected the assembly and disassembly of invadopodia, with decrease of their lifetime. Our results strongly support a novel important role of liprin-α1 in the regulation of human tumor cell invasion.  相似文献   

3.
Invadopodia are branched actin-rich structures associated with extracellular matrix (ECM) degradation that collectively form the invasive machinery of aggressive cancer cells. Cortactin is a prominent component and a specific marker of invadopodia. Amplification of cortactin is associated with poor prognosis in head and neck squamous cell carcinomas (HNSCC), possibly because of its activity in invadopodia. Although the role of cortactin in invadopodia has been attributed to signaling and actin assembly, it is incompletely understood. We made HNSCC cells deficient in cortactin by RNA interference knockdown methods. In these cortactin knockdown cells, invadopodia were reduced in number and lost their ability to degrade ECM. In the reverse experiment, overexpression of cortactin dramatically increased ECM degradation, far above and beyond the effect on formation of actin/Arp3-positive invadopodia puncta. Secretion of matrix metalloproteinases (MMP) MMP-2 and MMP-9, as well as plasma membrane delivery of MT1-MMP correlated closely with cortactin expression levels. MMP inhibitor treatment of control cells mimicked the cortactin knockdown phenotype, with abolished ECM degradation and fewer invadopodia, suggesting a positive feedback loop in which degradation products from MMP activity promote new invadopodia formation. Collectively, these data suggest that a major role of cortactin in invadopodia is to regulate the secretion of MMPs and point to a novel mechanism coupling dynamic actin assembly to the secretory machinery, producing enhanced ECM degradation and invasiveness. Furthermore, these data provide a possible explanation for the observed association between cortactin overexpression and enhanced invasiveness and poor prognosis in HNSCC patients.  相似文献   

4.
Metastatic tumor cells that actively migrate and invade surrounding tissues rely on invadopodia to degrade extracellular matrix (ECM) barriers. Invadopodia are membrane protrusions that localize enzymes required for ECM degradation. Little is known about the formation, function, and regulation of invadopodia. Here, we show that invadopodia have two distinct aspects: (a) structural for organizing the cellular actin cytoskeleton to form membrane protrusions and (b) functional for using proteolytic enzyme(s) for ECM degradation. Small interfering RNA (siRNA) inhibition established that organization of invadopodia structure requires cortactin, whereas protease inhibitor studies identified membrane type 1 matrix metalloproteinase (MT1-MMP) as the key invadopodial enzyme responsible for gelatin matrix degradation in the breast carcinoma cell line MDA-MB-231. The inhibition of invadopodial structure assembly by cortactin depletion resulted in a block of matrix degradation due to failure of invadopodia formation. Either protease inhibition or MT1-MMP siRNA depletion moderately decreased the formation of invadopodial structures that were identified as actin-cortactin accumulations at the ventral cell membrane adherent to matrix. The invadopodia that were able to form upon MT1-MMP inhibition or depletion retained actin-cortactin accumulations but were unable to degrade matrix. Examination of cells at different time points as well as live-cell imaging revealed four distinct invadopodial stages: membrane cortactin aggregation at membranes adherent to matrix, MT1-MMP accumulation at the region of cortactin accumulation, matrix degradation at the invadopodia region, and subsequent cortactin dissociation from the area of continued MT1-MMP accumulation associated with foci of degraded matrix. Based on these results, we propose a stepwise model of invadopodia formation and function.  相似文献   

5.
We recently identified an endomembrane-based signalling cascade that is activated by the KDEL receptor (KDELR) on the Golgi complex. At the Golgi, the KDELR acts as a traffic sensor (presumably via binding to chaperones that leave the ER) and triggers signalling pathways that balance membrane fluxes between ER and Golgi. One such pathway relies on Gq and Src. Here, we examine if KDELR might control other cellular modules through this pathway. Given the central role of Src in extracellular matrix (ECM) degradation, we investigated the impact of the KDELR-Src pathway on the ability of cancer cells to degrade the ECM. We find that activation of the KDELR controls ECM degradation by increasing the number of the degradative structures known as invadopodia. The KDELR induces Src activation at the invadopodia and leads to phosphorylation of the Src substrates cortactin and ASAP1, which are required for basal and KDELR-stimulated ECM degradation. This study furthers our understanding of the regulatory circuitry underlying invadopodia-dependent ECM degradation, a key phase in metastases formation and invasive growth.  相似文献   

6.
Invadopodium formation is a crucial early event of invasion and metastasis of hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying regulation of invadopodia remain elusive. This study aimed to investigate the potential role of discs large homolog 5 (Dlg5) in invadopodium formation and function in HCC. We found that Dlg5 expression was significantly lower in human HCC tissues and cell lines than adjacent nontumor tissues and liver cells. Lower Dlg5 expression was associated with advanced stages of HCC, and poor overall and disease‐free survival of HCC patients. Dlg5‐silencing promoted epithelial–mesenchymal transition, invadopodium formation, gelatin degradation function, and invadopodium‐associated invasion of HepG2 cells. In contrast, Dlg5 overexpression inhibited epithelial–mesenchymal transition, functional invadopodium formation, and invasion of SK‐Hep1 cells. Both Girdin and Tks5, but not the Tks5 nonphosphorylatable mutant, were responsible for the enhanced invadopodium formation and invasion of Dlg5‐silenced HepG2 cells. Furthermore, Dlg5 interacted with Girdin and interfered with the interaction of Girdin and Tks5. Dlg5 silencing promoted Girdin and Tks5 phosphorylation, which was abrogated by Girdin silencing and rescued by inducing shRNA‐resistant Girdin expression. Moreover, Dlg5 overexpression significantly inhibited HCC intrahepatic and lung metastasis in vivo. Taken together, our data indicate that Dlg5 acts as a novel regulator of invadopodium‐associated invasion via Girdin and by interfering with the interaction between Girdin and Tks5, which might be important for Tks5 phosphorylation in HCC cells. Conceivably, Dlg5 may act as a new biomarker for prognosis of HCC patients.  相似文献   

7.
During metastasis, invading cells produce various actin-based membrane protrusions that promote directional migration and proteolysis of extracellular matrix (ECM). Observations of actin staining within thin, tubulin-based microtentacle (McTN) protrusions in suspended MDA-MB-231 tumor cells, prompted an investigation of whether McTNs are structural or functional analogs of invadopodia. We show here that MDA-MB-231 cells are capable of producing invadopodia and McTNs, both of which contain F-actin. Invadopodium formation was enhanced by the expression of a constitutively active c-Src kinase, and repressed by the expression of dominant-negative, catalytically inactive form of c-Src. In contrast, expression of inactive c-Src significantly increased McTN formation. Direct inhibition of c-Src with the SU6656 inhibitor compound also significantly enhanced McTN formation, but suppressed invadopodia, including the appearance of F-actin cores and phospho-cortactin foci, as well as completely blocking focal degradation of ECM. In addition, silencing of Tks5 in Src-transformed fibroblasts blocked invadopodia without affecting McTNs. Genetic modification of c-Src activity that promoted McTN formation augmented capillary retention of circulating tumor cells in vivo and rapid re-attachment of suspended cells in vitro, even though invadopodia were strongly suppressed. These results indicate that McTNs are capable of enhancing tumor cell reattachment, even in the absence of Tks5 and active Src, and define separate cytoskeletal mechanisms and functions for McTNs and invadopodia.  相似文献   

8.
Carcinoma cell motility and invasion are prerequisites for tumor cell metastasis, which requires regulation of the actin cytoskeleton. Cortactin is an actin-related protein 2/3 (Arp2/3) complex-activating and filamentous (F)-actin-binding protein that is implicated in tumor cell motility and metastasis, partially by its ability to become tyrosine phosphorylated. Cortactin is encoded by the CTTN gene and maps to chromosome 11q13, a region amplified in many carcinomas, including head and neck squamous cell carcinoma (HNSCC). CTTN gene amplification is associated with lymph node metastasis and poor patient outcome, and cortactin overexpression enhances motility in tumor cells lacking 11q13 amplification. However, a direct link between increased motility and invasion has not been reported in tumor cells with chromosome 11q13 amplification and cortactin overexpression. In this study, we have examined the relationship between CTTN amplification and tumor cell motility in HNSCC. In 11 of 39 (28%) HNSCC cases, cortactin overexpression determined by immunohistochemistry correlates with lymph node metastasis and CTTN gene amplification. HNSCC cells containing cortactin gene amplification and protein overexpression display increased binding and activation of Arp2/3 complex, and were more motile and invasive than HNSCC cells lacking CTTN amplification. Down-regulation of cortactin expression in CTTN-amplified HNSCC cells by small interfering RNA impairs HNSCC motility and invasion. Treatment of HNSCC cells with the epidermal growth factor receptor inhibitor gefitinib inhibits HNSCC motility and down-regulates cortactin tyrosine phosphorylation. These data suggest that cortactin may be a valid prognostic and therapeutic marker for invasive and metastatic HNSCC and other carcinomas with 11q13 amplification.  相似文献   

9.
Cellular migration, coupled with the degradation of the extracellular matrix (ECM), is a key step in tumor invasion and represents a promising therapeutic target in malignant tumors. Focal adhesions (FAs) and invadopodia, which are distinct actin‐based cellular structures, play key roles in cellular migration and ECM degradation, respectively. The molecular machinery coordinating the dynamics between FAs and invadopodia is not fully understood, although several lines of evidence suggest that the disassembly of FAs is an important step in triggering the formation of invadopodia. In a previous study, we identified the ZF21 protein as a regulator of both FA turnover and invadopodia‐dependent ECM degradation. ZF21 interacts with multiple factors for FA turnover, including focal adhesion kinase (FAK), microtubules, m‐Calpain, and Src homology region 2‐containing protein tyrosine phosphatase 2 (SHP‐2). In particular, the dephosphorylation of FAK by ZF21 is a key event in tumor invasion. However, the precise role of ZF21 binding to FAK remains unclear. We established a method to disrupt the interaction between ZF21 and FAK using the FAK‐binding NH2‐terminal region of ZF21. Tumor cells expressing the ZF21‐derived polypeptide had significantly decreased FA turnover, migration, invadopodia‐dependent ECM degradation, and Matrigel invasion. Furthermore, the expression of the polypeptide inhibited an early step of experimental lung metastasis in mice. These findings indicate that the interaction of ZF21 with FAK is necessary for FA turnover as well as ECM degradation at the invadopodia. Thus, ZF21 is a potential regulator that coordinates the equilibrium between FA turnover and invadopodia activity by interacting with FAK.  相似文献   

10.
In a previous study, our research group observed that estrogen promotes the metastasis of non-small cell lung cancer (NSCLC) through the estrogen receptor β (ERβ). Invadopodia are key structures involved in tumor metastasis. However, it is unclear whether ERβ is involved in the promotion of NSCLC metastasis through invadopodia. In our study, we used scanning electron microscopy to observe the formation of invadopodia following the overexpression of ERβ and treatment with E2. In vitro experiments using multiple NSCLC cell lines demonstrated that ERβ can increase the formation of invadopodia and cell invasion. Mechanistic studies revealed that ERβ can upregulate the expression of ICAM1 by directly binding to estrogen-responsive elements (EREs) located on the ICAM1 promoter, which in turn can enhance the phosphorylation of Src/cortactin. We also confirmed these findings in vivo using an orthotopic lung transplantation mouse model, which validated the results obtained from the in vitro experiments. Finally, we examined the expressions of ERβ and ICAM1 using immunohistochemistry in both NSCLC tissue and paired metastatic lymph nodes. The results confirmed that ERβ promotes the formation of invadopodia in NSCLC cells through the ICAM1/p-Src/p-Cortactin signaling pathway.  相似文献   

11.
Ligand-induced receptor down-regulation by endocytosis is a critical process regulating the intensity and duration of receptor tyrosine kinase signaling. Ubiquitylation of specific receptor tyrosine kinases, for example, the epidermal growth factor receptor (EGFR) by the E3 ubiquitin ligase c-Cbl, provides a sorting signal for lysosomal degradation and leads to termination of receptor signaling. Cortactin, which couples the endocytic machinery to dynamic actin networks, is encoded by EMS1, a gene commonly amplified in breast and head and neck cancers. One mechanism whereby cortactin overexpression contributes to tumor progression is by enhancing tumor cell invasion and metastasis. However, in this study, we show that overexpression of cortactin in HeLa cells markedly inhibits ligand-induced down-regulation of the EGFR. This is independent of alterations in receptor autophosphorylation and correlates with impaired c-Cbl phosphorylation and association with the EGFR, reduced EGFR ubiquitylation, and sustained EGF-induced extracellular signal-regulated kinase activation. Furthermore, analysis of a panel of head and neck squamous cell carcinoma (HNSCC) cell lines revealed that cortactin overexpression is associated with attenuated ligand-induced EGFR down-regulation. Importantly, RNAi-mediated reduction of cortactin expression in an 11q13-amplified HNSCC cell line accelerates EGFR degradation. This represents the first demonstration of modulation of growth factor receptor signaling by cortactin. Moreover, enhanced EGFR signaling due to cortactin overexpression may provide an alternative explanation for EMS1 gene amplification in human cancers.  相似文献   

12.
Liu J  Huang C  Zhan X 《Oncogene》1999,18(48):6700-6706
Fibroblast growth factor 1 (FGF-1) is a potent chemotactic factor and induces tyrosine phosphorylation of a cortical actin-associated protein (cortactin). The tyrosine phosphorylation of cortactin induced by FGF-1 requires the tyrosine residues 421, 482 and 466, which are targeted by the protein tyrosine kinase Src in vitro. Furthermore, FGF-1 is unable to induce tyrosine phosphorylation of cortactin within the cells derived from Src knockout mice (Src-/-), indicating that Src is required for the tyrosine phosphorylation of cortactin induced by FGF-1. Although Src-/- cells are able to undergo rapid proliferation, they are impaired to respond to FGF-1 for the shape change and cell migration. Morphological analysis further reveals that FGF-1 fails to induce the formation of polarized lamellipodia and the translocation of cortactin into the leading edge of Src-/- cells. Consistent with the mitogenic response to FGF-1, the lack of Src does not affect the tyrosine phosphorylation of Snt (or Frs2), a FGF-1 early signaling protein that links to Ras. Therefore, our data support the notion that Src and cortactin participate in a FGF signal pathway for cell migration and shape change rather than mitogenesis.  相似文献   

13.
Piao Y  Lu L  de Groot J 《Neuro-oncology》2009,11(3):260-273
High-grade gliomas release excitotoxic concentrations of glutamate, which has been shown to enhance tumor proliferation and migration. alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) glutamate receptors are abundantly expressed at the invading edge of glioblastoma specimens, suggesting they may play an important biologic role in tumor invasion. In this study, we examined potential mechanisms by which AMPA receptor (AMPAR) expression and stimulation promote glioma cell migration and invasion. Overexpression of GluR1, the most abundant AMPAR subunit in gliomas, positively correlated with glioma cell adhesion to type I and type IV collagen, which was decreased in cells with knockdown of GluR1 and with blocking antibodies to beta1 integrin. Furthermore, stimulation of the AMPAR led to detachment of cells from the extracellular matrix (ECM). Immunoprecipitation studies showed that GluR1 associated with the actin cytoskeleton-linked protein band 4.1B (brain type), which may serve as a link between GluR1 and integrins. Overexpression of GluR1 correlated with increased cell-surface expression of beta1 integrin, increased phosphorylation of focal adhesion kinase (FAK-Y397), and enhanced numbers of focal adhesion (FA) complexes. Cells overexpressing GluR1 had increased colocalization of actin and paxillin at FAs and, in several glioma cell lines, significantly increased invasion in an in vitro Matrigel transwell assay. Likewise, in an intracranial xenograft model, overexpression of GluR1 led to perivascular and subependymal glioma cell invasion similar to patterns of tumor dissemination described in human glioblastoma. Together, these results suggest that AMPARs may link signals from the ECM to sites of FA, where signal integration promotes tumor invasion.  相似文献   

14.
Despite an intense focus on novel therapeutic strategies, pancreatic adenocarcinoma remains one of the deadliest human malignancies. The frequent and rapid mortality associated with pancreatic cancer may be attributed to several factors, including late diagnosis, rapid tumor invasion into surrounding tissues, and formation of distant metastases. Both local invasion and metastasis require disruption of tumor cell contacts with the extracellular matrix. Detachment of normal cells from the extracellular matrix leads to a form of programmed cell death termed anoikis. Pancreatic cancer cells avert anoikis by activation of signaling pathways that allow for adhesion-independent survival. In the present studies, cellular signaling pathways activated in detached pancreatic cancer cells were examined. We demonstrate a rapid and robust activation of Src kinase in detached pancreatic cancer cells, relative to adherent. Src autophosphorylation rapidly returned to baseline levels upon reattachment to tissue culture plastic, in the presence or absence of specific extracellular matrix proteins. Treatment of pancreatic cancer cells with tyrosine phosphatase inhibitors increased steady-state Src autophosphorylation in adherent cells and abrogated the detachment-induced increase in Src autophosphorylation. Src was found to co-immunoprecipitate with the Src homology 2 (SH2) domain containing protein tyrosine phosphatase (SHP-2) in pancreatic cancer cells, suggesting that SHP-2 may participate in regulation of Src autophosphorylation in adherent cells. Src family kinase (SFK) dependent increases in Akt and Jun N-terminal kinase (JNK) phosphorylation were observed in detached cells, indicating the potential for Src-dependent activation of survival and stress pathways in pancreatic cancer cells that have detached from the extracellular matrix.  相似文献   

15.
E T Bowden  M Barth  D Thomas  R I Glazer  S C Mueller 《Oncogene》1999,18(31):4440-4449
Invasive breast cancer cells have the ability to extend membrane protrusions, invadopodia, into the extracellular matrix (ECM). These structures are associated with sites of active matrix degradation. The amount of matrix degradation associated with the activity of these membrane protrusions has been shown to directly correlate with invasive potential. We demonstrate here that microinjection of polyclonal anti-cortactin antibodies blocks matrix degradation at invadopodia supporting the hypothesis that cortactin has a direct role in invasive behavior. MDA-MB-231, invasive breast cancer cells were sheared from the surface of a gelatin matrix to isolate invadopodia. Cortactin, paxillin and protein kinase C (PKC) mu, a serine kinase, were co-immunoprecipitated as a complex from invadopodia-enriched membranes. We confirmed the subcellular distribution of these proteins by immunolocalization and Western blotting. We also determined that, in contrast to its presence in invasive cells, this complex of proteins was not detected in lysates from non-invasive cells that do not form invadopodia. Taken together, these data suggest that the formation of this cortactin-containing complex correlates with cellular invasiveness. We hypothesize that this complex of molecules has a role in the formation and function of invadopodia during cellular invasion.  相似文献   

16.
Metastatic Ewing sarcoma has a very poor prognosis and therefore new investigations into the biologic drivers of metastatic progression are key to finding new therapeutic approaches. The tumor microenvironment is highly dynamic, leading to exposure of different regions of a growing solid tumor to changes in oxygen and nutrient availability. Tumor cells must adapt to such stress in order to survive and propagate. In the current study, we investigate how Ewing sarcoma cells respond to the stress of growth factor deprivation and hypoxia. Our findings reveal that serum deprivation leads to a reversible change in Ewing cell cytoskeletal phenotypes. Using an array of migration and invasion techniques, including gelatin matrix degradation invadopodia assays, we show that exposure of Ewing sarcoma cells to serum deprivation and hypoxia triggers enhanced migration, invadopodia formation, matrix degradation and invasion. Further, these functional changes are accompanied by and dependent on activation of Src kinase. Activation of Src, and the associated invasive cell phenotype, were blocked by exposing hypoxia and serum-deprived cells to the Src inhibitor dasatinib. These results indicate that Ewing sarcoma cells demonstrate significant plasticity in response to rapidly changing micro-environmental stresses that can result from rapid tumor growth and from necrosis-causing therapies. In response to these stresses, Ewing cells transition to a more migratory and invasive state and our data show that Src is an important mediator of this stress response. Our data support exploration of clinically available Src inhibitors as adjuvant agents for metastasis prevention in Ewing sarcoma.  相似文献   

17.
In bladder cancer, increased caveolin-1 (Cav-1) expression and decreased Src expression and kinase activity correlate with tumor aggressiveness. Here, we investigate the clinical and functional significance, if any, of this reciprocal expression in bladder cancer metastasis. We evaluated the ability of tumor Cav-1 and Src RNA and protein expression to predict outcome following cystectomy in 257 patients enrolled in two independent clinical studies. In both, high Cav-1 and low Src levels were associated with metastasis development. We overexpressed or depleted Cav-1 and Src protein levels in UMUC-3 and RT4 human bladder cancer cells and evaluated the effect of this on actin stress fibers, migration using Transwells, and lung metastasis following tail vein inoculation. Cav-1 depletion or expression of active Src in metastatic UMUC-3 cells decreases actin stress fibers, cell migration, and metastasis, while Cav-1 overexpression or Src depletion increased the migration of nonmetastatic RT4 cells. Biochemical studies indicated that Cav-1 mediates these effects via its phosphorylated form (pY14), whereas Src effects are mediated through phosphorylation of p190RhoGAP and these pathways converge to reduce activity of RhoA, RhoC, and Rho effector ROCK1. Treatment with a ROCK inhibitor reduced UMUC-3 lung metastasis in vivo, phenocopying the effect of Cav-1 depletion or expression of active Src. Src suppresses whereas Cav-1 promotes metastasis of bladder cancer through a pharmacologically tractable common downstream signaling pathway. Clinical evaluation of personalized therapy to suppress metastasis development based on Cav-1 and Src profiles seems warranted.  相似文献   

18.
The Hepatocyte Growth Factor receptor transduces proliferating and scattering signals in epithelial and endothelial cells. We have explored potential interactions of the HGF/SF receptor beta-subunit (p145(beta MET)) with F-actin binding partners aiming to identify novel downstream effectors implicated in HGF/SF pluripotent signalling. Cortactin, a p80/85 F-actin binding protein, was found phosphorylated on tyrosine in response to HGF-SF in A431 human epidermoid carcinoma cells, expressing the HGF/SF receptor (c-MET). The HGF/SF receptor was enriched in the detergent-insoluble fraction and was found to co-precipitate with cortactin and to associate in vitro with cortactin. The Grb2 small adapter protein known to associate via its Src homology 2 domain (SH2) with the MET C-terminus, was also associated with cortactin. Transient transfection of A431 cells with dominant-negative Grb2 constructs has revealed that the Grb2-C-SH3 domain possesses a central role in cortactin phosphorylation in response to HGF/SF. Finally, tyrosine phosphorylation of cortactin was found uncoupled of endogenous c-Src kinase activity, thus further supporting the hypothesis that cortactin is a direct target of the MET kinase. We propose that cortactin may constitute a docking site for MET-derived signals within the cytoskeleton.  相似文献   

19.
Cortactin: coupling membrane dynamics to cortical actin assembly   总被引:19,自引:0,他引:19  
Weed SA  Parsons JT 《Oncogene》2001,20(44):6418-6434
Exposure of cells to a variety of external signals causes rapid changes in plasma membrane morphology. Plasma membrane dynamics, including membrane ruffle and microspike formation, fusion or fission of intracellular vesicles, and the spatial organization of transmembrane proteins, is directly controlled by the dynamic reorganization of the underlying actin cytoskeleton. Two members of the Rho family of small GTPases, Cdc42 and Rac, have been well established as mediators of extracellular signaling events that impact cortical actin organization. Actin-based signaling through Cdc42 and Rac ultimately results in activation of the actin-related protein (Arp) 2/3 complex, which promotes the formation of branched actin networks. In addition, the activity of both receptor and non-receptor protein tyrosine kinases along with numerous actin binding proteins works in concert with Arp2/3-mediated actin polymerization in regulating the formation of dynamic cortical actin-associated structures. In this review we discuss the structure and role of the cortical actin binding protein cortactin in Rho GTPase and tyrosine kinase signaling events, with the emphasis on the roles cortactin plays in tyrosine phosphorylation-based signal transduction, regulating cortical actin assembly, transmembrane receptor organization and membrane dynamics. We also consider how aberrant regulation of cortactin levels contributes to tumor cell invasion and metastasis.  相似文献   

20.
Focal adhesions and actin cytoskeleton are involved in cell growth, shape and movement and in tumor invasion. Mitogen-induced changes in actin cytoskeleton are accompanied by changes in the tyrosine phosphorylation of several focal adhesion proteins. In this study, we have investigated the role of RAFTK, a cytoplasmic tyrosine kinase related to focal adhesion kinase (FAK), in heregulin-mediated signal transduction in breast cancer cells. Stimulation of T47D cells with heregulin (HRG) induced the tyrosine phosphorylation of RAFTK and the formation of a multiprotein complex. Analyses of the members of the HRG-stimulated complex revealed that RAFTK is associated with p190 RhoGAP (p190), RasGAP and ErbB-2, and plays an essential role in mediating the tyrosine phosphorylation of p190 by Src. Mutation of the Src binding site within RAFTK (402) abolished the phosphorylation of p190. In addition, upon HRG stimulation of T47D cells, association of ErbB-2 with RAFTK was observed and found to be indirect and mediated by Src. Expression of wild-type RAFTK (WT) significantly increased MDA-MB-435 and MCF-7 breast cancer cell invasion, while expression of the kinase-mutated RAFTK-R457 (KM) or the Src binding site mutant RAFTK (402) did not affect this cell invasion. Furthermore, HRG leads to the activation of MAP kinase which is mediated by RAFTK. These findings indicate that RAFTK serves as a mediator and an integration point between the GAP proteins and HRG-mediated signaling in breast cancer cells, and implicate RAFTK involvement in the MAP kinase pathway and in breast cancer cell invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号