首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The mechanism by which PRL is released from mammotrophs is a calcium-dependent process. Although calcium seems to function as a second messenger, its regulatory mechanism in PRL release has not been clarified. The binding of calcium to calmodulin and the activation of calmodulin-dependent enzymes have been suggested to be important steps during stimulus-secretion coupling in various cells. In the present work we investigated the in vitro effect of penfluridol, a potent neuroleptic that also possesses the ability to inhibit calmodulin's biological activity, on basal and stimulated PRL release. The effect of pimozide and haloperidol on basal PRL release was also investigated. Penfluridol, pimozide, and haloperidol inhibited basal PRL secretion in a dose-related manner, with the EC50 ranging from 0.5-1 microM for penfluridol to 1-2 microM for pimozide and more than 3 microM for haloperidol. These concentrations are similar to those necessary for the inactivation of calmodulin-dependent enzymes in vitro. Ionophore A-23187, a compound whose ability to mobilize extracellular calcium is not affected by neuroleptics, stimulated PRL secretion in vitro. This effect, however, was blocked by penfluridol pretreatment. The site of action of penfluridol may occur after calcium mobilization, with calmodulin a possible target for penfluridol's inhibitory action on PRL secretion. TRH, K+, (Bu)2cAMP, and theophylline, compounds that affect calcium mobilization, also significantly stimulated PRL release. The coincubation of varying concentrations of penfluridol with 70 nM TRH, 50 mM K+, 3 mM (Bu)2cAMP, or 5 mM theophylline resulted in a dose-related inhibition of secretagogue-stimulated PRL secretion. Perifusion of dispersed anterior pituitary cells with 1 microM penfluridol reduced the ability of 70 nM TRH to stimulate PRL release by approximately 50%, whereas removal of the penfluridol perifusion allowed the cells to again be fully responsive to TRH. These results are consistent with the hypothesis that calmodulin is involved in the stimulus-secretion coupling of PRL.  相似文献   

2.
To assess the role of dopamine receptors in naloxone-induced hormonal changes, the effects of dopamine and metoclopramide on anterior pituitary hormone secretion were studied during the infusion of the opiate blocker in normal men. Naloxone stimulated LH and cortisol secretion in all subjects, whereas FSH, TSH, PRL, and GH did not change. The infusion of dopamine completely suppressed the naloxone-induced LH rise; on the contrary, metoclopramide failed to alter the magnitude of the increments in LH observed during the infusion of the opiate blocker. The cortisol response to naloxone remained unchanged during dopamine and metoclopramide infusion. Metoclopramide stimulated PRL and TSH release during naloxone treatment, whereas dopamine suppressed PRL and TSH secretion. The data do not suggest a participation of dopamine receptors in the naloxone-induced hormonal changes in man and confirm a suppressive effect of dopamine infusion on LH release in humans.  相似文献   

3.
The effects of atrial natriuretic factors (ANFs) on anterior pituitary hormone secretion and cyclic nucleotide production were investigated in cultured rat pituitary cells. ANF had no effect on ACTH, GH, PRL, and TSH release or on cAMP production either on basal hormone levels or during stimulation of their secretion by the appropriate releasing factor. However, ANF markedly stimulated cGMP production in both mixed anterior pituitary cells and enriched anterior pituitary cell populations fractionated by centrifugal elutriation. Unexpectedly, certain ANF preparations, Bachem rat ANF-(5-28) and rat ANF-(5-25), markedly stimulated LH release from cultured anterior pituitary cells and gonadotroph-enriched elutriated pituitary cells. The same ANFs also displaced [125I-D-Lys6]GnRH ethylamide from binding to anterior pituitary membranes with potencies similar to their LH-releasing activities. Immunoprecipitation of ANF with a specific antiserum abolished the effect of ANF on cGMP production, but did not change the effect of ANF on LH release. In conclusion, ANF did not affect anterior pituitary hormone secretion or cAMP production, but stimulated cGMP formation. The effect of certain ANF preparations on LH release appears to be attributable to peptide contamination with a potent GnRH agonist.  相似文献   

4.
We have examined the interaction of thyroid hormone and TRH on GH release from rat pituitary monolayer cultures and perifused rat pituitary fragments. TRH (10(-9) and 10(-8)M) consistently stimulated the release of TSH and PRL, but not GH, in pituitary cell cultures of euthyroid male rats. Basal and TRH-stimulated TSH secretion were significantly increased in cells from thyroidectomized rats cultured in medium supplemented with hypothyroid serum, and a dose-related stimulation of GH release by 10(-9)-10(-8) M TRH was observed. The minimum duration of hypothyroidism required to demonstrate the onset of this GH stimulatory effect of TRH was 4 weeks, a period significantly longer than that required to cause intracellular GH depletion, decreased basal secretion of GH, elevated serum TSH, or increased basal secretion of TSH by cultured cells. In vivo T4 replacement of hypothyroid rats (20 micrograms/kg, ip, daily for 4 days) restored serum TSH, intracellular GH, and basal secretion of GH and TSH to normal levels, but suppressed only slightly the stimulatory effect of TRH on GH release. The GH response to TRH was maintained for up to 10 days of T4 replacement. In vitro addition of T3 (10(-6) M) during the 4-day primary culture period significantly stimulated basal GH release, but did not affect the GH response to TRH. A GH stimulatory effect of TRH was also demonstrated in cultured adenohypophyseal cells from rats rendered hypothyroid by oral administration of methimazole for 6 weeks. TRH stimulated GH secretion in perifused [3H]leucine-prelabeled anterior pituitary fragments from euthyroid rats. A 15-min pulse of 10(-8) M TRH stimulated the release of both immunoprecipitable [3H]rat GH and [3H]rat PRL. The GH release response was markedly enhanced in pituitary fragments from hypothyroid rats, and this enhanced response was significantly suppressed by T4 replacement for 4 days. The PRL response to TRH was enhanced to a lesser extent by thyroidectomy and was not affected by T4 replacement. These data suggest the existence of TRH receptors on somatotrophs which are suppressed by normal amounts of thyroid hormones and may provide an explanation for the TRH-stimulated GH secretion observed clinically in primary hypothyroidism.  相似文献   

5.
The metabolic inhibitors antimycin A (2 mumol/l), dinitrophenol (0.5 mmol/l), and iodoacetate (6 mmol/l) were tested for their effects on hormone release, cAMP levels, and oxygen consumption in clonal strains of rat pituitary cells (GH3 cells). Basal release of growth hormone (GH) and prolactin (PRL) was reduced by all three inhibitors, and thyrotropin-releasing hormone (TRH) (1 mumol/l) and K+ (50 mmol/l) stimulated hormone release were blocked. Trifluoperazine, a calmodulin antagonist, inhibited basal GH and PRL release at concentrations up to 30 mumol/l and stimulated above 50 mumol/l. The stimulatory effect of 80 mumol/l trifluoperazine on basal hormone release was eliminated by antimycin A, dinitrophenol, and iodoacetate, whereas the inhibitory effect of antimycin A, dinitrophenol and iodoacetate on basal hormone was not affected by 30 mumol/l trifluoperazine. None of the inhibitors had any effect on the level of cellular cAMP (i.e. intracellular plus extracellular). Oxygen consumption of GH3 cells was blocked by antimycin A, reduced by 25% by iodoacetate and increased by about 100% by dinitrophenol. In contrast, hormone secretion stimulated by TRH and K+ was not accompanied by any measurable alteration in oxygen consumption. Trifluoperazine (greater than or equal to 80 mumol/l) reduced the basal oxygen consumption and blocked the stimulatory effect of dinitrophenol on oxygen consumption. In conclusion, inhibition of the energy generation of GH and PRL-producing cells severely affects the action of secretagogues, although stimulated hormone secretion may not be accompanied by any measurable increase in oxygen consumption. The cellular energy supporting hormone secretion is mostly generated via oxidative phosphorylation.  相似文献   

6.
We have studied the effects of trifluoperazine, a proposed inhibitor of calmodulin directed cellular function, on adrenocorticotrophic hormone (ACTH), thyroid stimulating hormone (TSH), prolactin (Prl) and growth hormone (GH) secretion from primary cultures of rat adenohypophyseal cells. 5 X 10(-6)M and 10(-5)M trifluoperazine caused a significant (P less than 0.005) reversible dose-related decrease in basal Prl secretion but was less effective on basal GH secretion, significant reversible inhibition (P less than 0.005) occurring only with 10(-5)M. Trifluoperazine did not consistently alter basal ACTH or TSH secretion but did inhibit 10(-2)M theophylline stimulation of ACTH, Prl and GH secretion and 1.5 X 10(-7)M TRH stimulation of TSH and Prl secretion. Paradoxically 10(-5)M trifluoperazine enhanced theophylline stimulation of TSH secretion. Our results show trifluoperazine to have differential effects on Prl, GH, ACTH and TSH secretion, which are consistent with the known calcium dependence of pituitary hormone secretion and may suggest a role for calmodulin in this process.  相似文献   

7.
In the present work, we determined the activity of voltage-dependent dihydropyridine (DHP)-sensitive Ca2+ channels related to PRL, GH, and LH secretion in primary cultures of pituitary cells from male or female rats. We investigated their modulation by 17 beta-estradiol (E2) and their involvement in dopamine (DA) and somatostatin (SRIF) inhibition of PRL and GH release. BAY-K-8644 (BAYK), a DHP agonist which increases the opening time of already activated channels, stimulated PRL and GH secretion in a dose-dependent manner. The effect was more pronounced on PRL than on GH release. BAYK-evoked hormone secretion was further amplified by simultaneous application of K+ (30 or 56 mM) to the cell cultures; in parallel, BAYK-induced 45Ca uptake by the cells was potentiated in the presence of depolarizing stimuli. In contrast, BAYK was unable to stimulate LH secretion from male pituitary cells, but it potentiated LHRH- as well as K+-induced LH release; it had only a weak effect on LH secretion from female cell cultures. Basal and BAYK-induced pituitary hormone release were blocked by the Ca2+ channel antagonist nitrendipine. Under no condition did BAYK affect the hydrolysis of phosphoinositides or cAMP formation. Pretreatment of female pituitary cell cultures with E2 (10(-9) M) for 72 h enhanced LH and PRL responses to BAYK, but was ineffective on GH secretion. DA (10(-7) M) inhibited basal and BAYK-induced PRL release from male or female pituitary cells treated or not treated with E2 (10(-9) M). SRIF (10(-9) and 10(-8) M) reversed BAYK-evoked GH release to the same extent in cell cultures derived from male or female animals. It was ineffective on BAYK-induced PRL secretion in the absence of E2, but antagonized it after E2 pretreatment. The effect was dependent upon the time of steroid treatment and was specific, since 17 alpha-estradiol was inactive. In addition, DA and SRIF decreased the 45Ca uptake induced by the calcium agonist. These data demonstrate that DHP-sensitive voltage-dependent calcium channels of the L type present on different pituitary cells are not equally susceptible to BAYK activation under steady state basal conditions, indicating that their spontaneous activity and/or distribution vary according to the cell type; their activity is modulated by sex steroids. In addition, these data suggest that Ca2+ channels represent a possible site of DA and SRIF inhibition of PRL and GH release, respectively, by gating calcium entry into the corresponding cells.  相似文献   

8.
The pineal indole melatonin suppresses the neonatal rat luteinizing hormone (LH) and follicle-stimulating hormone (FSH) responses to LH-releasing hormone (LHRH), as shown in previous studies from this laboratory. We show in this study that the melatonin inhibition is a selective effect and is not due to general inhibition of pituitary function. The effects of the indole on the responses to thyrotropin-releasing hormone (TRH) and somatostatin (SRIF) and on basal pituitary hormone secretion were examined with cells in culture. Neonatal rat anterior pituitary cells dissociated with collagenase and hyaluronidase were cultured overnight and distributed to 35-mm dishes at the time of use. For examination of melatonin effects on the response to releasing hormones, the cells were incubated for 3 h in control medium or medium containing LHRH (10-9-10-6 M), TRH (10-10-10-6 M), or SRIF (10-9-10-6 M), either alone or in the presence of melatonin (10-8 or 10-6 M). For examination of basal hormone secretion, the cells were incubated for 1.5, 3, 6, 15, or 24 h in either medium alone or medium containing melatonin (10-6 M). Medium and cell lysate concentrations of LH, FSH, thyroid-stimulating hormone (TSh), prolactin (PRL) and growth hormone (GH) were determined by double antibody RIA. As previously, melatonin (10-8 M) significantly suppressed LH and FSH release by all concentrations of LHRH. This concentration of the indole produced maximal suppression of both LH and FSH responses to LHRH. By contrast, melatonin at a 100-fold greater concentration (10-6 M) had no effect on TRH stimulation of TSH or PRL release or on SRIF inhibition of GH release. Similarly, melatonin had no effect on basal release of TSH, PRL, or GH at the times examined. These findings show that melatonin inhibition of the gonadotroph response to LHRH is a selective effect.  相似文献   

9.
10.
A series of studies was designed to determine the effects of protein kinase C activators on TSH, LH, and GH release from anterior pituitary cells. A 15-min incubation of cultured pituitary cells with synthetic diacylglycerol or phorbol myristate acetate, stimulators of protein kinase C, increased GH, LH, and TSH release. Similarly phospholipase C, which liberates endogenous diacylglycerol, stimulated GH, LH, and TSH secretion. The potentiation of the effects of protein kinase C activators is achieved by calcium mobilization in various cell types. The results of the present studies show that calcium ionophore A23187 or calcium channel activator maitotoxin potentiate diacylglycerol-, phorbol ester-, or phospholipase C-induced GH, LH, or TSH release. These findings suggest that activation of protein kinase C by diacylglycerol and mobilization of calcium may be synergistically involved in the regulation of GH, LH, and TSH release.  相似文献   

11.
OBJECTIVES: To determine whether hormonal dysfunction involving the hypothalamic-pituitary-adrenal (HPA) axis, prolactin (PRL) secretion, and sex hormone status contribute to development of systemic lupus erythematosus (SLE). METHODS: 11 patients with SLE and 9 healthy controls were tested for their total anterior pituitary gland reserve by simultaneous injection of corticotropin-, growth hormone- (GH), thyrotropin-, and gonadotropin-releasing hormone (GnRH). Serum concentrations of adrenocorticotropin (ACTH), cortisol, GH, thyroid stimulating hormone (TSH), PRL, luteinising hormone (LH), and follicle stimulating hormone (FSH) were measured at baseline and after injection. Baseline values of oestradiol, testosterone, and thyroxine were determined. RESULTS: Basal and stimulated serum concentrations of ACTH, cortisol, GH, and PRL were similar in both groups. In contrast, despite similar basal thyroxine levels the TSH response to TRH was significantly higher in patients than in controls. LH and FSH levels in premenopausal female patients of both groups were identical. In contrast, two of the three male patients were hypogonadal without compensatory increases of basal LH and FSH levels, but they retained excessive stimulatory capacity in response to GnRH. CONCLUSION: No significant alteration of the HPA axis was found in patients with SLE, which is inadequate in view of the continuing inflammation. GH and PRL secretion were normal. The pituitary-thyroid and pituitary-gonadal axes were affected in patients with newly diagnosed, untreated SLE.  相似文献   

12.
In most patients with growth hormone (GH) secreting pituitary adenomas and clinically nonfunctioning pituitary tumors (NFPT) the intravenous injection of thyrotropin releasing hormone (TRH) augments the secretion of GH and subunits of gonadotropin hormones respectively. Similar hormone responses to TRH have been detected in rat pituitary cell lines and in primary human pituitary tumor cultures in vitro. Nevertheless the TRH effect on tumor hormonal secretion has not been well characterized. In the present study we examined TRH-induced hormone secretion in GH secreting tumors and in NFPT in vitro. Cultured cells secreted betaLH and betaFSH (NFPT) or GH (GH secreting adenomas) up to 14 days in culture. In NFPT TRH (10(-8) mol/l) elicited peak betaLH and betaFSH secretion at 60 to 90 min, with no further increase at 24 h. TRH-stimulated GH secretion peaked at 90-120 min, and decreased after 3 h, but a secondary rise occurred after 24 h of incubation. Chronic daily exposure to TRH followed by an acute TRH challenge resulted in a further increase of GH secretion after one hour. In contrast, acute TRH administration following chronic exposure did not elicit increased P-subunits secretion in NFPT. Coadministration of cycloheximide did not change TRH induced beta-subunits secretion in NFPT. However, when it was administered 24 h prior to TRH, it blocked both basal and TRH induced beta-subunits levels in NFPT. Cycloheximide had no effect on basal or stimulated GH secretion when administered concomitantly or 24 h before TRH. Incubation of cultured GH secreting tumors with cycloheximide during 5 days blocked both basal and TRH stimulated GH secretion, thus indicating dependency on protein synthesis during the chronic, secondary phase. Since the acute secretion was not affected by coadministration of cycloheximide, these early increases in hormone levels apparently reflect the release of stored hormone. In summary, GH secreting adenomas and NFPT differ significantly in their hormonal response to continuous exposure to TRH. The mechanisms underlying the sustained effect of TRH on GH secretion in vitro remain to be investigated. If endogenous TRH exerts a similar continuous effect it may contribute to the disregulated GH secretion in acromegaly.  相似文献   

13.
Anterior pituitary hormone control by interleukin 2.   总被引:11,自引:0,他引:11       下载免费PDF全文
Several monokines, proteins secreted by monocytes and macrophages, alter release of hormones from the anterior pituitary. We report here the ability of femtomolar concentrations of interleukin 2 (IL-2), a lymphokine released from T lymphocytes, to alter directly pituitary hormone release. The effects of concentrations of IL-2 ranging from 10(-17) to 10(-9) M on anterior pituitary hormone release were evaluated in vitro. Hemipituitaries were preincubated in 1 ml of Krebs-Ringer bicarbonate buffer (KRB) followed by incubation for 1 or 2 hr with KRB or KRB containing different concentrations of IL-2. This was followed by incubation for 30 min in 56 mM potassium medium to study the effect of pretreatment with IL-2 on subsequent depolarization-induced hormone release. Prolactin (PRL), luteinizing hormone (LH), follicle-stimulating hormone (FSH), corticotropin (ACTH), growth hormone (GH), and thyrotropic hormone (TSH) released into the incubation medium were measured by radioimmunoassay. IL-2 stimulated the basal release of PRL at 1 or 2 hr but suppressed the subsequent depolarization-induced PRL release, perhaps because the readily releasable pool of PRL was exhausted. The minimal effective dose (MED) was 10(-15) M. Conversely, IL-2 significantly suppressed the basal release of LH and FSH at 1 or 2 hr, with a MED of 10(-16) M, thus demonstrating a reciprocal action of the cytokine on lactotrophs and gonadotrophs. The subsequent depolarization-induced release of LH and FSH was suppressed, indicative of a persistent inhibitory action of IL-2. IL-2 stimulated ACTH and TSH release at 1 hr and the MEDs were 10(-12) and 10(-15) M, respectively. Conversely, IL-2 significantly lowered the basal release of GH at 1 hr, with a MED of 10(-15) M. The release of GH was not altered at 2 hr. The high potassium-induced release of ACTH, TSH, and GH was not affected. The results demonstrate that IL-2 at picomolar concentrations affects the release of anterior pituitary hormones. This cytokine may serve as an important messenger from lymphocytes exerting a direct paracrine action on the pituitary by its release from lymphocytes in the gland or concentrations in the blood that reach the gland may be sufficient to activate it.  相似文献   

14.
In superfused rat anterior pituitary cell reaggregates, cultured for 5 days in serum-free defined medium, vasoactive intestinal peptide (VIP) concentration-dependently stimulated prolactin (Prl) release but had only a marginal effect on growth hormone (GH) release. When reaggregates were cultured in the presence of 80 nM dexamethasone (Dex) VIP strongly stimulated GH release from a concentration as low as 0.1 nM. VIP did not stimulate LH release. Peptide PHI also stimulated GH release but thyrotropin-releasing hormone (TRH) or angiotensin II did not. In fact, TRH slightly but transiently inhibited basal GH release and strongly inhibited VIP-stimulated GH release. GH-releasing factor (GRF) stimulated GH more potently and with higher intrinsic activity than VIP but GRF did not increase Prl release. The present data indicate that under defined hormonal conditions VIP and PHI are capable of stimulating GH release and that TRH can antagonize this effect by a direct action on the pituitary.  相似文献   

15.
OBJECTIVES: In vitro and in vivo data indicate multiple, but contradictory effects of interferon on pituitary hormone secretion. We therefore investigated prospectively basal and stimulated pituitary hormone secretion in 21 patients with chronic hepatitis C virus (HCV) infection before and during antiviral therapy. METHODS: Twenty-one patients received pegylated interferon-alpha plus either ribavirin or levovirin. Baseline and stimulated growth hormone (GH), cortisol, luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin (PRL), and thyroid-stimulating hormone (TSH) responses were measured using standard pituitary function tests, before therapy in all and during therapy in 17 out of the 21 patients. RESULTS: Before therapy 17 patients (81%) had severe GH insufficiency and 9 of these had low insulin-like growth factor-1 (IGF-1) concentrations. Basal and stimulated GH concentrations increased significantly during therapy, reducing the number of patients with severe GH insufficiency to four, but IGF-1 remained low. Basal PRL and TSH concentrations were normal before and during therapy, while thyroid-releasing hormone (TRH)-stimulated concentrations increased significantly during therapy. The adrenocorticotropic hormone (ACTH)/cortisol axis, basal and stimulated gonadotropin, and testosterone concentrations were normal throughout. Neither the HCV RNA level nor transaminases correlated with hormone concentrations before or during therapy. CONCLUSIONS: GH insufficiency is common in patients with chronic HCV infection. While GH secretion improves during antiviral therapy, IGF-1 remains low, indicating persistent GH resistance of hepatocytes. Whether improvement in GH secretion during treatment is due to a direct drug effect or related to the suppression of viral load could not be differentiated, as most patients demonstrated a positive virologic response.  相似文献   

16.
Although the role of the neurotransmitter, dopamine (DA), in the regulation of PRL has been well documented, controversy exists regarding its participation in the regulation of the other pituitary hormones. Consequently, we infused DA into six healthy male subjects (ages 19-32) and studied its effects on both basal pituitary hormone levels and augmented hormonal release induced by insulin hypoglycemia (ITT), TRH, and gonadotropin-releasing hormone (GnRH). DA alone produced a modest though significant increase in GH concentration from 2.2 +/- 0.5 to 11.9 +/- 3.7 ng/ml (P less than 0.05) by 60 min, but the peak incremental GH response to ITT was significantly inhibited by DA (43.5 +/- 5.0 vs. 16.3 +/- 3.3 ng/ml; P less than 0.01). PRL concentrations fell during the DA infusion (20.4 +/- 3.0 to 10.6 +/- 1.5 ng/ml; P less than 0.02) at 235 min, and the PRL responses to both ITT and TRH were completely abolished. Although the basal LH and FSH concentrations were unaffected by DA, the incremental LH response to GnRH was inhibited (45.5 +/- 10.6 to 24.4 +/- 5.4 mIU/ml; P less than 0.05), while the FSH response was unchanged. DA significantly reduced the basal TSH concentration from 3.9 +/- 0.2 to 2.5 +/- 0.2 micro U/ml (P less than 0.01) at 230 min and blunted the peak incremental TSH response to TRH (6.0 +/- 1.5 vs. 2.9 +/- 0.9 microU/ml; P less than 0.01). DA had no effect on basal cortisol levels, the cortisol response to ITT, basal plasma glucose, or the degree of hypoglycemia after ITT. Our data provide new evidence that DA has an inhibitory as well as a stimulatory role in the regulation of GH secretion in normal humans. It inhibits centrally as well as peripherally mediated PRL secretion and blunts the LH response to GnRH. In addition, DA lowers both basal and TRH-mediated TSH release, confirming the reports of other investigators.  相似文献   

17.
The regulation of TSH and GH secretion was investigated in cultured tumor cells prepared from a mixed TSH/GH secreting pituitary tumor. The tumor tissue had been removed transsphenoidally from a patient with hyperthyroidism and inappropriately high serum TSH levels and acromegaly. TSH and GH secretion by cultured cells were stimulated in a parallel way by TRH (300 nM) and LHRH (50 nM), but were unaffected by bromocriptine (10 nM). Exposure of the tumor cells to dexamethasone (0.1 microM) or T3 (50 nM) had differential effects on hormone secretion. GH secretion was greatly stimulated by dexamethasone, but unaffected by T3. TSH secretion was inhibited both by T3 and by dexamethasone. So, T3 and glucocorticoids inhibit TSH release by the human pituitary tumor cells studied at least partly by means of a direct effect.  相似文献   

18.
The effects of the gamma-aminobutyric acid receptor agonists muscimol and baclofen were investigated on the secretion of GH, LH, ACTH and TSH from the anterior pituitary in vitro using a rapid superfusion system. A bicuculline-sensitive stimulatory effect of muscimol was demonstrated on the secretion of GH, LH and ACTH but not TSH. Baclofen had no effect on the basal secretion of any of the hormones, but inhibited LH-releasing hormone-stimulated release of LH and K+- and Ba2+-stimulated release of ACTH. The benzodiazepine Roll-6896 and the barbiturate secobarbital were found to potentiate the effect of muscimol on GH secretion. These results demonstrate the presence of GABAA receptors on somatotrophs, gonadotrophs and corticotrophs, and the presence of GABAB receptors on gonadotrophs and corticotrophs. Thyrotrophs appear devoid of GABA receptors.  相似文献   

19.
The effects of single oral doses of 0.2 mg of lisuride hydrogen maleate, a semisynthetic ergot derivative, on serum levels of prolactin (PRL), growth hormone (GH), thyroid stimulating hormone (TSH), luteinizing hormone (LH), follicle stimulating hormone (FSH), cortisol and blood glucose were studied in six normal males. Lisuride effectively inhibited basal PRL secretion as well as the PRL response to TRH given 3 h later. In addition, the drug raised basal GH levels and decreased basal and TRH stimulated TSH secretion. No significant differences between lisuride and control were observed in basal LH and FSH, LHRH stimulated gonadotrophins or in cortisol. Drowsiness was noted by all subjects, one became nauseated and another vomited, 60 and 90 min respectively after administration of lisuride. No changes were seen in pulse rate and blood pressure. The endocrine effects of lisuride were attenuated by the prior administration of the dopamine antagonist metoclopramide. These results suggest that lisuride acts as a long-acting dopamine agonist and that therefore this drug could be of therapeutic use in hyperprolactinaemic states and acromegaly.  相似文献   

20.
The influence of fenoldopam, a dopamine (DA) D-1 receptor agonist, on basal and GnRH/TRH stimulated PRL, GH, LH, TSH, testosterone and thyroid hormone secretion was studied in nine normal men. All men received 4-h infusions of either 0.9% saline or fenoldopam at an infusion rate of 0.5 microgram/kg min, 12-16 ml/h, adjusted according to weight. After 3 h of infusion, 50 micrograms GnRH and 100 micrograms TRH was given i.v. Blood samples were collected every 15 min from 1 h before to 1 h after the infusion for a total of 6 h for measurements of PRL, LH, FSH, GH, TSH, testosterone, T4 and T3. The median PRL concentration increased significantly (P less than 0.01) to 128%, range 87-287, of preinfusion levels, compared to the decline during control infusion (85%, 78-114). Basal TSH levels declined significantly to 71% (60-91) during fenoldopam compared with 82% (65-115) during control infusion (P less than 0.05). Basal LH, FSH, GH and thyroid hormones were similar during fenoldopam and control infusions (P greater than 0.05). The LH response to GnRH/TRH was significantly (P less than 0.02) increased by fenoldopam infusion. Basal and stimulated testosterone concentration was lower during fenoldopam (P less than 0.01) infusion compared with control. Other hormones were similar after GnRH/TRH stimulation during fenoldopam and saline infusions. These results suggest that DA D-1 receptors are involved in the modulation of pituitary hormone secretion. We suggest that the effect of fenoldopam on PRL and TSH is mainly at the hypothalamic level. Regarding the effect on LH concentrations, an additional direct effect of fenoldopam on testosterone regulation can not be excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号