首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retinal projections to the pretectal nuclei, accessory optic system and superior colliculus in pigmented and albino ferrets were studied using anterograde tracing techniques. Both Nissl- and myelin-stained material was used to identify the pretectal nuclei, nuclei of the accessory optic system and the layers of the superior colliculus. Following monocular injection of either horseradish peroxidase or rhodamine-B-isothiocyanate, four pretectal nuclei, including the nucleus of the optic tract, posterior pretectal nucleus, anterior pretectal nucleus and the olivary pretectal nucleus, could be identified to receive direct retinal input in both pigmented and albino strains. In the accessory optic system, retinal terminals were observed in the dorsal, lateral and medial terminal nuclei as well as in the interstitial nucleus of the superior fasciculus, posterior fibres. The retinal projection to the superior colliculus was found to innervate the three superficial layers. The retinal projections to the pretectal nuclei and nuclei of the accessory optic system in the pigmented animals were bilateral, although the label was most dense contralateral to the injected eye. Ipsilateral retinal projections to the pretectal nuclei and nuclei of the accessory optic system appeared to be absent in albino ferrets, i.e. they were invisible with our methods. In both pigmented and albino ferrets retinal terminals in the contralateral superior colliculus densely innervated the three superficial layers. In both strains the ipsilateral projection appeared as clusters which were absent in rostral and caudal poles. In pigmented animals the ipsilateral projection was much denser and more extensive than in albinos. Following injection of retrograde tracers into the brainstem at the level of the dorsal cap of the inferior olive, retrogradely labelled neurons in the pretectum were found in the ipsilateral nucleus of the optic tract. Their somata overlapped mainly with scattered retinal terminals close to the pretectal surface and rarely or not all with the deeper prominent terminal clusters. In the accessory optic system, inferior olive projecting neurons were observed in all four ipsilateral nuclei and fully coincided with the retino-recipient zones. In the superior colliculus, retrogradely labelled neurons were found contralateral to the injection site in the deep layers.  相似文献   

2.
In the present report, conflicting results regarding the pretectal complex and accessory optic system of primates are discussed. Subsequently data are presented and used in an attempt to clarify some of the issues. The retinal projections to the pretectal complex and accessory optic system of the tree shrew and squirrel monkey were examined using anterograde autoradiographic methods. These data demonstrate that, following intraocular injections of 3H-proline or 3H-fucose in the tree shrew, silver grains are apparent bilaterally over the pretectal olivary nucleus and the anterior and posterior pretectal nuclei and contralaterally over the nucleus of the optic tract. Following intraocular injections of the 3H-tracer in squirrel monkeys, dense transported label is observed bilaterally over the pretectal olivary nucleus and the nucleus of the optic tract with sparse label over the posterior and medial pretectal nuclei. In both the tree shrew and squirrel monkey, a differential retinal projection is observed, chiefly contralaterally, to all accessory optic terminal nuclei (i.e., the dorsal, lateral and medial terminal nuclei).  相似文献   

3.
The connections of the lateral terminal nucleus (LTN) of the accessory optic system (AOS) of the marmoset monkey were studied with anterograde 3H-amino acid light autoradiography and horseradish peroxidase retrograde labeling techniques. Results show a first and largest LTN projection to the pretectal and AOS nuclei including the ipsilateral nucleus of the optic tract, dorsal terminal nucleus, and interstitial nucleus of the superior fasciculus (posterior fibers); smaller contralateral projections are to the olivary pretectal nucleus, dorsal terminal nucleus, and LTN. A second, mejor bundle produces moderate-to-heavy labeling in all ipsilateral, accessory oculornotor nuclei (nucleus of posterior commissure, interstitial nucleus of Cajal, nucleus of Darkschewitsch) and nucleus of Bechterew; some of the fibers are distributed above the caudal oculomotor complex within the supraoculornotor periaqueductal gray. A third projection is ipsilateral to the pontine and mesencephalic reticular formations, nucleus reticularis tegmenti pontis and basilar pontine complex (dorsolateral nucleus only), dorsal parts of the medial terminal accessory optic nucleus, ventral tegmental area of Tsai, and rostral interstitial nucleus of the medial longitudinal fasciculus. Lastly, there are two long descending bundles: (1) one travels within the medial longitudinal fasciculus to terminate in the dorsal cap (ipsilateral > > contralateral) and medial accessory olive (ipsilateral only) of the inferior olivary complex. (2) The second soon splits, sending axons within the ipsilateral and contralateral brachium conjunctivum and is distributed to the superior and medial vestibular nuclei. The present findings are in general agreement with the documented connections of LTN with brainstem oculomotor centers in other species. In addition, there are unique connections in marmoset monkey that may have developed to serve the more complex oculomotor behavior of nonhuman primates. © 1995 Wiley-Liss, Inc.  相似文献   

4.
5.
Efferent projections of the optic tectum were studied with the anterograde degeneration method in the longnose gar. Ascending projections were found bilaterally to 3 pretectal nuclei — the superficial pretectal nucleus, nucleus pretectalis centralis and nucleus pretectalis profundus — and to a number of targets which lie further rostrally — the central posterior nucleus, dorsal posterior nucleus, accessory optic nucleus, nucleus ventralis lateralis, nucleus of the ventral optic tract, rostral part of the preglomerular complex, suprachiasmatic nucleus, anterior thalamic nucleus, nucleus ventralis medialis, nucleus intermedius, nucleus prethalamicus and rostral entopeduncular nucleus. Projections of the tectum reach the contralateral side via the supraoptic decussation and are less dense contralaterally than ipsilaterally. Descending projections resulting from tectal lesions include: (1) a tectal commissural pathway to the core of the torus longitudinalis bilaterally and the contralateral tectum and torus semicircularis; and (2) a pathway leaving the tectum laterally from which fibers terminate in the ipsilateral torus semicircularis, an area lateral to the nucleus of the medial longitudinal fasciculus, lateral tegmental nucleus, nucleus lateralis valvulae, nucleus isthmi and the reticular formation. A component of this bundle decussates at the level of the lateral tegmental nucleus to project to the contralateral reticular formation.

On the basis of comparisons of these findings with the pattern of retinal projections in gars and other data, it is argued that the nuclei previously called the lateral geniculate and rotundus in fish are not the homologues of the nuclei of those names in land vertebrates but are rather pretectal cell groups. The overall organization of both retinal and tectal projections in gars is strikingly similar to that in land vertebrates; at present, the best candidate for a rotundal homologue is the dorsal posterior nucleus.  相似文献   


6.
The retinal projections of the fresh water teleost. Cichlasoma biocellatum, were examined using a modification of the Nauta-Gygax method following unilateral enucleations and removal of retinal quadrants. After the unilateral enucleations, degeneration was found in the fasciculus medialis nervioptici, fasciculus geniculatus tractus optici, fasciculus dorsomedialis tractus optici, and the accessory optic tract. The pretectal nucleus, nucleus corticalis, and accessory optic nucleus contained debris of terminal degeneration. The majority of the optic fibers terminated in five layers in the optic tectum. The quadrant removals showed that fibers from the retinal quadrants formed layers in the ribbon shaped optic nerve running the width of the nerve. The dorsal to ventral arrangement of the fibers was: dorsal nasal quadrant; dorsal temporal quadrant; ventral nasal quadrant; and the ventral temporal quadrant. The fibers from only the posterior half of the retina supplied the fasciculus geniculatus tractus optici and the corpus geniculatum laterale. Fibers from the anterior half of the retina supplied the accessory optic tract and nucleus. All other tracts and nuclei examined received fibers from all the retinal quadrants. The projection of the retinal quadrants to the tectal quadrants was specific and always formed five layers of degeneration.  相似文献   

7.
The neuronal tracer DiI was applied to different brain centers of the rainbow trout in order to study the connections of pretectal nuclei. Our results showed that some pretectal nuclei receive a direct projection from the contralateral retina: the parvocellular superficial pretectal nucleus, the central pretectal nucleus, the intermediate pretectal nucleus and the ventral accessory optic nucleus. In turn, the central pretectal, the intermediate pretectal and the ventral accessory optic nuclei, together with the paracommissural nucleus, project to the cerebellum and the torus longitudinalis. The magnocellular superficial pretectal nucleus does not receive retinal projections, but receives ipsilateral projections from the optic tectum and the mesencephalic tegmentum. In turn, it projects to the ipsilateral oculomotor nucleus and lateral nucleus of the valvula. The posterior pretectal nucleus and the parvocellular superficial pretectal nucleus receive afferents from the ipsilateral nucleus isthmi. The posterior pretectal nucleus projects to the inferior hypothalamic lobe. Our results reveal a conspicuous projection from the ipsilateral parvocellular superficial pretectal nucleus to the contralateral one and also to the contralateral posterior prectectal nucleus, not reported in previous experimental studies of teleosts. Pretectal centers appear to integrate visual/optic-related centers mainly with the hypothalamus and the cerebellum. The organization of the trout pretectum was compared with the pretectal organization patterns proposed in various teleosts.  相似文献   

8.
Retinal projections in the house musk shrew (Suncus murinus) were determined by the anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). Unilateral injection of WGA-HRP into the vitreous body resulted in the terminal labeling of the optic projections in the suprachiasmatic nucleus (SCH), the ventral (CGLv) and dorsal (CGLd) lateral geniculate nuclei, the intergeniculate leaflet (IGL), the pretectum, the superficial layers of the superior colliculus (CS), and the dorsal terminal nucleus (DTN) of the accessory optic system (AOS). Labeling of the SCH was bilateral, with ipsilateral predominance, and covered the whole dorsoventral extent of the nucleus. Immunohistochemical studies revealed that VIP-like immunoreactive neurons and fibers were present in almost all parts of the SCH. No hypothalamic regions other than the SCH received the optic fibers. The ipsilateral projections to the CGLv, CGLd, and IGL were sparse, and a considerable number of uncrossed retinal fibers were found in the pretectal olivary nucleus. No retinal projections to the lateral posterior thalamic nucleus (LP) were found. Ipsilateral optic fibers projected sparsely to the medial part of the CS. The AOS consisted of a small DTN with a very few crossed retinal projections but no lateral and medial terminal nuclei. In addition, the AOS had no inferior fascicle.  相似文献   

9.
The cytoarchitecture of the pretectal complex of the squirrel monkey was examined in Nissl- and myelin-stained sections in the coronal, horizontal, and sagittal plane. Five different pretectal subdivisions can be identified on the basis of their nuclear morphology. The general location and cytoarchitecture of these pretectal nuclei are similar to those described for non-primate mammals. Thus, the nomenclature used to designate the pretectal nuclei in other species can now be applied to the squirrel monkey. According to this standard terminology, the pretectal complex of the squirrel monkey consists of the nucleus of the optic tract; the pretectal olivary nucleus; and the medial, anterior, and posterior pretectal nuclei. The pattern of retinal innervation to the pretectum was also determined by placing intraocular injections of 3H-proline into one eye and processing the tissue according to standard autoradiographic techniques. The pattern of transported label is more dense over the contralateral nuclei than over the ipsilateral nuclei. In particular, dense transported label is observed bilaterally over the pretectal olivary nucleus and the nucleus of the optic tract with sparse label over the posterior and medial pretectal nuclei.  相似文献   

10.
The intergeniculate leaflet (IGL) and the ventral lateral geniculate nucleus (VLG) are ventral thalamic derivatives within the lateral geniculate complex. In this study, IGL and VLG efferent projections were compared by using anterograde transport of Phaseolus vulgaris-leucoagglutinin and retrograde transport of FluoroGold. Projections from the IGL and VLG leave the geniculate in four pathways. A dorsal pathway innervates the thalamic lateral dorsal nucleus (VLG), the reuniens and rhomboid nuclei (VLG and IGL), and the paraventricular nucleus (IGL). A ventral pathway runs through the geniculohypothalamic tract to the suprachiasmatic nucleus and the anterior hypothalamus (IGL). A medial pathway innervates the zona incerta and dorsal hypothalamus (VLG and IGL); the lateral hypothalamus and perifornical area (VLG); and the retrochiasmatic area (RCA), dorsomedial hypothalamic nucleus, and subparaventricular zone (IGL). A caudal pathway projects medially to the posterior hypothalamic area and periaqueductal gray and caudally along the brachium of the superior colliculus to the medial pretectal area and the nucleus of the optic tract (IGL and VLG). Caudal IGL axons also terminate in the olivary pretectal nucleus, the superficial gray of the superior colliculus, and the lateral and dorsal terminal nuclei of the accessory optic system. Caudal VLG projections innervate the lateral posterior nucleus, the anterior pretectal nucleus, the intermediate and deep gray of the superior colliculus, the dorsal terminal nucleus, the midbrain lateral tegmental field, the interpeduncular nucleus, the ventral pontine reticular formation, the medial and lateral pontine gray, the parabrachial region, and the accessory inferior olive. This pattern of IGL and VLG projections is consistent with our understanding of the distinct functions of each of these ventral thalamic derivatives.  相似文献   

11.
Abstract We studied the retinal projections, the distribution of cytochrome oxidase activity and the cyto- and myeloarchitecture of the subcortical visual system in the subterranean Ansell's mole-rat Cryptomys anselli. The optic nerve contained 1500 myelinated and a similar number of unmyelinated fibres. The retina projected to all the visual structures described in surface-dwelling sighted rodents. The suprachiasmatic nucleus was large and received bilateral retinal input. All other visual nuclei were reduced in size, were cytoarchitecturally poorly developed and received almost exclusively contralateral retinal projections. The dorsal and ventral lateral geniculate nuclei were moderately reduced and heavily innervated. The intergeniculate leaflet could be identified between these two nuclei. Pretectal nuclei were also relatively well-developed. The nucleus of the optic tract, the olivary pretectal nucleus, and the anterior and posterior pretectal nuclei were innervated by the retina. By contrast, the superficial, retinorecipient layers of the superior colliculus showed extreme reduction. The strata zonale, griseum superficiale and opticum were collapsed to a single layer 40 micro m thick. The accessory optic system was vestigial. These findings indicate that the functional subsystems involved in photoperiod perception, form and brightness discrimination, and movement analysis are anatomically rather well developed, whereas those involved in coordination of visuomotor reflexes are severely reduced. Thus, the visual system of C. anselli is much better developed than that of the blind mole-rat Spalax ehrenbergi. We suggest that Cryptomys anselli has retained basic visual capabilities.  相似文献   

12.
Examination of the connections of the corpus cerebelli in one perciform (Lepomis cyanellus) and one cypriniform teleost (Carassius auratus) reveal that ipsilateral afferent connections in both species arise from an anterior group of nuclei in the diencephalon and mesencephalon, and a posterior group of nuclei in the rhombencephalon. Some nuclei of the anterior group and all those of the posterior group have in addition a weaker, and the medial octavolateralis nucleus a stronger, contralateral component. The inferior olivary nucleus in both species projects solely contralaterally. Nucleus paracommissuralis, the ventral accessory optic nucleus and nucleus isthmi are minute in Carassius compared to Lepomis. The latter species has in addition a bilateral corpopetal projection (ipsilaterally stronger) from the lateral cuneate nucleus. Efferent fibers in both species reach the contralateral nucleus ruber, oculomotor nucleus, nucleus of the medial longitudinal fasciculus, torus semicircularis, ventromedial and ventrolateral thalamic nuclei, optic tectum and superior and inferior reticular formation. An additional weaker ipsilateral terminal field could be observed in all nuclei except in the ventrolateral and ventromedial thalamic nuclei, the dorsal periventricular pretectal nucleus and the optic tectum. Lepomis in addition has a bilateral terminal field in the ventral accessory optic nucleus (contralaterally stronger). In both species, stronger ipsilateral and weaker contralateral terminal fields were present in the torus longitudinalis and the valvula cerebelli. The two patterns of corpopetal connections in Lepomis and Carassius were used as models for perciforms and cypriniforms in the analysis of the existing information in the literature on teleosts. While most discrepancies in the literature on percomorphs and ostariophysines could be interpreted consistently, the available information on mormyrids revealed a very different pattern of corpopetal organization: presence of additional connections (from a division of the nucleus preglomerulosus) and absence of otherwise well-established corpopetal connections in teleosts. In a second step, a phyletic analysis of teleostean corpopetal organization revealed that while teleosts share with all other vertebrates a group of corpopetal connections from the rhombencephalon, they evolved many new, more anteriorly located afferent inputs to the corpus cerebelli. Furthermore, electroreceptive mormyrids in addition evolved newly at least one corpopetal connection and lost many others.  相似文献   

13.
We compare the functional and anatomical organization in birds and other vertebrates of the accessory optic nuclei and of those pretectal nuclei implicated in optokinetic responses. In all vertebrate groups, the neurons in these nuclei respond most strongly to slow large-field visual motion in particular directions; the several nuclei differ in the direction of stimulus motion that evokes the best response. These nuclei are essential for optokinetic nystagmus (OKN) in all species examined; the pretectum is necessary for horizontal OKN and the accessory optic nuclei for OKN in other directions. At least in the accessory optic system of birds, the directional parcellation is not well-developed at hatching and requires visual experience to develop normally. There is evidence that the accessory optic system may play a role in transforming the visual motion signal from retinal coordinates into vestibular or oculomotor coordinates. In regard to anatomical connections, in all vertebrate groups studied, the accessory optic and pretectal nuclei project either directly or indirectly to the cerebellum; in addition, the accessory optic system and pretectum are extensively reciprocally connected. In some groups, but not in others, projections have been discovered from the accessory optic system and pretectum to the extraocular motor nuclei and from the accessory optic system to both the vestibular complex and the interstitial nucleus of Cajal.  相似文献   

14.
The retinofugal and retinopetal connections in the green sunfish were studied by autoradiographic and horseradish peroxidase methods. All retinofugal fibers decussate in the optic chiasm. Some fibers project to contralateral preoptic and hypothalamic nuclei while others recross to project to the comparable ipsilateral nuclei. Contralaterally, the medial optic tract projects to the periventricular thalamic and pretectal nuclei and, sparsely, to the rostral optic tectum. The dorsal optic tract projects to the parvocellular portion of the superficial pretectal nucleus, the central pretectal nucleus, nucleus corticalis, and the rostral portion of the optic tectum. The ventral optic tract primarily projects to the caudal portion of the optic tectum, giving off fibers in route to innervate various nuclei, including the parvocellular superficial pretectal nucleus and the dorsal and ventral accessory optic nuclei. The axial optic tract projects to the dorsal accessory optic nucleus, the central pretectal nucleus, and the caudal optic tectum. Retinal fibers reach the ipsilateral thalamus, pretectum and other sites via a redecussation through the posterior commissure. From outgroup analysis it is concluded that such redecussating fibers are an independently derived character within actinopterygians and are homoplasous to nondecussating ipsilateral retinal projections in other vertebrates. Neurons retrogradely labeled with horseradish peroxidase were found to form a rostrocaudal column from the olfactory bulb and nerve through the ventral telencephalon to caudal diencephalic levels along the medial aspect of the optic tract. It is possible that all these neurons consist of one population of migrated ganglion cells of the nervus terminalis.  相似文献   

15.
The projections of the medial terminal nucleus (MTN) of the accessory optic system have been studied in the rabbit and rat following injection of 3H-leucine or 3H-leucine/3H-proline into the MTN and the charting of the course and terminal distribution of the MTN efferents. The projections of the MTN, as demonstrated autoradiographically, have been confirmed in retrograde transport studies in which horseradish peroxidase (HRP) has been injected into nuclei shown in the autoradiographic series to contain fields of terminal axons. The following projections of the MTN have been identified in the rabbit and rat. The largest projection is to the ipsilateral nucleus of the optic tract and dorsal terminal nucleus (DTN) of the accessory optic system. Labeled axons course through the midbrain reticular formation and the superior fasiculus, posterior fibers of the accessory optic system, to reach the nucleus of the optic tract and the DTN in both rabbit and rat. Axons also run forward to traverse the lateral thalamus and to distribute to rostral portions of the nucleus of the optic tract in rat only. A second, large projection is to the contralateral dorsolateral portion of the nucleus parabrachialis pigmentosus of the ventral tegmental area together with an adjacent segment of the midbrain reticular formation. The patchy terminal field observed has been named the visual tegmental relay zone (VTRZ). This fiber projection courses within the posterior commissure and along its path to the VTRZ, provides terminals to the interstitial nucleus of Cajal and the nucleus of Darkschewitsch, both bilaterally. A third, large MTN projection distributes ipsilaterally to the deep mesencephalic nucleus, pars medialis, and the oral pontine reticular formation. Further, this projection also supplies input to the medial nucleus of the periaqueductal gray matter, bilaterally in the rabbit and rat, and in the rabbit also to the ipsilateral superior and lateral vestibular nuclei. A fourth projection crosses the midline and courses caudally to reach, contralaterally, the dorsolateral division of the basilar pontine complex and the above nuclei of the vestibular complex. A fifth projection of the MTN utilizes the medial longitudinal fasciiculus to reach the rostral medulla, in which its axons distribute ispilaterally to the dorsal cap, its ventrolateral outgrowth, and the beta nucleus of the inferior olivary complex. There is also a contralateral contingent of this projection that leaves the medial longitudinal fasciculus to innervate a small rostral segment of the contralateral dorsal cap.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The freshwater butterfly fish, Pantodon buchholzi, is a member of the most primitive radiation of teleosts. The retinofugal projections were studied in this fish with autoradiographic and horseradish peroxidase (HRP) methods, and the cytoarchitecture of the retinorecipient regions in the diencephalon and pretectum was analyzed with Bodian-, cresylecht-violet- and acetylcholinesterase-reacted sections. The rostral diencephalon of Pantodon contains a large retinorecipient nucleus, not previously identified in any other fish, i.e. nucleus rostrolateralis. Other nuclei that are described correspond to those previously recognized in other species. The majority of retinorecipient nuclei are positive for acetylcholinesterase, particularly those in the pretectum, as has been found in other species of teleosts. Most of the retinofugal fibers decussate in the optic chiasm. Some fibers project via the axial optic tract to preoptic nuclei and a region in the rostral hypothalamus. Fibers leave the medial optic tract to terminate in nucleus rostrolateralis and in dorsal and ventral thalamic nuclei, accessory optic and tubercular nuclei, periventricular and central pretectal nuclei, and sparsely in the deep tectal fascicle and terminal field. Dorsal optic tract fibers project to the dorsal accessory optic nucleus, superficial and central pretectal nuclei, and superficial and deep tectal layers. Ventral optic tract fibers project to the superficial pretectum, accessory optic nuclei, posterior tuberculum, nucleus corticalis in the central pretectum, and superficial tectal layer. Fibers that remain in the ipsilateral optic tract project to most of the targets reached by contralaterally projecting fibers. A few fibers in the contralateral medial optic tract redecussate via the posterior commissure to reach the ipsilateral periventricular pretectum. No labeled retinopetal cells caudal to the olfactory bulb were identified in any of the HRP cases.  相似文献   

17.
The retinofugal projections in the bowfin, a non-teleost actinopterygian, were studied by autoradiographic and horseradish peroxidase methods, and the cytoarchitecture of retinorecipient regions of the diencephalon was analyzed with serially sectioned, Bodian stained material. Nuclei were identified in the thalamus, the periventricular portion of the posterior tuberculum, synencephalon, and pretectum which are homologous to like-named nuclei in teleosts and other non-teleost actinopterygian fishes. Of particular note, a posterior pretectal nucleus and, possibly, a homologue of nucleus corticalis were found to be present in the pretectum. These nuclei have previously been identified only in teleosts. The posterior pretectal nucleus is relatively small in the bowfin, and the distribution of a small, versus a large, posterior pretectal nucleus in Teleostei and Halecomorphi suggests that this nucleus was small plesiomorphically. The pattern of retinofugal projections in the bowfin is similar to that in other non-teleost actinopterygian fishes and in teleosts in most regards. Contralaterally, the retina projects to nuclei in the dorsal and ventral thalamus, superficial and central pretectum, dorsal and ventral accessory optic nuclei, and to the optic tectum. Additionally, there are sparse projections to the suprachiasmatic nucleus in the preoptic area, the periventricular nucleus of the posterior tuberculum, and the dorsal and ventral periventricular pretectal nuclei. Ipsilateral projections are sparse and are derived from fibers which do not decussate in the optic chiasm. Undecussated ipsilateral retinal projections, as present in the bowfin, are a widely distributed character in vertebrates and appear to be plesiomorphic for vertebrates.  相似文献   

18.
The accessory optic system of rodents: a whole-mount HRP study   总被引:1,自引:0,他引:1  
The three-dimensional fiber pathways of the accessory optic system in three species of rodents (rat, golden hamster, guinea pig) were examined on whole-mounted preparations of the diencephalon and the midbrain, without sectioning, by anterograde labeling of retinal axons with horseradish peroxidase (HRP). HRP histochemical studies on the serial coronal sections were also done. In this study, only the accessory optic system on the side contralateral to the eye injection of HRP was clearly detected. The rat accessory optic system consisted of the inferior fasciculus, the superior fasciculus, the medial terminal nucleus, the lateral terminal nucleus, and the dorsal terminal nucleus. After the inferior fasciculus arrived at the ventromedial border of the cerebral peduncle, some fibers from the inferior fasciculus ran caudally to the medial terminal nucleus. The remaining fibers from the inferior fasciculus further proceeded dorsocaudally on the surface of the cerebral peduncle and left the inferior fasciculus at various levels of the cerebral peduncle to be mixed up with the fibers from the superior faciculus. The golden hamster accessory optic system also consisted of the inferior fasciculus, the superior fasciculus, the medial terminal nucleus, the lateral terminal nucleus, and the dorsal terminal nucleus. However, all fibers of the inferior fasciculus ran caudally on the lateral surface of the hypothalamus or along the ventromedial border of the cerebral peduncle to terminate at the medial terminal nucleus. The guinea pig accessory optic system and rat accessory optic system were similar, but the posterior fibers of the superior fasciculus decreased in number, and the dorsal terminal nucleus and the posterior portion of the lateral terminal nucleus were not observed in the guinea pig accessory optic system.  相似文献   

19.
Connectivity of the turtle accessory optic system   总被引:1,自引:0,他引:1  
  相似文献   

20.
The pretectum is a complex region of the caudal diencephalon which in adult zebrafish comprises both retinorecipient (parvocellular superficial, central, intercalated, paracommissural, and periventricular) and non‐retinorecipient (magnocellular superficial, posterior, and accessory) pretectal nuclei distributed from periventricular to superficial regions. We conducted a comprehensive study of the connections of pretectal nuclei by using neuronal tracing with fluorescent carbocyanine dyes. This study reveals specialization of efferent connections of the various pretectal nuclei, with nuclei projecting to the optic tectum (paracommissural, central, and periventricular pretectal nuclei), the torus longitudinalis and the cerebellar corpus (paracommissural, central, and intercalated pretectal nuclei), the lateral hypothalamus (magnocellular superficial, posterior, and central pretectal nuclei), and the tegmental regions (accessory and superficial pretectal nuclei). With regard to major central afferents to the pretectum, we observed projections from the telencephalon to the paracommissural and central pretectal nuclei, from the optic tectum to the paracommissural, central, accessory and parvocellular superficial pretectal nuclei, from the cerebellum to the paracommissural and periventricular pretectal nuclei and from the nucleus isthmi to the parvocellular superficial and accessory pretectal nuclei. The parvocellular superficial pretectal nucleus sends conspicuous projections to the contralateral magnocellular superficial pretectal nucleus. The composite figure of results reveals large differences in connections of neighbor pretectal nuclei, indicating high degree of nuclear specialization. Our results will have important bearings in functional studies that analyze the relationship between specific circuits and behaviors in zebrafish. Comparison with results available in other species also reveals differences in the organization and connections of the pretectum in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号