首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Periaxin (PRX) plays a significant role in the myelination of the peripheral nerve. To date, seven non-sense or frameshift PRX mutations have been reported in six pedigrees with Dejerine-Sottas neuropathy or severe Charcot-Marie-Tooth neuropathy (CMT). We detected a PRX mutation in three patients in the screening of 66 Japanese demyelinating CMT patients who were negative for the gene mutation causing dominant or X-linked demyelinating CMT. Three unrelated patients were homozygous for a novel R1070X mutation and presented early-onset but slowly progressive distal motor and sensory neuropathies. Mutations lacking the carboxyl-terminal acidic domain may show loss-of-function effects and cause severe demyelinating CMT.  相似文献   

2.
We describe a mutation and haplotype analysis of Papillon-Lefèvre syndrome probands that provides evidence of a founder effect for four separate cathepsin C mutations. A total of 25 different cathepsin C mutations have been reported in 32 families with Papillon-Lefèvre syndrome (PLS) and associated conditions. A characteristic of these findings is the diversity of different cathepsin C mutations that have been identified. To evaluate the generality of cathepsin C mutations, PLS probands representative of five reportedly unrelated Saudi Arabian families were evaluated by mutational and haplotype analyses. Sequence analysis identified two cathepsin C gene mutations: a novel exon 7 G300D mutation was found in the proband from one family, while probands from four families shared a common R272P mutation in exon 6. The R272P mutation has been previously reported in two other non-Saudi families. The presence of the R272P mutation in probands from these four Saudi families makes this the most frequently reported cathepsin C mutation. To distinguish between the presence of a possible founder effect or a mutational hot spot for the R272P mutation, we performed haplotype analysis using six novel DNA polymorphisms that span a 165 kb interval containing the cathepsin C gene. Results of haplotype analysis for genetic polymorphisms within and flanking the cathepsin C gene are consistent with inheritance of the R272P mutation "identical by descent" from a common ancestor in these four Saudi families. Haplotype analysis of multiple PLS probands homozygous for other cathepsin C mutations (W249X, Q286X, and T153I) also supports inheritance of each of these mutations from common ancestors. These data suggest that four of the more frequently reported cathepsin C mutations have been inherited from common ancestors and provide the first direct evidence for a founder effect for cathepsin C gene mutations in PLS. Identification of these six short tandem repeat polymorphisms that span the cathepsin C gene will permit haplotype analyses to determine other founder haplotypes of cathepsin C mutations in additional PLS families.


Keywords: Papillon-Lefèvre syndrome; cathepsin C; founder effect; chromosome 11q14  相似文献   

3.
Four private mutations responsible for three forms demyelinating of Charcot‐Marie‐Tooth (CMT) or hereditary motor and sensory neuropathy (HMSN) have been associated with the Gypsy population: the NDRG1 p.R148X in CMT type 4D (CMT4D/HMSN‐Lom); p.C737_P738delinsX and p.R1109X mutations in the SH3TC2 gene (CMT4C); and a G>C change in a novel alternative untranslated exon in the HK1 gene causative of CMT4G (CMT4G/HMSN‐Russe). Here we address the findings of a genetic study of 29 Gypsy Spanish families with autosomal recessive demyelinating CMT. The most frequent form is CMT4C (57.14%), followed by HMSN‐Russe (25%) and HMSN‐Lom (17.86%). The relevant frequency of HMSN‐Russe has allowed us to investigate in depth the genetics and the associated clinical symptoms of this CMT form. HMSN‐Russe probands share the same haplotype confirming that the HK1 g.9712G>C is a founder mutation, which arrived in Spain around the end of the 18th century. The clinical picture of HMSN‐Russe is a progressive CMT disorder leading to severe weakness of the lower limbs and prominent distal sensory loss. Motor nerve conduction velocity was in the demyelinating or intermediate range.  相似文献   

4.
Charcot-Marie-Tooth (CMT) disease type 4 (CMT4) is the name given to autosomal recessive forms of hereditary motor and sensory neuropathy (HMSN). When we began this study, three genes or loci associated with inherited peripheral neuropathies had already been identified in the European Gypsy population: HMSN-Lom (MIM 601455), HMSN-Russe (MIM 605285) and the congenital cataracts facial dysmorphism neuropathy syndrome (MIM 604168). We have carried out genetic analyses in a series of 20 Spanish Gypsy families diagnosed with a demyelinating CMT disease compatible with an autosomal recessive trait. We found the p.R148X mutation in the N-myc downstream-regulated gene 1 gene to be responsible for the HMSN-Lom in four families and also possible linkage to the HMSN-Russe locus in three others. We have also studied the CMT4C locus because of the clinical similarities and showed that in 10 families, the disease is caused by mutations located on the SH3 domain and tetratricopeptide repeats 2 (SH3TC2) gene: p.R1109X in 20 out of 21 chromosomes and p.C737_P738delinsX in only one chromosome. Moreover, the SH3TC2 p.R1109X mutation is associated with a conserved haplotype and, therefore, may be a private founder mutation for the Gypsy population. Estimation of the allelic age revealed that the SH3TC2 p.R1109X mutation may have arisen about 225 years ago, probably as the consequence of a bottleneck.  相似文献   

5.
Mutations in the SLC22A5 gene, which encodes for the plasma membrane carnitine transporter OCTN2, cause primary carnitine deficiency (PCD). After our first report of OCTN2 mutations in Chinese, three more Chinese PCD patients were identified. The parents of these families were non-consanguineous and these families were unrelated. Two novel truncating mutations were found: R254X, a single-base mutation at cDNA position 981 (c.981C>T); and Y387X (c.1382T>G). Two probands, one each from Taiwan and Macau, were homozygous for R254X. The other proband from Taiwan carried both R254X and Y387X. Two additional heterozygote carriers of R254X were also identified among 250 control samples, while none was detected for Y387X. The population carrier rate for R254X would be about 1 in 125. Haplotypes of R254X alleles were examined and patients homozygous for R254X were also homozygous for the same haplotype of intragenic and microsatellites markers. Analysis of population frequencies of haplotypes revealed that the chance of 4 chromosomes having arisen as independent events was 0.016. We conclude that R254X is probably a founder mutation in Chinese. Other previously reported mutations found in the Japanese population were also screening in 250 control samples but no carrier was identified, indicating that they were either very rare or not present in Southern Chinese.  相似文献   

6.
Glycogen storage disease type IIIa (GSD IIIa) is an autosomal recessive disorder characterized by excessive accumulation of abnormal glycogen in the liver and muscles and caused by a deficiency in the glycogen debranching enzyme. The spectrum of AGL mutations in GSD IIIa patients depends on ethnic group—prevalent mutations have been reported in the North African Jewish population and in an isolate such as the Faroe islands, because of the founder effect, whereas heterogeneous mutations are responsible for the pathogenesis in Japanese patients. To shed light on molecular characteristics in Egypt, where high rate of consanguinity and large family size increase the frequency of recessive genetic diseases, we have examined three unrelated patients from the same area in Egypt. We identified three different individual AGL mutations; of these, two are novel deletions [4-bp deletion (750–753delAGAC) and 1-bp deletion (2673delT)] and one the nonsense mutation (W1327X) previously reported. All are predicted to lead to premature termination, which completely abolishes enzyme activity. Three consanguineous patients are homozygotes for their individual mutations. Haplotype analysis of mutant AGL alleles showed that each mutation was located on a different haplotype. Our results indicate the allelic heterogeneity of the AGL mutation in Egypt. This is the first report of AGL mutations in the Egyptian population.  相似文献   

7.
Smith–Lemli–Opitz syndrome (SLOS) is an autosomal recessive malformation syndrome characterized by microcephaly, syndactyly of toes, ambiguous genitalia, and mental retardation. The underlying DHCR7 gene has been identified and a wide variety of distinct mutations were reported in USA and European SLOS patients. A significant difference has been suggested in the frequency of SLOS among different ethnic populations. Here, we report mutational analysis of seven Japanese SLOS patients. Five mutations, R352Q, R242H, G303R, X476Q, and S192F, were identified, and R352Q appeared most frequent, since nine out of the 13 mutations of Japanese origin were the same R352Q. These results suggest that R352Q is a predominant founder mutation in Japanese SLOS patients.  相似文献   

8.
Cartilage-hair hypoplasia (CHH), or metaphyseal dysplasia, McKusick type, is an autosomal recessive disease with diverse clinical manifestations. CHH is caused by mutations in RMRP (ribonuclease mitochondrial RNA processing), the gene encoding the RNA component of the ribonucleoprotein complex RNase MRP. A common founder mutation, 70A>G has been reported in the Finnish and Amish populations. We screened 11 Japanese patients with CHH for RMRP mutations and identified mutations in five probands, including three novel mutations (16-bp dup at +1, 168G>A, and 217C>T). All patients were compound heterozygotes for an insertion or duplication in the promoter or 5′-transcribed regions and a point mutation in the transcribed region. Two recurrent mutations were unique to the Japanese population: a 17-bp duplication at +3 and 218A>G. Haplotype analysis revealed that the two mutations common in Japanese individuals were contained within distinct haplotypes. Through this analysis, we have identified a unique mutation spectrum and founder mutations in the Japanese population.Yuichiro Hirose and Eiji Nakashima contributed equally to this work.  相似文献   

9.
The myotonic dystrophy (DM) mutation is an unstable (CTG) n repeat, present at a copy number of 5–37 repeats on normal chromosomes but amplified to 50–3000 copies on DM chromosomes. Previous findings in Caucasian populations of a DM founder chromosome raise a question about the molecular events involved in the expansion mutation. To investigate whether a founder chromosome for the DM mutation exists in the Japanese population, we genotyped families using polymorphic markers near the (CTG) n repeat region and constructed haplotypes. Six different haplotypes were found and DM alleles were always haplotype A. To find an origin of the (CTG) n repeat mutation and to investigate the mechanism of the expansion mutation in the Japanese population we have studied 90 Japanese DM families comprising 190 affected and 130 unaffected members. The results suggest that a few common ancestral mutations in both Caucasian and Japanese populations have originated by expansion of an ancestral n = 5 repeat to n = 19–37 copies. These data support multistep models of triplet repeat expansion that have been proposed for both DM and Friedreich's ataxia. Received: May 26, 1998/Accepted: July 22, 1998  相似文献   

10.
Pertesi M, Konstantopoulou I, Yannoukakos D. Haplotype analysis of two recurrent genomic rearrangements in the BRCA1 gene suggests they are founder mutations for the Greek population. The deletions of 4.4 and 3.2 kb identified in exons 24 and 20, respectively, are two of the four most common mutations in the BRCA1 gene in Greek breast cancer patients. They have been reported previously six and three times, respectively, in unrelated Greek families. A total of 11 more families have been identified in the present study. In order to characterize these recurrent mutations as founder mutations, it is necessary to identify the disease‐associated haplotype and prove that it is shared by all the mutation carriers, suggesting that it occurred only once in a common ancestor. Haplotype analysis was performed on 24 mutation carriers and 66 healthy individuals using 10 short tandem repeat markers located within and flanking the BRCA1 gene locus, spanning a 5.9 Mb interval. Results indicate that most of the carriers of the exon 24 deletion share a common core haplotype ‘4‐7‐6‐6‐1‐3’ between markers D17S951 and D17S1299, for a stretch of 2.9 Mb, while the common haplotype for the exon 20 deletion is ‘6‐7‐4‐2‐6‐7‐1‐3’ between markers D17S579 and D17S1299, for a stretch of 3.9 Mb. Both genomic rearrangements in BRCA1 gene are Greek founder mutations, as carriers share the same, for each mutation, disease‐associated haplotype, suggesting the presence of a distinct common ancestor for both mutations.  相似文献   

11.
Holocarboxylase synthetase (HCS) deficiency is a rare autosomal recessive disorder of biotin metabolism. Including three new Japanese patients we diagnosed in this study, ten Japanese families have, so far, been accumulated. In these families, the mutations 237Leu > Pro (sevenalleles) and 1067delG (five alleles) were predominant; 508Arg > Trp and 550Val > Met mutations were identified in three families in the heterozygous form and in one patient in the homozygous form, respectively. To determine the origin of these mutations, we identified new polymorphic microsatellite markers in the HCS gene and analyzed the haplotypes of the patients. All the 237Leu > Pro and the 1067delG alleles were associated with haplotype 2-2. This finding is consistent with the notion that these mutations are founder mutations in the Japanese population. Three Japanese 508Arg > Trp alleles were associated with several haplotypes, including 2-3 and 1-4. The haplotype of a Taiwanese patient homozygous for the 508Arg > Trp mutation was 2-3/2-3. The haplotype of one Japanese patient homozygous for the 550Val > Met mutation was 1-4/1-4, whereas that of a Jewish patient with the same homozygous mutation was 2-3/2-3. Both mutations were associated with at least two haplotypes and were found in several ethnic groups. The changes 508Arg > Trp and 550Val > Met occurred at CpG dinucleotide. The data suggest that these two mutations represent a mutational hot-spot. Received: August 31, 2000 / Accepted: September 28, 2000  相似文献   

12.
Crigler-Najjar syndrome type I (CN-I) is a rare and severe metabolic disorder. A recurrent mutation - c.1070A>G in exon 3 - was identified in the Tunisian population, suggesting a founder effect. In 2004, the detection of this mutation in two Kuwaiti Bedouin families has called the Tunisian founder effect in question again. To determine the origin of this mutation, 21 Tunisian and 2 Kuwaiti Bedouin CN-I patients were screened using nine genetic markers. Haplotype analysis confirmed the founder effect hypothesis and dated the appearance of this mutation some 32 generations ago in the Tunisian population. Using the same genetic analysis, the ancestor haplotype was identified in these two families. This result genetically confirms the blending of the Bedouin nomads within today's Tunisian population. After population migration from east to west, this mutation was introduced into the Tunisian population, and then perpetuated, probably because of marriages in isolated communities.  相似文献   

13.
Corneal dystrophies in Japan   总被引:3,自引:0,他引:3  
Recent advances in molecular genetics have increased our understanding of the role of genes. Four autosomal dominant corneal dystrophies (CDs); granular CD (GCD), Avellino CD (ACD), lattice CD (LCD), and Reis-Bücklers CD (RBCD) were mapped to the long arm of chromosome 5 (5q31). These four diseases were shown, in a Caucasian series, to result from different missense mutations in the TGFBI (BIGH3, keratoepithelin) gene. The same mutations were also detected in Japanese patients, from a different ethnic background. Gelatinous drop-like corneal dystrophy (GDLD), on the other hand, which was found in Japanese patients in 1914, is a rare autosomal recessive disorder characterized by corneal amyloidosis. Parents of the patients had a markedly higher frequency of consanguineous marriages than the general population. The gene responsible for GDLD, the membrane component, chromosome 1, surface marker 1 (M1S1) gene was mapped to the short arm of chromosome 1(1p). Four deleterious mutations in this gene were detected in Japanese patients. We review here additional studies on mutations of the TGFBI and M1S1 genes found in Japanese patients. In the TGFBI gene, nine different mutations were detected in Japanese patients with GCD, ACD, LCD, or RBCD. The codons R124 and R555 of the TGFBI gene were hotspots in Japanese patients, of whom many were ACD patients with the R124H mutation. New mutations responsible for LCD were detected in the TGFBI gene of patients with LCD, in addition to the P501T mutation in LCD type IIIA found earlier. These studies showed a clear genotype/phenotype correlation associated with the TGFBI gene. In the M1S1 gene, the Q118X mutation was the most common alteration, and a founder mutation in Japanese GDLD patients, as previously reported. Ninety-two percent of the mutated alleles were the Q118X. Received: March 1, 2001 / Accepted: April 21, 2001  相似文献   

14.
Methylmalonic acidemia (MMA) is caused by a deficiency in the activity of l-methylmalonyl-CoA mutase (MCM), a vitamin B12 (or cobalamin, Cbl)-dependent enzyme. Apoenzyme-deficient MMA (mut MMA) results from mutations in the nuclear gene MUT. Most of the MUT mutations are thought to be private or restricted to only a few pedigrees. Our group elucidated the spectrum of mutations of Japanese mut MMA patients by performing mutation and haplotype analyses in 29 patients with mut MMA. A sequence analysis identified mutations in 95% (55/58) of the disease alleles. Five mutations were relatively frequent (p.E117X, c.385 + 5G > A, p.R369H, p.L494X, and p.R727X) and four were novel (p.M1V, c.753_753 + 5delGGTATA, c.1560G > C, and c.2098_2099delAT). Haplotype analysis suggested that all of the frequent mutations, with the exception of p.R369H, were spread by the founder effect. Among 46 Japanese patients investigated in the present and previous studies, 76% (70/92) of the mutations were located in exons 2, 6, 8, and 13. This finding – that a limited number of mutations account for most of the mutations in Japanese mut MMA patients – is in contrast with results of a previous study in Caucasian patients.  相似文献   

15.
The entire coding regions of the two breast cancer susceptibility genes BRCA1 and BRCA2 from breast cancer patients from 40 Cypriot families with multiple cases of breast and ovarian cancer were sequenced. A total of four protein-truncating mutations were found in six families. In BRCA1, a novel truncating mutation 5429delG was found in exon 21. In BRCA2, three truncating mutations were detected: a frameshift 8984delG in exon 22 and two nonsense mutations C1913X in exon 11 and K3326X in exon 27. It is noted that mutation 8984delG was found in three separate families, and haplotype analysis showed that this may be a founder mutation in the Cypriot population. In addition, a pair of rare variants, Q356R and S1512I, was detected in BRCA1 in patients belonging to two Cypriot families. The simultaneous presence of this pair of missense mutations may be associated with the breast cancer phenotype in the Cypriot population. We conclude that the BRCA2 gene appears to play a more important role in familial breast cancer in the Cypriot population than BRCA1.  相似文献   

16.
We report four previously undescribed families with germline BRCA1‐associated protein‐1 gene (BAP1) mutations and expand the clinical phenotype of this tumor syndrome. The tumor spectrum in these families is predominantly uveal malignant melanoma (UMM), cutaneous malignant melanoma (CMM) and mesothelioma, as previously reported for germline BAP1 mutations. However, mutation carriers from three new families, and one previously reported family, developed basal cell carcinoma (BCC), thus suggesting inclusion of BCC in the phenotypic spectrum of the BAP1 tumor syndrome. This notion is supported by the finding of loss of BAP1 protein expression by immunochemistry in two BCCs from individuals with germline BAP1 mutations and no loss of BAP1 staining in 53 of sporadic BCCs consistent with somatic mutations and loss of heterozygosity of the gene in the BCCs occurring in mutation carriers. Lastly, we identify the first reported recurrent mutation in BAP1 (p.R60X), which occurred in three families from two different continents. In two of the families, the mutation was inherited from a common founder but it arose independently in the third family.  相似文献   

17.
Breast cancer (BC) is the most frequent cancer among women in Morocco. However, the role of the most prevalent BC‐predisposing genes, BRCA1 and BRCA2, has been largely unexplored. To help define the role of BRCA1 in BC in Morocco, we characterized the first potential BRCA1 founder mutation in this population. Genetic testing of BRCA1 and BRCA2 in BC high‐risk families identified mutation BRCA1 c.5309G>T, p.(Gly1770Val) or G1770V in five independent families from Morocco, suggesting a founder effect. To confirm this hypothesis, haplotype construction was performed using seven intragenic and flanking BRCA1 microsatellite markers. Clinical data were also compiled. Clinical data from carriers of mutation G1770V correspond to data from carriers of BRCA1 pathogenic mutations. Microsatellite analysis showed a common haplotype for the five families in a region comprising 1.54 Mb, confirming G1770V as the first specific founder BRCA1 mutation in the Moroccan population. Our findings contribute to a better understanding of BC genetics in the Moroccan population. Nevertheless, comprehensive studies of mutation G1770V in large series of BC patients from Morocco are needed to assess the real prevalence of this mutation and to improve genetic testing and risk assessment in this population.  相似文献   

18.
α-L -Iduronidase (IDUA) deficiency (mucopolysaccharidosis type I; MPS-I) is an inborn error of lysosomal degradation of glycosaminoglycans that results in storage of undegraded glycosaminoglycans in lysosomes. Previous studies in Caucasian populations showed that (1) homozygosity or compound heterozygosity for the W402X and Q70X mutations are the common causes of MPS-I with a severe form (Hurler syndrome), and (2) the presence of R89Q may lead to a milder phenotype. We studied mutations in the IDUA gene from 19 MPS-I patients, including two pairs of siblings, with various clinical phenotypes (Hurler, 6 cases; Hurler/Scheie, 7 cases; Scheie, 6 cases). We report the presence of two common mutations that account for 42% of the 38 alleles in these patients. One is a novel 5-bp insertion between the thymidine at nt 704 and a cytosine at nt 705 (704ins5), which is seen only in the Japanese population. The other is a missense mutation, R89Q, which is also seen in Caucasians, although uncommonly. In the 19 Japanese MPS-I patients, the 704ins5 mutation accounted for 7 of 38 alleles (18%), while the R89Q accounted for 9 of 38 (24%). No Japanese patient was found to carry the W402X or Q70X alleles, the two most common MPS-I mutations in Caucasians. Homozygosity for the 704ins5 mutation is associated with a severe phenotype, and for the R89Q mutation with a mild phenotype. Compound heterozygosity for these two mutations produced an intermediate phenotype. Haplotype analysis using polymorphisms linked to the IDUA locus demonstrated that each mutation occurs on a different specific haplotype, suggesting that individuals with each of these common mutations derive from common founders. These data continue to document the molecular heterogeneity and racial differences in mutations in MPS-I. © 1996 Wiley-Liss, Inc.  相似文献   

19.
20.
The mutational spectrum of the MMR genes is highly heterogeneous, but specific mutations are observed at high frequencies in well‐defined populations or ethnic groups, due to founder effects. The MSH2 mutation c.2152C>T, p.(Gln718*), has occasionally been described in Lynch families worldwide, including in Portuguese Lynch syndrome families. During genetic testing for Lynch syndrome at the Portuguese Oncology Institutes of Porto and Lisbon, this mutation was identified in 28 seemingly unrelated families. In order to evaluate if this alteration is a founder mutation, haplotype analysis using microsatellite and SNP markers flanking the MSH2 gene was performed in the 28 probands and 87 family members. Additionally, the geographic origin of these families was evaluated and the age of the mutation estimated. Twelve different haplotypes were phased for 13 out of the 28 families and shared a conserved region of ~3.6 Mb. Based on the mutation and recombination events observed in the microsatellite haplotypes and assuming a generation time of 25 years, the age estimate for the MSH2 mutation was 273 ± 64 years. The geographic origins of these families were mostly from the Northern region of Portugal. Concluding, these results suggest that the MSH2 c.2152C>T alteration is a founder mutation in Portugal with a relatively recent origin. Furthermore, its high proportion indicates that screening for this mutation as a first step, together with the previously reported Portuguese founder mutations, may be cost‐effective in genetic testing of Lynch syndrome suspects of Portuguese ancestry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号