首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In typical Fukuyama congenital muscular dystrophy (FCMD), peak motor function is usually only unassisted sitting or sliding on the buttocks, though a few patients are able to walk at some point. However, a few patients have a severe phenotype and never acquire head control. In addition, it is clinically difficult to differentiate this severe FCMD from Walker-Warburg syndrome (WWS) or from muscle-eye-brain disease (MEBD). In order to establish a genotype-phenotype correlation, we performed haplotype analysis using microsatellite markers closest to the FCMD gene (FCMD) in 56 Japanese FCMD families, including 35 families whose children were diagnosed as FCMD with the typical phenotype, 12 families with a mild phenotype, and 9 families with a severe phenotype. Of the 12 propositi with the mild phenotype, 8 could walk and the other 4 could stand with support; 10 cases were homozygous for the ancestral founder (A-F) haplotype whereas the other 2 were heterozygous for the haplotype. In the 9 severe cases, who had never acquired head control or the ability to sit without support, 3 had progressive hydrocephalus, 2 required a shunt operation, and 7 had ophthalmological abnormalities. Haplotype analysis showed that 8 of the 9 cases of the severe phenotype are heterozygous for the A-F haplotype, and the other one homozygous for the haplotype. We confirmed that at least one chromosome in each of the 56 FCMD patients has the A-F haplotype. The rate of heterozygosity for the A-F haplotypes was significantly higher in severe cases than in typical or mild cases (P < 0.005). Severe FCMD patients appeared to be compound heterozygotes for the founder mutation and another mutation. Thus, the present study yielded molecular genetic evidence of a broad clinical spectrum in FCMD.  相似文献   

2.
目的 通过单体型分析,对临术诊断为福山型先天性肌营不良(Fukuyama congenital muscular dystrophy,FCMD)的患者进行基因诊断,并探讨FCMD基因型和表型之间的关系。方法 应用D9S306,D9S2105,D9S2170,D9S2171,D9S2107,D9S172等6个微卫星DNA,经聚合酶链反应(PCR),扩增片段长度多态性-内烯酰胺凝胶电泳,对100个日本  相似文献   

3.
We conducted prenatal diagnosis by haplotype analysis, using newly developed microsatellite markers, in eight Fukuyama type congenital muscular dystrophy (FCMD) families. In addition to six new families, two previously reported families were re-examined by haplotype analysis including detection of an ancestral founder haplotype (138–183–301) for 3 microsatellite markers closest to the FCMD gene, designated D9S2105–D9S2107–D9S172, the distances of which from the FCMD gene are presumed to be ∼140, ∼20, and ∼280 kb, respectively. Five fetuses from five families were diagnosed as nonaffected, and were subsequently confirmed to be healthy. Three fetuses of the other three families were diagnosed as having a high probability of being affected by FCMD. In the prenatal diagnosis conducted for these eight families, the ancestral founder allele was observed in 13 of 16 (81%) FCMD-bearing chromosomes. Detection of the ancestral haplotype facilitated achieving accurate prenatal diagnosis of FCMD. The brains of all three fetuses prenatally diagnosed as FCMD-affected showed the initial stage of cortical dysplasia, strong evidence of FCMD. Am. J. Med. Genet. 77:310–316, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Hereditary angio‐oedema (HAE) with normal C1 inhibitor is associated with heterozygous mutations in the factor XII gene (FXII‐HAE). We report two Brazilian FXII‐HAE families segregating the mutation c.983 C>A (p.Thr328Lys). In each family, one patient with a homozygous mutation was found. The homozygous female patient in family 1 displayed a severe phenotype. However, this falls within the clinical phenotype spectrum reported for heterozygous female mutation carriers. The homozygous male patient in family 2 also showed a severe phenotype. This finding is intriguing, as to our knowledge, it is the first such report for a male FXII‐HAE mutation carrier. In the rare instances in which male mutation carriers are affected, a mild phenotype is typical. The present findings therefore suggest that homozygous FXII‐HAE mutation status leads to a severe phenotype in females and males, and to an increased risk of manifest symptoms in the latter.  相似文献   

5.
6.
Fukuyama-type congenital muscular dystrophy (FCMD) is characterized by congenital muscular dystrophy in combination with central nervous system (CNS) abnormalities. Differential diagnosis of FCMD from Duchenne and Becker muscular dystrophies (DMD/BMD) or other types of congenital muscular dystrophy is occasionally difficult, because of their phenotypic similarity. The gene (FCMD) responsible for FCMD at 9q31 was isolated in 1998. In Japan, most FCMD-bearing chromosomes (87%) have a 3-kb retrotransposal insertion into the 3'-untranslated region (UTR) of the gene that could be derived from a single ancestral founder. Nine non-founder mutations have been identified in Japanese FCMD patients. Severe phenotype was significantly more frequent in patients who were compound heterozygotes for a point mutation and the founder mutation, than in homozygotes for the founder mutation. We developed a PCR-based diagnostic method for a rapid detection of the retrotransposal insertion mutation. Using this system, we screened 18 FCMD patients, and found 16 homozygotes and two heterozygotes for the insertion. We also evaluated the carrier frequency in the normal Japanese population. Six of 676 persons were recognized as a heterozygous carrier. Furthermore, we found three homozygotes for the FCMD founder mutation among 97 patients who had been said to have probable DMD/BMD without any DMD mutations. On the other hand, there were no FCMD homozygotes but four heterozygous carriers among 335 patients with DMD mutations. The diagnostic method we developed will provide a rapid and reliable diagnosis of FCMD, which can bring important information in genetic counseling, such as the accurate mode of inheritance, recurrence risk and a life expectancy.  相似文献   

7.
《Journal of neurogenetics》2013,27(4):163-169
Abstract

Pontocerebellar hypoplasia type 1 (PCH1) is characterized by cerebellar and anterior horn motor neuron degeneration and loss, signs of spinal muscular atrophy plus. Patients manifest severe perinatal weakness, hypotonia, and respiratory insufficiency, causing death frequently before the age of 1 year. Recently, causative mutations in EXOSC3 were reported in a majority of PCH1 patients, but the detailed clinical phenotype caused by EXOSC3 mutations, genotype-phenotype correlations, and prevalent mutations in specific ethnic groups is not yet known.

Three unrelated Czech Roma patients with PCH1 were investigated clinically, electrophysiologically, neuroradiologically, and neuropathologically (patients 1 and 2). The entire coding region of the EXOSC3 gene, including the adjacent intron sequences, was sequenced in all three patients. The same mutation c.92G→C, p.G31A in EXOSC3 was found in all three affected patients in homozygous state and in heterozygous state in the parents from two of the families. Haplotype analysis with four flanking microsatellite markers showed identical haplotype in 9 out of 11 haplotypes carrying the c.92G→C, p.G31A mutation. Furthermore, four heterozygotes for this mutation were found in anonymous DNA samples from 90 unrelated Roma individuals. All four of these samples shared the same haplotype. No heterozygous sample was found among 120 anonymous DNA samples from Czech non-Roma individuals with no familial relation. It may therefore be concluded that EXOSC3 c.92G→C, p.G31A mutation is a founder mutation with high prevalence among the Czech Roma causing a similar and particularly severe phenotype of PCH1. These observations from the Czech Roma may have consequences also for other Roma from other countries.

PCH1 caused by EXOSC3 founder mutation c.92G→C, p.G31A extends the list of autosomal recessive disorders rare among the general population but more frequent among Roma at least in the Czech Republic.  相似文献   

8.
In our previous studies, mutations in known candidate genes were detected in approximately 50% of Chinese patients with various forms of retinal degeneration. The next stage, identifying additional causative mutations in patients with various forms of genetic eye diseases based on whole exome sequencing of 1220 samples, revealed frequent homozygous or compound heterozygous null mutations in ALMS1, which are known to associate with Alström syndrome as well as individuals diagnosed with Leber congenital amaurosis (LCA) or early‐onset severe cone–rod dystrophy (CORD) without signs of systemic phenotypes except that one had a congenital heart abnormity. Sanger sequencing, co‐segregation analysis and analysis of normal individuals identified a total of 13 null mutations in ALMS1 in 11 probands, including 4 probands with homozygous mutations and 7 with compound heterozygous mutations. Follow‐up examinations revealed absent or mild systemic manifestations of Alström syndrome in those available: 9 of 15 patients in 11 families. These findings not only expand the spectrum of phenotypes associated with ALMS1 mutations but also suggest that ALMS1 should be regarded as a candidate causative gene in patients diagnosed with isolated LCA and early‐onset severe CORD.  相似文献   

9.
Jaakkola E, Mustonen A, Olsen P, Miettinen S, Savuoja T, Raams A, Jaspers NGJ, Shao H, Wu BL, Ignatius J. ERCC6 founder mutation identified in Finnish patients with COFS syndrome. Cerebro‐oculo‐facio‐skeletal (COFS) syndrome is an autosomal recessive disorder characterized by microcephaly, congenital cataracts, facial dysmorphism, neurogenic arthrogryposis, growth failure and severe psychomotor retardation. We report a large consanguineous pedigree from northern Finland with six individuals belonging into four different sibships and affected with typical COFS syndrome phenotype. Two deceased patients have been published previously in 1982 as the first cases exhibiting cerebral calcifications typical for this disorder. Two living and one of the deceased patients were all shown to possess a novel homozygous mutation in the ERCC6 [Cockayne syndrome B (CSB)] gene, thereby confirming the diagnosis on molecular genetic level even for the earlier published cases. Genealogical investigation showed a common ancestor living in a northeastern village in Finland in the 18th century for all six patients implying a founder effect.  相似文献   

10.
Papillon–Lefèvre syndrome (PLS; MIM#245000) is a rare recessive autosomal disorder characterized by palmar and plantar hyperkeratosis, and aggressively progressing periodontitis leading to premature loss of deciduous and permanent teeth. PLS is caused by loss‐of‐function mutations in the CTSC gene, which encodes cathepsin C. PLS clinical expressivity is highly variable and no consistent genotype–phenotype correlation has been demonstrated yet. Here we report the clinical and genetic features of five PLS patients presenting a severe periodontal breakdown in primary and permanent dentition, hyperkeratosis over palms and soles, and recurrent sinusitis and/or tonsillitis. Mutation analysis revealed two novel homozygous recessive mutations (c.947T>C and c.1010G>C) and one previous described homozygous recessive mutation (c.901G>A), with parents carrying them in heterozygous, in three families (four patients). The fourth family presented with the CTSC c.628C>T mutation in heterozygous, which was inherited maternally. Patient carrying the CTSC c.628C>T mutation featured classical PLS phenotype, but no PLS clinical characteristics were found in his carrier mother. All mutations were found to affect directly (c.901G>A, c.947T>C, and c.1010G>C) or indirectly (c.628C>T, which induces a premature termination) the heavy chain of the cathepsin C, the region responsible for activation of the lysosomal protease. Together, these findings indicate that both homozygous and heterozygous mutations in the cathepsin C heavy chain domain may lead to classical PLS phenotype, suggesting roles for epistasis or gene–environment interactions on determination of PLS phenotypes.  相似文献   

11.
Fukuyama-type congenital muscular dystrophy (FCMD), one of the most common autosomal recessive disorders in the Japanese population, is characterized by congenital muscular dystrophy in combination with cortical dysgenesis (micropolygyria). Recently, we identified, on chromosome 9q31, the gene responsible for FCMD, which encodes a novel 461 amino acid protein which we have termed fukutin. Most FCMD-bearing chromosomes examined to date (87%) have been derived from a single ancestral founder, whose mutation consisted of a 3 kb retrotransposal insertion in the 3' non-coding region of the fukutin gene. FCMD is the first human disease known to be caused primarily by an ancient retrotransposal integration. We under-took a systematic analysis of the FCMD gene in 107 unrelated patients, and identified four novel non-founder mutations in five of them: one missense, one nonsense, one L1 insertion and a 1 bp insertion. The frequency of severe phenotypes, including Walker-Walberg syndrome-like manifestations such as hydrocephalus and microphthalmia, was significantly higher among probands who were compound heterozygotes carrying a point mutation on one allele and the founder mutation on the other, than it was among probands who were homozygous for the 3 kb retrotransposon. Remarkably, we detected no FCMD patients with non-founder (point) mutations on both alleles of the gene, and suggest that such cases might be embryonic-lethal. This could explain why few FCMD cases are reported in non-Japanese populations. Our results provided strong evidence that loss of function of fukutin is the major cause of FCMD, and appeared to shed some light on the mechanism responsible for the broad clinical spectrum seen in this disease.  相似文献   

12.
Split‐hand/foot malformation (SHFM) is a genetically heterogeneous congenital limb malformation typically limited to a defect of the central rays of the autopod, presenting as a median cleft of hands and feet. It can be associated with long bone deficiency or included in more complex syndromes. Among the numerous genetic causes, WNT10B homozygous variants have been recently identified in consanguineous families, but remain still rarely described (SHFM6; MIM225300). We report on three novel SHFM families harboring WNT10B variants and review the literature, allowing us to highlight some clinical findings. The feet are more severely affected than the hands and there is a frequent asymmetry without obvious side‐bias. Syndactyly of third–fourth fingers was a frequent finding (62%). Polydactyly, which was classically described in SHFM6, was only present in 27% of patients. No genotype–phenotype correlation is delineated but heterozygous individuals might have mild features of SHFM, suggesting a dose‐effect of the WNT10B loss‐of‐function.  相似文献   

13.
14.
van Reeuwijk J, Olderode‐Berends MJW, van den Elzen C, Brouwer OF, Roscioli T, van Pampus MG, Scheffer H, Brunner HG, van Bokhoven H, Hol FA. A homozygous FKRP start codon mutation is associated with Walker–Warburg syndrome, the severe end of the clinical spectrum. Dystroglycanopathies are a heterogeneous group of disorders caused by defects in the glycosylation pathway of α‐dystroglycan. The clinical spectrum ranges from severe congenital muscular dystrophy with structural brain and eye involvement to a relatively mild adult onset limb‐girdle muscular dystrophy without brain abnormalities and normal intelligence. Mutations have been identified in one of six putative or demonstrated glycosyltransferases. Many different FKRP mutations have been identified, which cover the complete clinical spectrum of dystroglycanopathies. In contrast to the other known genes involved in these disorders, genotype–phenotype correlations are not obvious for FKRP mutations. To date, no homozygous or compound heterozygous null mutations have been identified in FKRP, suggesting that null mutations in FKRP could result in embryonic lethality. We report a family with two siblings carrying a homozygous mutation in the start codon of FKRP that is likely to result in a loss of functional FKRP protein. The clinical phenotype of the patients was consistent with Walker–Warburg syndrome, the most severe disorder in the disease spectrum of dystroglycanopathies.  相似文献   

15.
Familial adenomatous polyposis (FAP) is a colorectal cancer predisposition syndrome caused by mutations in the adenomatous polyposis coli (APC) gene. Clinical genetic testing fails to identify disease causing mutations in up to 20% of clinically apparent FAP cases. Following the inclusion of multiplex ligation‐dependent probe amplification (MLPA) probes specific for APC promoter 1B, seven probands were identified with a deletion of promoter 1B. Using haplotype analysis spanning the APC locus, the seven families appear to be identical by descent from a common founder. The clinical phenotype of 19 mutation carriers is classical FAP with colectomy at an average age of 24. The majority of cases had a large number of duodenal and gastric polyps. Measurements of allele‐specific expression of APC mRNA using TaqMan assay confirmed that relative expression in the allele containing the promoter 1B deletion was reduced 42–98%, depending on tissue type. This study confirms the importance of APC promoter deletions as a cause of FAP and identifies a founder mutation in FAP patients from the United States.  相似文献   

16.
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic diseases characterised by dental enamel malformation. Pathogenic variants in at least 33 genes cause syndromic or non-syndromic AI. Recently variants in RELT, encoding an orphan receptor in the tumour necrosis factor (TNF) superfamily, were found to cause recessive AI, as part of a syndrome encompassing small stature and severe childhood infections. Here we describe four additional families with autosomal recessive hypomineralised AI due to previously unreported homozygous mutations in RELT. Three families carried a homozygous missense variant in the fourth exon (c.164C>T, p.(T55I)) and a fourth family carried a homozygous missense variant in the 11th exon (c.1264C>T, p.(R422W)). We found no evidence of additional syndromic symptoms in affected individuals. Analyses of tooth microstructure with computerised tomography and scanning electron microscopy suggest a role for RELT in ameloblasts' coordination and interaction with the enamel matrix. Microsatellite genotyping in families segregating the T55I variant reveals a shared founder haplotype. These findings extend the RELT pathogenic variant spectrum, reveal a founder mutation in the UK Pakistani population and provide detailed analysis of human teeth affected by this hypomineralised phenotype, but do not support a possible syndromic presentation in all those with RELT-variant associated AI.  相似文献   

17.
Autosomal‐recessive Stargardt disease (STGD1) is hallmarked by a large proportion of patients with a single heterozygous causative variant in the disease gene ABCA4. Braun et al. ( 2013 ) reported deep intronic variants of ABCA4 in STGD1 patients with one coding variant, prompting us to perform an augmented screen in 131 Belgian STGD1 patients with one or no ABCA4 variant to uncover deep intronic causal ABCA4 variants. This revealed a second variant in 28.6% of cases. Twenty‐six percent of these carry the same causal variant c.4539+2001G>A (V4). Haplotyping in V4 carriers showed a common region of 63 kb, suggestive of a founder mutation. Genotype–phenotype correlations suggest a moderate‐to‐severe impact of V4 on the STGD1 phenotype. In conclusion, V4 occurs in a high fraction of Belgian STGD1 patients and represents the first deep intronic founder mutation in ABCA4. This emphasizes the importance of augmented molecular genetic testing of ABCA4 in Belgian STGD1.  相似文献   

18.
Acute intermittent porphyria (AIP) is an autosomal dominant disorder of heme biosynthesis, caused by a partial deficiency of hydroxymethylbilane synthase (HMBS). Knowledge of the nature of the HMBS mutations causing AIP in Spanish families is very limited. Here we report a novel 669_698del of the HMBS gene in twenty‐two individuals from five independent Spanish AIP families, settled in Murcia (southeastern region of Spain). All mutation carriers shared a common disease associated haplotype indicating an ancestral founder effect. Identification of the 669_698del founder mutation allowed rapid and simple molecular diagnosis of AIP in families from this region in Spain. In addition, 771 + 58C>T in intron 12 on the non‐669_698del allele was identified in six AIP patients, which promoted homozygous AIP misdiagnosis.  相似文献   

19.
Bi-allelic variants affecting one of the four genes encoding the AP4 subunits are responsible for the “AP4 deficiency syndrome.” Core features include hypotonia that progresses to hypertonia and spastic paraplegia, intellectual disability, postnatal microcephaly, epilepsy, and neuroimaging features. Namely, AP4M1 (SPG50) is involved in autosomal recessive spastic paraplegia 50 (MIM#612936). We report on three patients with core features from three unrelated consanguineous families originating from the Middle East. Exome sequencing identified the same homozygous nonsense variant: NM_004722.4(AP4M1):c.1012C>T p.Arg338* (rs146262009). So far, four patients from three other families carrying this homozygous variant have been reported worldwide. We describe their phenotype and compare it to the phenotype of patients with other variants in AP4M1. We construct a shared single-nucleotide polymorphism (SNP) haplotype around AP4M1 in four families and suggest a probable founder effect of Arg338* AP4M1 variant with a common ancestor most likely of Turkish origin.  相似文献   

20.
Aicardi–Goutières syndrome (AGS) is an encephalopathy of early childhood which is most commonly inherited as an autosomal recessive trait. The disorder demonstrates significant genetic heterogeneity with causative mutations in five genes identified to date. Although most patients with AGS experience a severe neonatal or infantile presentation, poor neurodevelopmental outcome and reduced survival, clinical variability in the onset and severity of the condition is being increasingly recognized. A later presentation with a more variable effect on development, morbidity and mortality has been particularly observed in association with mutations in SAMHD1 and RNASEH2B. In contrast, the recurrent c.205C > T (p.R69W) RNASEH2C Asian founder mutation has previously only been identified in children with a severe AGS phenotype. Here, to our knowledge, we present the first report of marked phenotypic variability in siblings both harboring this founder mutation in the homozygous state. In this family, one female child had a severe AGS phenotype with an onset in infancy and profound developmental delay, whilst an older sister was of completely normal intellect with a normal head circumference and was only diagnosed because of the presence of chilblains and a mild hemiplegia. An appreciation of intrafamilial phenotypic expression is important in the counseling of families considering prenatal diagnosis, and may also be relevant to the assessment of efficacy in future clinical trials. In addition, marked phenotypic variation raises the possibility that more mildly affected patients are not currently identified. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号