首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
细胞间接触诱导大鼠骨髓间质干细胞分化为平滑肌细胞   总被引:3,自引:0,他引:3  
目的体外诱导骨髓间质干细胞分化为平滑肌细胞,探讨已分化成熟的平滑肌细胞及细胞因子对骨髓间质干细胞分化的影响。方法分别用骨髓间质干细胞加平滑肌细胞条件培养液;骨髓间质干细胞与平滑肌细胞分层培养;骨髓间质干细胞EGFP标记后,与平滑肌细胞混合培养。用平滑肌细胞抗体SM-a-Actin、Calponin免疫荧光染色,检测骨髓间质干细胞的分化情况。结果骨髓间质干细胞与平滑肌细胞混合培养7d后免疫荧光染色,可见EGFP(绿色)和抗SM-a-Actin、Calponin(红色)的双标细胞存在。而加平滑肌细胞条件培养液与分层培养组,骨髓间质干细胞均不表达Calponin。结论细胞间直接接触对诱导骨髓间质干细胞定向分化为平滑肌细胞起决定作用。  相似文献   

2.
3.
目的:观察骨髓间充质干细胞(MSCs)在心肌细胞裂解成分作用下超微结构改变,了解心肌细胞裂解成分对MSCs分化的诱导作用。 方法:分离并裂解新生大鼠的心肌细胞;自成年大鼠骨髓中分离MSCs;将分离的MSCs分3组培养:仅用普通培养基培养(对照组);5-氮杂胞苷(5-aza)诱导后用普通培养基培养(5-aza诱导组);含有心肌细胞裂解成分的培养基培养(心肌细胞裂解成分培养组)。培养1周,观察细胞形态及超微结构的改变,对培养的细胞进行抗心脏特异性肌钙蛋白T(cTnT)及抗分化决定簇31(CD31)细胞免疫化学染色,并分析各组细胞的增殖情况。 结果:对照组MSCs无明显的肌样细胞或内皮样细胞形成,抗cTnT和抗CD31染色阴性。5-aza诱导组部分MSCs分化为肌样细胞,电镜下可见大量细胞器空化,抗cTnT染色阳性,但细胞增殖缓慢。心肌细胞裂解成分培养组的MSCs分化为肌样细胞,电镜下可见肌丝样结构,抗cTnT染色阳性,细胞增殖旺盛,另见部分MSCs分化为内皮样细胞,形成内皮细胞特有的胞质突起和质膜小泡等超微结构,且抗CD31染色阳性。 结论:含有心肌细胞裂解成分的培养基可以诱导MSCs向心肌样细胞和内皮样细胞方向分化。  相似文献   

4.
Transforming growth factor-beta (TGF-beta) has been shown to stimulate smooth muscle (SM) alpha-actin expression in smooth muscle cells (SMCs) and non-SMCs. We previously demonstrated that the 2 CArG boxes A and B and a novel TGF-beta control element (TCE) located within the first 125 bp of the SM alpha-actin promoter were required for TGF-beta inducibility of SM alpha-actin in SMCs. The aims of the present study were (1) to determine whether the TCE exhibits SMC specificity or contributes to TGF-beta induction of SM alpha-actin expression in non-SMCs (ie, endothelial cells and fibroblasts) and (2) to determine whether TGF-beta can induce expression of multiple TCE-containing SMC differentiation marker genes, such as SM22alpha, h(1) calponin, and SM myosin heavy chain (SM MHC) in non-SMCs. Results of transient transfection assays demonstrated that mutation of CArG A, CArG B, or the TCE within a 125-bp promoter context completely abolished TGF-beta inducibility of SM alpha-actin in endothelial cells and fibroblasts. However, in contrast to observations in SMCs, inclusion of regions upstream from (-155) completely repressed TGF-beta responsiveness in non-SMCs. Electrophoretic mobility shift assays showed that TGF-beta enhanced binding of a serum response factor to the CArG elements and the binding of an as-yet-unidentified factor to the TCE in endothelial cells and fibroblasts, but to a much lesser extent compared with SMCs. TGF-beta also stimulated expression of the SMC differentiation marker SM22alpha in non-SMCs. However, in contrast to SMCs, TGF-beta did not induce expression of h(1) calponin and SM MHC in non-SMCs. In summary, these results suggest a conserved role for CArG A, CArG B, and the TCE in TGF-beta-induced expression of SM alpha-actin in SMCs and non-SMCs that is modified by a complex interplay of positive- and negative-acting cis elements in a cell-specific manner. Furthermore, observations that TGF-beta stimulated expression of several early but not late differentiation markers in non-SMCs indicate that TGF-beta alone is not sufficient to induce transdifferentiation of non-SMCs into SMCs.  相似文献   

5.
The migration and proliferation of smooth muscle cells (SMCs) within the intima of arteries following mechanical injury is thought to be initiated by vessel wall injury and release of growth factors, in particular the platelet-derived growth factor (PDGF). However, the mechanism by which SMC proliferation is regulated after platelet interaction with the vessel wall has ceased is unknown. Here we show that SMCs derived from the intima of injured rat arteries (intimal SMCs) are phenotypically distinct from SMCs from unmanipulated vessels (medial SMCs). Intimal SMCs secrete 5-fold greater amounts of PDGF-like activity into conditioned medium in culture, have fewer receptors for 125I-labeled PDGF, and are not mitogenically stimulated by exogenous purified PDGF. This study demonstrates that two SMC phenotypes can develop in the adult rat artery and suggests that SMC proliferation in vivo may be controlled, in part, by SMCs that produce PDGF-like molecules.  相似文献   

6.
Smooth muscle cells (SMCs) perform diverse functions that can be categorized as contractile and synthetic. A traditional model holds that these distinct functions are performed by the same cell, by virtue of its capacity for bidirectional modulation of phenotype. However, this model has been challenged, in part because there is no physiological evidence that an adult synthetic SMC can acquire the ability to contract. We sought evidence for this by cloning adult SMCs from human internal thoracic artery. One clone, HITB5, expressed smooth muscle alpha-actin, smooth myosin heavy chains, heavy caldesmon, and calponin and showed robust calcium transients in response to histamine and angiotensin II, which confirmed intact transmembrane signaling cascades. On serum withdrawal, these cells adopted an elongated and spindle-shaped morphology, random migration slowed, extracellular matrix protein production fell, and cell proliferation and [(3)H]thymidine incorporation fell to near 0. Cell viability was not compromised, however; in fact, apoptosis rate fell significantly. In this state, agonist-induced elevation of cytoplasmic calcium was even more pronounced and was accompanied by SMC contraction. Readdition of 10% serum completely returned HITB5 cells to a noncontractile, proliferative phenotype. Contractile protein expression increased after serum withdrawal, although modestly, which suggested that the switch to contractile function involved reorganization or sensitization of existing contractile structures. To our knowledge, the physiological properties of HITB5 SMCs provide the first direct demonstration that cultured human adult SMCs can convert between a synthetic, noncontracting state and a contracting state. HITB5 cells should be valuable for characterizing the basis of this critical transition.  相似文献   

7.
目的通过向骨髓间充质干细胞(MSCs)培养体系中添加心肌细胞裂解液的方法,体外模拟心肌微环境,观察MSCs向心肌细胞分化的诱导作用,并与诱导分化剂5-氮杂胞苷(5-aza)比较。方法分离新生乳鼠的心肌细胞并制成心肌细胞裂解液,自成年大鼠骨髓中分离MSCs,用含有心肌细胞裂解液的培养基(A组)、含有5-aza的培养基(B组)、含有5-aza和心肌细胞裂解液的培养基(c组)以及普通培养基(对照组)培养。观察细胞形态的改变,并通过免疫组化分析分化后细胞表达α-肌动蛋白、心脏特异性肌钙蛋白T(cTnT)、连接蛋白43及CD31的情况。结果A、B组的MSCs在培养1周后均形成肌细胞形态,并且均表达α-肌动蛋白和cTnT;A组MSCs分化的肌样细胞所含的肌纤维较B组更丰实,细胞生长趋势也优于B组,并且可以表达CD31;B组MSCs分化的肌样细胞不表达CD31;对照组细胞仅表达α-肌动蛋白。结论心肌细胞裂解液是体外诱导MSCs分化为心肌样细胞的理想条件,优于传统的5-aza,在心肌细胞移植技术中可以用于体外模拟心肌细胞微环境。  相似文献   

8.
Vascular smooth muscle cells (SMCs) perform diverse functions and this functional heterogeneity could be based on differential recruitment of distinct SMC subsets. In humans, however, there is little support for such a paradigm, partly because isolation of pure human SMC subsets has proven difficult. We report the cloning of 12 SMC lines from a single fragment of human internal thoracic artery and the elucidation of 2 distinct cellular profiles. Epithelioid clones (n=9) were polygonal at confluence, 105+/-9 micrometer in length, and had a doubling time of 39+/-2 hours. Spindle-shaped clones (n=3) were larger (267+/-18 micrometer long, P<0.01) and grew slower (doubling time 65+/-4 hours, P<0.01). Both types of clones expressed smooth muscle (SM) alpha-actin, SM-myosin heavy chains, h-caldesmon, and calponin, but only spindle-shaped clones expressed metavinculin. Epithelioid clones displayed greater proliferation in response to platelet-derived growth factor-BB and fibroblast growth factor-2 and were more responsive to the migratory effect of platelet-derived growth factor-BB. Spindle-shaped clones showed more robust Ca(2+) transients in response to angiotensin II, histamine, and norepinephrine, crawled more quickly, and expressed more type I collagen. On serum withdrawal, spindle-shaped clones differentiated into a contraction-competent cell. A regional basis for diversity among SMCs was suggested by stepwise arterial digestion, which liberated small, SM alpha-actin-positive cells from the abluminal medial layers and larger SMCs from all layers. These results identify inherent SMC diversity in the media of the adult internal thoracic artery and suggest differential participation of SMC subsets in the regulation of human arterial behavior.  相似文献   

9.
Upregulation of connexin43-gap junctions is associated with transition of contractile vascular smooth muscle cells (SMCs) to the synthetic state. To determine whether phenotypically distinct subpopulations of medial SMCs differentially express connexin43, we investigated the human distal internal mammary artery, a structurally heterogeneous vessel with features ranging from elastic to elastomuscular to muscular. Immunoconfocal microscopy combined with quantitative analysis and complemented by in situ hybridization showed that SMCs in the elastic medial regions expressed high levels of connexin43 but low levels of desmin, whereas those of muscular medial regions expressed low levels of connexin43 but high levels of desmin. Ultrastructurally, SMCs of both regions were of the contractile phenotype, but the former cells were irregular in shape with relatively prominent synthetic organelles whereas the latter were spindle shaped with fewer synthetic organelles. Vimentin, smooth muscle alpha-actin, calponin, h-caldesmon, and myosin heavy chains (SM1 and SM2) were equally highly expressed by most cells in both subpopulations. The connexin43/desmin expression pattern of SMCs in regions of intimal thickening resembled those of elastic medial regions. These findings refine the view suggested from previous studies that high levels of connexin43 expression are associated with SMCs of a less contractile/more synthetic phenotype. In the internal mammary artery, the 2 subpopulations of SMCs with markedly different connexin43 expression levels both represent a differentiated contractile phenotype, but the subpopulation showing high levels of connexin43-gap junctions is characterized by low levels of desmin and structural features that reflect a more synthetic tendency.  相似文献   

10.
BACKGROUND AND AIM OF THE STUDY: Human mesenchymal stem cells (MSCs) are a potential cell source for the tissue engineering of biological structures, including cardiac valves. A comprehensive, phenotypic analysis of MSCs and, for the latter, their comparison with valve interstitial cells (ICs) is therefore essential. METHODS: Isolates of bone marrow-derived human MSCs and human cardiac valve ICs were extensively phenotyped for their expression of membrane proteins involved in adhesion and cell-cell communication, cytoskeletal components, extracellular matrix (ECM) proteins and gene expression of WNT/FZD/SFRP/DKK/LRP family members. RESULTS: MSCs and valve ICs (>80%) expressed fibroblast surface antigen, smooth muscle alpha-actin, vimentin and CD44; expression of MHC class I and II and calponin was inconsistent, and a small proportion expressed desmin and smooth muscle myosin. CD105 was weakly expressed by a low percentage of valve ICs (<10%) compared to MSCs (>90%). ECM components made by both cell types demonstrated similar levels and patterns of staining, although expression of elastin was not detected by both cell types. Adhesion molecule expression was highly variable among the MSC isolates and between the two cell types, with the predominant integrins being alphal, alpha3, alpha5, and beta1 by both cell types. PCR analysis of WNT/FZD/SFRP/LRP family members revealed a greater range of the WNT family of genes being expressed in MSCs compared to ICs. CONCLUSION: The study results provided an extensive fingerprint of valve ICs and of MSCs for the tissue engineering of biological structures and for the manipulation of their desired phenotype. MSCs represent a promising cell type for valve tissue engineering, and will require extensive phenotyping after differentiation.  相似文献   

11.
骨髓间充质干细胞心肌样分化的微环境因素   总被引:12,自引:4,他引:8  
目的:探讨促使骨髓间充质干细胞(MSCs)心肌样分化的微环境因素。方法:分离大鼠MSCs并传至第6代,随机分为混合培养组、条件组及对照组,分别将MSCs与大鼠心肌细胞共同培养(混合培养组),或将心肌细胞培养上清液加入MSCs培养体系(条件组)。1周后,检测MSCs的心肌特异性蛋白titin、Cx43及MHC表达情况。结果:MSCs能在心肌细胞培养上清液及与心肌细胞共同培养中正常生长;条件组MSCs表达titin、Cx43显著增加,但未观察到肌小节样结构;混合培养组MSCs可表达上述蛋白,且部分细胞中可观察到肌小节样结构,与心肌细胞交界面上有Cx43的聚集。3组MSCs均未检测到MHC表达。结论:心肌细胞自身、源于心肌的体液因素及MSCs分化过程中形成的感应器是MSCs心肌样分化的必要条件。  相似文献   

12.
目的观察当归补血汤对体外造血微环境中小鼠肌卫星细胞增殖及c-kit表达的影响。方法分离培养小鼠卫星细胞并鉴定。制备含有不同剂量当归补血汤的大鼠载药血清及对应剂量的骨髓基质细胞条件培养基。将肌卫星细胞随机分为8组:正常大鼠血清组、当归补血汤载药血清1~3组、正常大鼠血清条件培养基组、条件培养基1~3组,MTT法检测细胞增殖活性,免疫组化法检测细胞c-kit的表达情况,荧光实时定量PCR检测细胞c-kit mRNA的表达。结果培养的肌卫星细胞呈Desmin免疫阳性;与正常大鼠血清组相比,载药血清各组及条件培养基各组细胞增殖显著,载药血清3组、条件培养基各组阳性细胞c-kit蛋白及mRNA表达量有显著性差异,随当归补血汤载药血清浓度增大c-kit表达量增多,条件培养基也呈同样的变化趋势。结论当归补血汤载药血清及含载药血清的条件培养基可促进肌卫星细胞增殖及c-kit的表达。  相似文献   

13.
The possibility to induce myocardial regeneration by the activation of resident cardiac stem cells (CSCs) has raised great interest. However, to propose endogenous CSCs as therapeutic options, a better understanding of the complex mechanisms controlling heart morphogenesis is needed, including the cellular and molecular interactions that cardiomyocyte precursors establish with cells of the stromal compartment. In the present study, we co-cultured immature cardiomyocytes from neonatal mouse hearts with mouse bone marrow-derived mesenchymal stromal cells (MSCs) to investigate whether these cells could influence cardiomyocyte growth in vitro. We found that cardiomyocyte proliferation was enhanced by direct co-culture with MSCs compared with the single cultures. We also showed that the proliferative response of the neonatal cardiomyocytes involved the activation of Notch-1 receptor by its ligand Jagged-1 expressed by the adjacent MSCs. In fact, the cardiomyocytes in contact with MSCs revealed a stronger immunoreactivity for the activated Notch-intracellular domain (Notch-ICD) as compared with those cultured alone and this response was significantly attenuated when MSCs were silenced for Jagged-1. The presence of various cardiotropic cytokines and growth factors in the conditioned medium of MSCs underscored the contribution of paracrine mechanisms to Notch-1 up-regulation by the cardiomyocytes. In conclusions these findings unveil a previously unrecognized function of MSCs in regulating cardiomyocyte proliferation through Notch-1/Jagged-1 pathway and suggest that stromal-myocardial cell juxtacrine and paracrine interactions may contribute to the development of new and more efficient cell-based myocardial repair strategies.  相似文献   

14.
The aims of the present studies were to define sufficient promoter sequences required to drive endogenous expression of smooth muscle (SM) alpha-actin and to determine whether regulation of SM alpha-actin expression in vivo is dependent on CArG (CC(A/T)6GG) cis elements. Promoter deletions and site directed mutagenesis techniques were used to study gene regulation in transgenic mice as well as in smooth muscle cell (SMC) cultures. Results demonstrated that a Lac Z transgene that contained 547 bp of the 5' rat SM alpha-actin promoter was sufficient to drive embryonic expression of SM alpha-actin in the heart and in skeletal muscle but not in SMCs. Transient transfections into SMC cultures demonstrated that the conserved CArG element in the first intron had significant positive activity, and gel shift analyses demonstrated that the intronic CArG bound serum response factor. A transgene construct from -2600 through the first intron (p2600Int/Lac Z) was expressed in embryos and adults in a pattern that closely mimicked endogenous SM alpha-actin expression. Expression in adult mice was completely restricted to SMCs and was detected in esophagus, stomach, intestine, lung, and nearly all blood vessels, including coronary, mesenteric, and renal vascular beds. Mutation of CArG B completely inhibited expression in all cell types, whereas mutation of the intronic CArG selectively abolished expression in SMCs, which suggests that it may act as an SMC-specific enhancer-like element. Taken together, these results provide the first in vivo evidence for the importance of multiple CArG cis elements in the regulation of SM alpha-actin expression.  相似文献   

15.
Vascular smooth muscle cell (SMC) migration is a critical step in the development of neointima after angioplasty. Matrix metalloproteinases (MMPs) degrade the basement membrane and the extracellular matrix, facilitating SMC migration. Transfer of the endothelial nitric oxide synthase (eNOS) gene to the injury site inhibits neointima formation. Neither the signaling pathways leading to NO-mediated inhibition of SMC migration and proliferation nor the alterations in these pathways have been characterized. We hypothesize that NO inhibits SMC migration in part by regulating MMP activity. To test this hypothesis, we transfected cultured rat aortic SMCs with replication-deficient adenovirus containing bovine eNOS gene and analyzed the conditioned medium for MMP activity. We observed that eNOS gene transfer significantly (P<0.05) inhibited SMC migration and significantly (P<0.05) decreased MMP-2 and MMP-9 activities in the conditioned medium. Similarly, addition of the NO donor DETA NONOate and 8-bromo-cGMP to the culture medium significantly decreased MMP-2 and MMP-9 activities in the conditioned medium collected 24 hours after treatment. Furthermore, Western blot analysis of the conditioned medium collected from eNOS gene-transfected SMCs showed a significant increase in tissue inhibitor of metalloproteinases-2 (TIMP-2) levels. Our data suggest that NO decreases MMP-2 and MMP-9 activities and increases TIMP-2 secretion, and this shifts the balance of MMP activity, which may favor the inhibition of cell migration because of inhibition of extracellular matrix degradation.  相似文献   

16.
BACKGROUND: Previous studies have shown that mesenchymal stem cells (MSCs) transplantation can promote neovascularization and regenerate damaged myocardium. However, it remains unknown whether MSCs seeding can be used to repair injured cellular components in vascular diseases. In this study we explored the feasibility of applying MSCs to endothelium repair in endothelial damage and vasoproliferative disorders. METHODS: Ex vivo model of endothelium repair was developed in which rabbit vascular smooth muscle cells (SMCs) were inoculated into the upper chamber and rabbit endothelial cells (ECs)/human MSCs into the lower chamber of a co-culture system. 3H-TdR incorporation and PCNA protein expression were assayed and migrated number of SMCs was calculated to evaluate the effect of MSCs seeding on SMCs growth. Flk-1 and vWF protein expressions were observed to analyze the plasticity of the seeded MSCs along endothelial lineage. RESULTS: In this co-culture system, no vWF protein but Flk-1 protein was observed in the 25.71% of MSCs after having been co-cultured with mature rabbit ECs for 5 days. Compared with the control group, the proliferation and migration of SMCs was significantly increased by proliferative ECs but decreased by confluent ECs (n=6, P<0.01). MSCs seeding decreased the proliferation and migration of SMCs compatible with the effect of proliferative ECs (n=6, P<0.001). However, no inhibition on SMCs growth was observed with MSCs seeding in comparison to the effect of confluent ECs. CONCLUSIONS: MSCs seeding can inhibit the proliferation and migration of SMCs. MSCs co-cultured with mature ECs have the ability to undergo milieu-dependent differentiation toward ECs.  相似文献   

17.
Immortalization of primary human smooth muscle cells.   总被引:8,自引:0,他引:8       下载免费PDF全文
Primary human aortic and myometrial smooth muscle cells (SMCs) were immortalized using an amphotropic recombinant retroviral construct containing the E6 and E7 open reading frames (ORFs) of human papillomavirus type 16. The SMCs expressing the E6/E7 ORFs have considerably elevated growth rates when compared with nonimmortalized control cells and show no signs of senescence with long-term passage. The first SMC line derived in this study has been maintained in continuous tissue culture for greater than 1 year (greater than 180 population doublings). The immortalized SMCs have decreased cell size and decreased content of muscle-specific alpha-actin filaments as determined by indirect immunofluorescence. Southern blot analysis has demonstrated the stable integration of the E6/E7 ORFs in the retrovirally infected cells, and radioimmunoprecipitation has confirmed the continued expression of the E6 and E7 genes. Cytogenetic studies of the SMC lines have revealed essentially diploid populations except for the myometrial clonal line, which became aneuploid at late passage (greater than 125 doublings). These cell lines were not tumorigenic in nude mice.  相似文献   

18.
OBJECTIVE: Vascular calcification is an actively regulated process, correlating with cardiovascular morbidity and mortality especially in patients with diabetes and chronic renal diseases. Osteopontin (OPN) is abundantly expressed in human calcified arteries and inhibits vascular calcification in vitro and in vivo. How OPN functions in vascular calcification, however, is less clear. METHODS: Smooth muscle cells (SMCs) were isolated from aortas of OPN knock-out (OPN-/-) and wild type (OPN+/+) mice. RESULTS: OPN-/- SMCs were identical to OPN+/+ SMCs in morphology and stained positively for SM lineage proteins, desmin, smooth muscle alpha-actin and SM22alpha. No spontaneous calcification was observed in OPN-/- SMCs under normal culture conditions or in medium containing 1%, 3%, or 5% fetal bovine serum. However, when cultured in medium containing elevated concentrations of inorganic phosphate, an inducer of vascular calcification, a significantly higher calcification was observed in OPN-/- SMCs compared to OPN+/+ SMCs that, in response to elevated phosphate, synthesized and secreted OPN into the culture. Finally, retroviral transduction of mouse OPN cDNA into OPN-/- SMCs rescued the calcification phenotype of the cells. CONCLUSION: These results are the first to demonstrate an inhibitory role of endogenously produced OPN on SMC calcification, suggesting a novel feedback mechanism where OPN produced locally by the SMCs may serve as an important inducible inhibitor of vascular calcification.  相似文献   

19.
20.
BACKGROUND: Anastomotic intimal hyperplasia is still an unsolved problem after small caliber prosthetic bypass grafting. Oscillatory turbulent flow occurs at the end to side anastomosis, and produces various effects on smooth muscle cells (SMCs) and endothelial cells (ECs), which compose intimal hyperplasia. We examined the influences of pulsatile oscillating shear stress on smooth muscle cells mitogenic activity induced by sheared endothelial cells. METHODS:1) Smooth muscle cells were cultured under three different pulsatile shear conditions (mean: 0, 6, and 60 dyne/cm2). 2) Endothelial cells were cultured under both static and sheared condition (mean: 60 dyne/cm2). Using the conditioned media from each well, SMCs were cultured under static and sheared conditions (60 dyne/cm2). Four groups of SMCs were devised by combining the two types of media and the two culture conditions. SMC colony spreading distances were measured as an index of combined migration and proliferation activity. An MTT assay and a cell counting assay were used to determine the proliferation activities of SMCs. RESULTS: 1) SMC spreading activity was suppressed by shear stress. SMC proliferative activity was stimulated by pulsatile turbulent shear stress. 2) SMC spreading activity was stimulated by mitogens derived from ECs under shear stress. However, this augmented SMC spreading activity was attenuated under sheared conditions. The mitogens derived from ECs under pulsatile shear stress had no effects on SMC proliferation activity. CONCLUSIONS: Pulsatile oscillating shear stress attenuates SMC migration activity induced by EC-denve mitogens and stimulates SMC proliferative activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号