首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
During avian vocal learning, birds memorize conspecific song patterns and then use auditory feedback to match their vocal output to this acquired template. Some models of song learning posit that during tutoring, conspecific visual, social and/or auditory cues activate neuromodulatory systems that encourage acquisition of the tutor's song and attach incentive value to that specific acoustic pattern. This hypothesis predicts that stimuli experienced during social tutoring activate cell populations capable of signaling reward. Using immunocytochemistry for the protein product of the immediate early gene c-Fos , we found that brief exposure of juvenile male zebra finches to a live familiar male tutor increased the density of Fos+ cells within two brain regions implicated in reward processing: the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). This activation of Fos appears to involve both dopaminergic and non-dopaminergic VTA/SNc neurons. Intriguingly, a familiar tutor was more effective than a novel tutor in stimulating Fos expression within these regions. In the periaqueductal gray, a dopamine-enriched cell population that has been implicated in emotional processing, Fos labeling also was increased after tutoring, with a familiar tutor again being more effective than a novel conspecific. As several neural regions implicated in song acquisition receive strong dopaminergic projections from these midbrain nuclei, their activation in conjunction with hearing the tutor's song could help to establish sensory representations that later guide motor sequence learning.  相似文献   

2.
1-Methyl-4-phenyl-1,2,3,6-tetrahyrdropyridine (MPTP)-exposed cats develop severe Parkinsonism that spontaneously resolves in 4-6 weeks. The present study examined the extent to which compensatory changes in tyrosine hydroxylase (TH) and dopamine transporter (DAT) gene and protein expression may underlie this behavioral recovery. In normal cats, TH and DAT protein levels were higher in the dorsal vs. ventral striatum. Expression of DAT and TH mRNA was higher in substantia nigra pars compacta (SNc) than in the ventral tegmental area (VTA). In symptomatic parkinsonian animals, DAT and TH protein levels were significantly decreased in all striatal areas studied. TH and DAT mRNA expression in residual SNc neurons were decreased a mean 32% and 38%, respectively. DAT gene expression in residual VTA neurons in symptomatic animals was decreased 30% whereas TH gene expression was unaffected. In spontaneously recovered cats, TH protein levels were significantly higher than the levels in symptomatic cats only in the ventral striatum, whereas no increase in DAT protein levels were observed in any striatal area. Residual neurons in most ventral mesencephalic regions of recovered cats had increased TH mRNA expression but not increased DAT gene expression, compared with symptomatic animals. Thus, increased TH protein and mRNA and suppression of DAT protein and mRNA expression in the striatum and ventral mesencephalon were associated with functional recovery from MPTP-induced parkinsonism.  相似文献   

3.
Early exposure to stressors is strongly associated with enduring effects on central nervous system function, but the mechanisms and neural substrates involved in this biological 'programming' are unclear. This study tested the hypothesis that inappropriate exposure to glucocorticoid stress hormones (GCs) during critical periods of development permanently alters the mesencephalic dopaminergic populations in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). Using a rat model, the synthetic GC dexamethasone was added to the maternal drinking water during gestational days 16-19 or over the first week of postnatal life. In adulthood, the effects upon tyrosine hydroxylase immunopositive (TH+) cell numbers in the midbrain, and monoamine levels in the forebrain, of the adult offspring were assessed and compared with control offspring whose dams received normal drinking water. In the VTA, both prenatal and postnatal dexamethasone treatment increased TH+ cell numbers by approximately 50% in males and females. Although prenatal dexamethasone treatment also increased TH+ cell numbers in the SNc by 40-50% in males and females, postnatal treatment affected females only by increasing TH+ cell numbers by approximately 30%. In comparison, similar changes were not detected in the monoamine levels of the dorsolateral striatum, nucleus accumbens or infralimbic cortex of either males or females, which is a feature likely to reflect adaptive changes in these pathways. These studies demonstrate that the survival or phenotypic expression of VTA and SNc dopaminergic neurones is profoundly influenced by brief perinatal exposure to GCs at times when endogenous levels are normally low. These findings are the first to demonstrate permanent changes in the cytoarchitecture within midbrain dopamine nuclei after perinatal exposure to stress hormones and implicate altered functionality. Thus, they have significance for the increasing use of GCs in perinatal medicine and indicate potential mechanisms whereby perinatal distress may predispose to the development of a range of psychiatric conditions in later life.  相似文献   

4.
In an attempt to gain knowledge of the possible functions of kainate receptors, we have used in situ hybridization to examine the regional and cellular expression patterns of glutamate receptor subunits GluR5-7, KA1 and KA2 in the adult mouse basal ganglia, known to play a pivotal role in the translation of motivation into actions. Kainate receptor subunits were found to be differentially expressed in the circuitry forming the basal ganglia. They differ from each other in expression levels and their spatial localization. GluR6 appeared as the key subunit for the descending gamma-aminobutyric acid (GABA)ergic-glutamatergic pathways, with highest message levels in the caudate putamen, globus pallidus and subthalamic nucleus as well as in the nucleus accumbens and olfactory tubercle. GluR7 exhibited highest expression in the ascending nigrostriatal and mesolimbic dopaminergic neurons. GluR5 had a restricted distribution pattern, with high expression in the ventral pallidum, the islands of Calleja and pars compacta of the substantia nigra. KA2 was usually coexpressed with GluR6, although with a generally lower level of expression. Finally, KA1 mRNA was barely detectable in these neuronal circuits. These data suggest that kainate receptors in general may be involved in the functions associated with the basal ganglia, with a key role in the control of the central dopaminergic transmission. Thus, they might be implicated in the neurodegenerative and psychic disorders associated with an impairment of the basal ganglia. J. Comp. Neurol. 379:541–562, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
The concentration of choline acetyltransferase, a specific marker for cholinergic neurons, was determined in the supraoptic nucleus after a variety of lesions. Surgical lesions immediately rostral as well as medial and lateral to the nucleus did not affect the concentration of the enzyme. Only lesions which separated the nucleus from the posterior part of the lateral hypothalamus slightly decreased its concentration in choline acetyltransferase. It is concluded that the bulk of the cholinergic neurons is in the supraoptic nucleus or its immediate vicinity.  相似文献   

6.
Dopaminergic neurons of the substantia nigra pars compacta (SNC) and ventral tegmental area (VTA) exhibit spontaneous firing activity. The dopaminergic neurons in these regions have been shown to exhibit differential sensitivity to neuronal loss and psychostimulants targeting dopamine transporter. However, it remains unclear whether these regional differences scale beyond individual neuronal activity to regional neuronal networks. Here, we used live-cell calcium imaging to show that network connectivity greatly differs between SNC and VTA regions with higher incidence of hub-like neurons in the VTA. Specifically, the frequency of hub-like neurons was significantly lower in SNC than in the adjacent VTA, consistent with the interpretation of a lower network resilience to SNC neuronal loss. We tested this hypothesis, in DAT-cre/loxP-GCaMP6f mice of either sex, when activity of an individual dopaminergic neuron is suppressed, through whole-cell patch clamp electrophysiology, in either SNC or VTA networks. Neuronal loss in the SNC increased network clustering, whereas the larger number of hub-neurons in the VTA overcompensated by decreasing network clustering in the VTA. We further show that network properties are regulatable via a dopamine transporter but not a D2 receptor dependent mechanism. Our results demonstrate novel regulatory mechanisms of functional network topology in dopaminergic brain regions.SIGNIFICANCE STATEMENT In this work, we begin to untangle the differences in complex network properties between the substantia nigra pars compacta (SNC) and VTA, that may underlie differential sensitivity between regions. The methods and analysis employed provide a springboard for investigations of network topology in multiple deep brain structures and disorders.  相似文献   

7.
To verify the possibility that the pedunculopontine nucleus is a source of glutamatergic terminals in contact with midbrain dopaminergic neurons in the squirrel monkey, we used the anterograde transport of Phaseolus vulgaris-leucoagglutinin in combination with preembedding immunohistochemistry for tyrosine hydroxylase and for calbindin D-28k and postembedding immunocytochemistry for glutamate and for γ-aminobutyric acid. Following tracer injections in the pedunculopontine nucleus, numerous anterogradely labeled fibers emerged from the injection sites to innervate densely the pars compacta of the substantia nigra and ventral tegmental area. The major type of labeled fibers were thin with multiple collaterals and varicosities that established intimate contacts with midbrain dopaminergic neurons. At the electron microscopic level, the anterogradely labeled boutons were medium sized (maximum diameter between 0.9 μm and 2.5 μm) and contained numerous round vesicles and mitochondria. Postembedding immunocytochemistry revealed that 40–60% of anterogradely labeled terminals were enriched in glutamate and formed asymmetric synapses with dendritic shafts of substantia nigra and ventral tegmental area neurons. In triple-immunostained sections, some of the postsynaptic targets to these terminals were found to be dopaminergic. In addition, 30–40% of the anterogradely labeled terminals in both regions displayed immunoreactivity for γ-aminobutyric acid and, in some cases, formed symmetric synapses with dendritic shafts. In conclusion, our results provide the first ultrastructural evidence for the existence of synaptic contacts between glutamate-enriched terminals from the pedunculopontine nucleus and midbrain dopaminergic neurons in primates. Our results also show that the pedunculopontine nucleus is a potential source of γ-aminobutyric acid input to this region. These findings suggest that the pedunculopontine nucleus may play an important role in the modulation of the activity of midbrain dopaminergic cells by releasing glutamate or γ-aminobutyric acid as neurotransmitter. © 1996 Wiley-Liss, Inc.  相似文献   

8.
In this study, we examined the effect of acute and chronic administration of the selective neurokinin1 receptor antagonist CP 96,345 on the basal activity of spontaneously active dopamine (DA) neurons in the substantia nigra pars compacta (SNC) and the ventral tegmental area (VTA). This was accomplished using the technique of in vivo, extracellular single unit recording in anesthetized rats. The intravenous (i.v.) administration of CP 96,345 (0.01–1.28 mg/kg) did not significantly alter the firing rate of spontaneously active DA neurons in the SNC and VTA areas. The acute administration of 5 or 10 mg/kg, i.p., of CP 96,345 produced a significant decrease in the number of spontaneously active SNC and VTA dopamine cells compared to vehicle-treated rats. In contrast to its effect on the number of spontaneously active DA neurons, the administration of 5 mg/kg, i.p., of CP 96,345 did not significantly alter the basal firing pattern of either SNC or VTA DA neurons. The acute administration of CP 96,345 (10 mg/kg, i.p.) significantly potentiated the suppressant action of (+)-apomorphine on the basal firing rate of spontaneously active SNC and VTA DA cells. The chronic administration of CP 96,345 (5 or 10 mg/kg, i.p.) for 21 days also produced a significant decrease in the number of spontaneously active SNC and VTA DA cells compared to vehicle controls. This effect was not reversed by the systemic administration of (+)-apomorphine (50 μg/kg, i.v.), suggesting that the reduction in the number of spontaneously active DA cells produced by CP 96,345 is probably not the result of depolarization inactivation. Overall, our results indicate that the tonic activation of NK1 receptors by substance P may be necessary to maintain the spontaneous activity of a proportion of midbrain DA neurons. © 1996 Wiley-Liss, Inc.  相似文献   

9.
The midbrain dopaminergic neuronal groups A8, A9, A10, and A10dc occupy, respectively, the retrorubral field (RRF), substantia nigra compacta (SNc), ventral tegmental area (VTA), and ventrolateral periaqueductal gray (PAGvl). Collectively, these structures give rise to a mixed dopaminergic and nondopaminergic projection system that essentially permits adaptive behavior. However, knowledge is incomplete regarding how the afferents of these structures are organized. Although the VTA is known to receive numerous afferents from cortex, basal forebrain, and brainstem and the SNc is widely perceived as receiving inputs mainly from the striatum, the afferents of the RRF and PAGvl have yet to be assessed comprehensively. This study was performed to provide an account of those connections and to seek a better understanding of how afferents might contribute to the functional interrelatedness of the VTA, SNc, RRF, and PAGvl. Ventral midbrain structures received injections of retrograde tracer, and the resulting retrogradely labeled structures were targeted with injections of anterogradely transported Phaseolus vulgaris leucoagglutinin. Whereas all injections of retrograde tracer into the VTA, SNc, RRF, or PAGvl produced labeling in many structures extending from the cortex to caudal brainstem, pronounced labeling of structures making up the central division of the extended amygdala occurred following injections that involved the RRF and PAGvl. The anterograde tracing supported this finding, and the combination of retrograde and anterograde labeling data also confirmed reports from other groups indicating that the SNc receives robust input from many of the same structures that innervate the VTA, RRF, and PAGvl.  相似文献   

10.
The behavioural response following infusion of a novel, stable substance P (SP) analogue, DiMe-C7, into the ventral tegmental area (VTA) of rats was characterized and contrasted with the response to an equal dose of the parent compound SP. DiMe-C7 produced a longer-lasting behavioural stimulation than SP as evidenced in several behaviours, including locomotor activity, wet dog shakes, rearing and grooming. DiMe-C7-induced locomotor activity and rearing were potentiated by concurrent peripheral administration of D-amphetamine and blocked by pretreatment with haloperidol. Such responses to DiMe-C7 may thus be dependent upon dopaminergic activity. When given immediately following VTA infusion of DiMe-C7, morphine decreased, while naloxone had no effect upon most behavioural measures. The effect of methysergide on DiMe-C7 or SP into the substantia nigra reticulata produced a pattern of responses similar to nature to those produced by VTA infusion but different with respect to time course. These findings suggest that DiMe-C7 is a metabolically stable analogue of substance P which manifests prolonged actions on behaviour when centrally administered. Further, a role for central dopaminergic mechanisms is implicated in DiMe-C7-induced behavioural action.  相似文献   

11.
Extracellular recordings were made from spontaneously active neurons in the substantia nigra (SN) region of halothane-anesthetized rats. Histologically identified neurons recorded in the dopamine (DA)-rich zona compacta (ZC) region could be distinguished from those in the zona reticulata (ZR) region on the basis of action potential duration, firing frequency, and responsiveness to intravenously administered DA agonist and antagonist drugs. Electrical stimulation of the ipsilateral anterior olfactory nucleus evoked complex excitatory and inhibitory responses in the majority (69%) of the ZC cells studied; but only in 2 of 30 cells from the ZR. Electrical stimuli delivered to the limbs were effective in influencing the firing rate of only a few cells. These results indicate that a connection exists, possibly via the medial forebrain bundle, between olfactory systems and the DA-containing cells of the SN.  相似文献   

12.
The present study was undertaken to establish the precise anatomical relationship of the subthalamic nucleus (STh) with limbic lobe-afferented parts of the basal ganglia in the rat. The anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L), injected in the STh, the globus pallidus, the ventral pallidum, the ventral striatum, and the parafascicular thalamic nucleus, and the retrograde tracers Fluoro-Gold (FG) and cholera toxin B (CTb), injected in the globus pallidus, the ventral pallidum, the ventral striatum, and the ventral mesencephalon, were used for this purpose. The results of these tracing experiments confirm the general notion of reciprocal connections between the STh and pallidal areas. Thus the dorsomedial part of the STh is connected with the subcommisural ventral pallidum, whereas a more ventral and lateral part of the medial STh is related to the medial globus pallidus. The lateral hypothalamic area, directly adjacent to the STh, containing neurons with a morphology quite similar to those in the STh, projects to parts of the ventral pallidum related to the olfactory tubercle. The reciprocal projection from this pallidal area to subthalamic regions appears to be very sparse. The medial STh sends strong projections to the medial part of the entopeduncular nucleus and the adjacent lateral hypothalamic area. Sparser projections from the medial STh reach the rostral and medial part of the caudate-putamen and the nucleus accumbens. The nucleus accumbens sends a very sparse projection back to the medial STh. The projections of the medial STh to the ventral mesencephalon appear also to be topographically organized. The lateral hypothalamus and a few cells in the most medial part of the STh project to the ventral tegmental area, whereas progressively more lateral parts of the ventral mesencephalon, in particular the substantia nigra, receive input from successively more lateral and caudal parts of the STh. In addition, a number of STh fibers reach the midbrain extrapyramidal area. The lateral part of the parafascicular thalamic nucleus projects to the lateral part of the STh, whereas parafascicular neurons medial to the fasciculus retroflexus project to the dorsomedial portion of the STh. The medial part of the STh and the adjacent lateral hypothalamus are intimately connected with limbic parts of the basal ganglia in a way similar and parallel to the connections of the lateral STh with motor-related parts of the basal ganglia. These findings suggest a role for the STh in nonmotor functions of the basal ganglia.  相似文献   

13.
Cannabinoid modulation of dopaminergic transmission is suggested by the ability of delta9-tetrahydrocanabinoid to affect motor and motivated behaviors in a manner similar to that produced by pharmacological manipulation of the nigrostriatal and mesocorticolimbic dopamine systems. These behavioral effects as well as analogous effects of endocannabinoids are largely mediated through the cannabinoid type 1 receptor (CB1R). This receptor is located within the substantia nigra and ventral tegmental area, which respectively house the somata of nigrostriatal and mesocorticolimbic dopaminergic neurons. The CB1R is also abundantly expressed in brain regions targeted by the efferent terminals of these dopaminergic neurons. In this review we present the accumulating anatomical and electrophysiological evidence indicating that in each of these systems cannabinoids modulate dopamine transmission largely if not exclusively through indirect mechanisms. The summarized mechanisms include presynaptic release of amino acid transmitters onto midbrain dopamine neurons and onto both cortical and striatal neurons that express dopamine D1-like or D2-like receptors functionally affiliated with the CB1 receptor. The review concludes with a consideration of the psychiatric and neurological implications of cannabinoid modulation of dopamine transmission within these networks.  相似文献   

14.
Nurr1 (NR4A2) is an orphan nuclear receptor highly essential for the development and maintenance of dopaminergic neurons. Reduced expression of Nurr1 has been linked to the etiopathogenesis of Parkinson's disease and other dopamine-related disorders such as schizophrenia. Recent experimental work in mice with a heterozygous constitutive deletion of Nurr1 has revealed that this genetic manipulation leads to the presence of sensorimotor gating dysfunctions in the form of reduced prepulse inhibition of the acoustic startle reflex. However, the neuronal substances for this behavioral manifestation remain essentially unknown. Since converging evidence supports a key role of the central dopamine system in the regulation of prepulse inhibition, we hypothesized that the emergence of prepulse inhibition deficits in adult Nurr1-deficient mice may be linked to dopaminergic neuroanatomical changes. To test this hypothesis, we followed a within-subject approach in which sensorimotor gating performance was correlated with post-mortem expression of several dopaminergic markers in relevant striatal and midbrain regions. We found that prepulse inhibition deficits in Nurr1-deficient mice were paralleled by reduced numbers of substantia nigra dopamine cells expressing tyrosine hydroxylase, and by decreased tyrosine hydroxylase and dopamine transporter immunoreactivity in ventral parts of the striatum. Most interestingly, we also revealed a striking negative correlation between prepulse inhibition levels and tyrosine hydroxylase immunoreactivity in Nurr1-deficient mice in dorsal striatal regions (caudate putamen) and ventral striatal regions (nucleus accumbens core and shell). Our findings thus suggest that the emergence of prepulse inhibition deficits induced by heterozygous constitutive deletion of Nurr1 is, at least in part, related to alterations in presynaptic components of the striatal dopamine system. The constellation of neuroanatomical and behavioral alterations in Nurr1-deficient mice observed here confirms previous impressions that the consequences of Nurr1 down-regulation capture neuronal and behavioral pathologies relevant especially for (but not limited to) Parkinson's disease.  相似文献   

15.
The dopaminergic innervation of the striatum has been implicated in learning processes and in the development of human speech and language. Several lines of evidence suggest that evolutionary changes in dopaminergic afferents of the striatum may be associated with uniquely human cognitive and behavioral abilities, including the association of the human‐specific sequence of the FOXP2 gene with decreased dopamine in the dorsomedial striatum of mice. To examine this possibility, we quantified the density of tyrosine hydroxylase‐immunoreactive axons as a measure of dopaminergic innervation within five basal ganglia regions in humans, great apes, and New and Old World monkeys. Our results indicate that humans differ from nonhuman primate species in having a significant increase in dopaminergic innervation selectively localized to the medial caudate nucleus. This region of the striatum is highly interconnected, receiving afferents from multiple neocortical regions, and supports behavioral and cognitive flexibility. The medial caudate nucleus also shows hyperactivity in humans lacking a functional FOXP2 allele and exhibits altered dopamine concentrations in humanized Foxp2 mice. Additionally, striatal dopaminergic input was not altered in chimpanzees that used socially learned attention‐getting sounds versus those that did not. This evidence indicates that the increase in dopamine innervation of the medial caudate nucleus in humans is a species‐typical characteristic not associated with experience‐dependent plasticity. The specificity of this increase may be related to the degree of convergence from cortical areas within this region of the striatum and may also be involved in human speech and language. J. Comp. Neurol. 524:2117–2129, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
On April 24-27, 2010, the Motivational Neuronal Networks meeting took place in Wrightsville Beach, North Carolina. The conference was devoted to “Emerging, re-emerging, and forgotten brain areas” of the reward circuit. A central feature of the conference was four scholarly discussions of cutting-edge topics related to the conference's theme. These discussions form the basis of the present review, which summarizes areas of consensus and controversy, and serves as a roadmap for the next several years of research.  相似文献   

17.
Mainly known for its more famous parent compound, ethanol, acetaldehyde was first studied in the 1940s, but then research interest in this compound waned. However, in the last two decades, research on acetaldehyde has seen a revitalized and uninterrupted interest. Acetaldehyde, per se, and as a product of ethanol metabolism, is responsible for many pharmacological effects which are not clearly distinguishable from those of its parent compound, ethanol. Consequently, the most recent advances in acetaldehyde's psychopharmacology have been inspired by the experimental approach to test the hypothesis that some of the effects of ethanol are mediated by acetaldehyde and, in this regard, the characterization of metabolic pathways for ethanol and the localization within discrete brain regions of these effects have revitalized the interest on the role of acetaldehyde in ethanol's central effects. Here we present and discuss a wealth of experimental evidence that converges to suggest that acetaldehyde is an intrinsically active compound, is metabolically generated in the brain and, finally, mediates many of the psychopharmacological properties of ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号