首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skeletal muscle is one of the main targets of the metabolic alterations in diabetes, in which protein synthesis is markedly reduced followed by increased proteolysis. Ultrastructural and functional changes in the presynaptic compartment of the neuromuscular junction (NMJ) have been demonstrated, but little attention has been paid to the proteins in the postsynaptic muscle fiber membrane. In the present work, we studied the changes in acetylcholine receptors (AChRs) and nerve terminal distribution in the NMJ of non-obese diabetic (NOD) mice. The sternomastoid muscles of adult female NOD mice were double-labeled for AChR and nerve terminal observation by fluorescence and reflected light confocal microscopy. In 62.4% of the diabetic endplates, AChR branches broke apart into receptor islands that stained less than in the normal mice. These patches had regular junctional folds. At most of the endplates studied, the nerve terminals colocalized with AChRs, and sprouts were seen in 10% of the diabetic endplates. The intramuscular nerve branches and axons in the nerve to the sternomastoid muscle showed no degenerative disorders. These results suggest that metabolic alterations in the diabetic muscle fiber can affect the distribution and expression of molecules, such as AChRs, in the postsynaptic membrane of the neuromuscular junction.  相似文献   

2.
Changes in the distribution of acetylcholine receptors have been reported to occur at the neuromuscular junction of mdx mice and may be a consequence of muscle fiber regeneration rather than the absence of dystrophin. In the present study, we examined whether the nerve terminal determines the fate of acetylcholine receptor distribution in the dystrophic muscle fibers of mdx mice. The left sternomastoid muscle of young (1‐month‐old) and adult (6‐month‐old) mdx mice was injected with 60 μl lidocaine hydrochloride to induce muscle degeneration‐regeneration. Some mice had their sternomastoid muscle denervated at the time of lidocaine injection. After 10 days of muscle denervation, nerve terminals and acetylcholine receptors were labeled with 4‐Di‐2‐ASP and rhodamine‐α‐bungarotoxin, respectively, for confocal microscopy. In young mdx mice, 75% (n = 137 endplates) of the receptors were distributed in islands. The same was observed in 100% (n = 114 endplates) of the adult junctions. In denervated‐regenerated fibers of young mice, the receptors were distributed as branches in 89% of the endplates (n = 90). In denervated‐regenerated fibers of adult mice, the receptors were distributed in islands in 100% of the endplates (n = 100). These findings show that nerve‐dependent mechanisms are also involved in the changes in receptor distribution in young dystrophic muscles. In older dystrophic muscles, other factors may play a role in receptor distribution. Anat Rec 290:181–187, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

3.
Monocytes infiltrate islets in non‐obese diabetic (NOD) mice. Activated monocyte/macrophages express cyclo‐oxygenase‐2 (COX‐2) promoting prostaglandin‐E2 (PGE2) secretion, while COX‐1 expression is constitutive. We investigated in female NOD mice: (i) natural history of monocyte COX expression basally and following lipopolysaccharide (LPS) stimulation; (ii) impact of COX‐2 specific inhibitor (Vioxx) on PGE2, insulitis and diabetes. CD11b+ monocytes were analysed for COX mRNA expression from NOD (n = 48) and C57BL/6 control (n = 18) mice. NOD mice were treated with either Vioxx (total dose 80mg/kg) (n = 29) or methylcellulose as control (n = 29) administered by gavage at 4 weeks until diabetes developed or age 30 weeks. In all groups, basal monocyte COX mRNA and PGE2 secretion were normal, while following LPS, after 5 weeks of age monocyte/macrophage COX‐1 mRNA decreased (P < 0·01) and COX‐2 mRNA increased (P < 0·01). However, diabetic NOD mice had reduced COX mRNA response (P = 0·03). Vioxx administration influenced neither PGE2, insulitis nor diabetes. We demonstrate an isoform switch in monocyte/macrophage COX mRNA expression following LPS, which is altered in diabetic NOD mice as in human diabetes. However, Vioxx failed to affect insulitis or diabetes. We conclude that monocyte responses are altered in diabetic NOD mice but COX‐2 expression is unlikely to be critical to disease risk.  相似文献   

4.
Mdx mice are deficient in dystrophin and show muscle fiber regeneration. Changes in the distribution of acetylcholine receptors have been reported at the neuromuscular junction of mdx mice and may be a consequence of muscle fiber regeneration. In this study, we examined whether the distribution of receptors was still altered in long-term, regenerated muscle fibers from C57Bl/10 mice. The left sternomastoid muscle of adult mice was injected with 60 μl of lidocaine hydrochloride to induce muscle degeneration-regeneration. In some mice, the sternomastoid muscle was denervated at the time of lidocaine injection. After 90 and 150 days, the nicotinic acetylcholine receptors were labeled with rhodamine-α-bungarotoxin for confocal microscopy. At both intervals studied, the receptors were distributed in spots. In denervated-regenerated fibers, the receptors were distributed as regular branches similar to denervated muscles without lidocaine treatment. These findings suggested that nerve-dependent mechanisms were involved in the changes in receptor distribution seen in regenerated muscle fibers after lidocaine treatment, and that a similar phenomenon could explain the changes in receptor distribution seen in dystrophic muscle fibers.  相似文献   

5.
Granzyme B (GzmB) and perforin are proteins, secreted mainly by natural killer cells and cytotoxic T lymphocytes that are largely responsible for the induction of apoptosis in target cells. Because type 1 diabetes results from the selective destruction of β cells and perforin deficiency effectively reduces diabetes in non‐obese diabetic (NOD) mice, it can be deduced that β cell apoptosis involves the GzmB/perforin pathway. However, the relevance of GzmB remains totally unknown in non‐obese diabetic (NOD) mice. In this study we have focused on GzmB and examined the consequence of GzmB deficiency in NOD mice. We found that NOD.GzmB–/– mice developed diabetes spontaneously with kinetics similar to those of wild‐type NOD (wt‐NOD) mice. Adoptive transfer study with regulatory T cell (Treg)‐depleted splenocytes (SPCs) into NOD‐SCID mice or in‐vivo Treg depletion by anti‐CD25 antibody at 4 weeks of age comparably induced the rapid progression of diabetes in the NOD.GzmB–/– mice and wt‐NOD mice. Expression of GzmA and Fas was enhanced in the islets from pre‐diabetic NOD.GzmB–/– mice. In contrast to spontaneous diabetes, GzmB deficiency suppressed the development of cyclophosphamide‐promoted diabetes in male NOD mice. Cyclophosphamide treatment led to a significantly lower percentage of apoptotic CD4+, CD8+ and CD4+CD25+ T cells in SPCs from NOD.GzmB–/– mice than those from wt‐NOD mice. In conclusion, GzmB, in contrast to perforin, is not essentially involved in the effector mechanisms for β cell destruction in NOD mice.  相似文献   

6.
神经肌肉接头(NMJ)是运动神经元轴突末梢和相应肌纤维间连接的效应位点,是动作电位产生的基础,而NMJ处的乙酰胆碱受体等物质对于动作电位传导具有重要意义。痉挛患者上运动神经元受损时,周围神经持续地通过NMJ向肌肉发放冲动,肌肉出现持续性收缩。研究显示放散式体外冲击波对NMJ有一定作用,可减少动作电位的产生,有助于痉挛的缓解,但冲击波在NMJ处的具体作用机制尚不完全明确,仍需进一步探明。  相似文献   

7.
In vertebrates there is a delay in impulse transmission at the neuromuscular junction termed residual latency (RL). RL is composed of synaptic delay proper plus delays due to reduced conduction velocities of fine nerve and muscle fibers. There have been few studies on RL and none under controlled conditions. RL has been determined for 485 HS mice and for 65 male inbred mice in five strains. All measurements were made on tails of awake mice 60–72 days old. The interval between the peak of the compound nerve action potential and the peak of the compound muscle action potential is defined as RL. In 400 HS males the mean (±SE) RL was 0.930±0.005 ms, with a range of 0.726 to 1.375 ms. Inbred means ranged from 0.714±0.024 ms for A/J to 0.0902±0.020 ms for DBA/1J. The inbred means differed very significantly among themselves (F=11.36, df=4, 60,P<0.0001). Nested ANOVA of RL by litter, family, and generation for the HS males and repeated-measures (test-retest) ANOVA for some HS males and inbreds permit estimation of environmental and genetic variances. Corrected for testing error, broad-sense heritability is estimated to be at least one-third and may be appreciably greater. RL may be of interest to behavioral geneticists because of its heritability and its reflection of certain types of CNS synaptic activity.This work was supported by the Natural Sciences and Engineering Research Council of Canada.  相似文献   

8.
Spared extraocular muscles of dystrophic mice are not subjected to regeneration process and can be used to verify whether the lack of dystrophin per se could cause changes in acetylcholine receptor (AChR) distribution. In the present study, rectus and oblique (spared) and retractor bulbi (nonspared) muscles were dissected from adult control (C57Bl/10) and mdx mice. AChRs and nerve terminals were labeled with rhodamine–α‐bungarotoxin and anti–NF200‐IgG‐FITC, respectively, and visualized by confocal microscopy. Rectus and oblique muscles presented 0.5% central nucleation, while retractor bulbi had central nucleation in 45% of muscle fibers. In mdx rectus, AChRs were distributed in branches in 99% of the junctions examined (n = 200), similar to that observed for controls. Nerve terminals covered the AChR branches in 100% of the junctions examined. In control retractor bulbi, AChRs were distributed in regular branches. In mdx retractor bulbi, multiple fragmented islands of receptors were seen in 56% of the endplates examined (n = 200). These results suggest that the lack of dystrophin per se does not influence the distribution of acetylcholine receptors at the neuromuscular junction of spared extraocular muscles. Anat Rec, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

9.
Type I diabetes is a disease caused by autoimmune destruction of the beta cells in the pancreas that leads to a deficiency in insulin production. The aim of this study was to evaluate the prophylactic potential of a prime‐boost strategy involving bacille Calmette–Guérin (BCG) and the pVAXhsp65 vaccine (BCG/DNAhsp65) in diabetes induced by streptozotocin (STZ) in C57BL/6 mice and also in spontaneous type 1 diabetes in non‐obese diabetic (NOD) mice. BCG/DNAhsp65 vaccination in NOD mice determined weight gain, protection against hyperglycaemia, decreased islet inflammation, higher levels of cytokine production by the spleen and a reduced number of regulatory T cells in the spleen compared with non‐immunized NOD mice. In the STZ model, however, there was no significant difference in the clinical parameters. Although this vaccination strategy did not protect mice in the STZ model, it was very effective in NOD mice. This is the first report demonstrating that a prime‐boost strategy could be explored as an immunomodulatory procedure in autoimmune diseases.  相似文献   

10.
Chromogranin A (ChgA) is an antigenic target of pathogenic CD4+ T cells in a non‐obese diabetic (NOD) mouse model of type 1 diabetes (T1D). Vasostatin‐1 is a naturally processed fragment of ChgA. We have now identified a novel H2‐Kd‐restricted epitope of vasostatin‐1, ChgA 36‐44, which elicits CD8+ T cell responses in NOD mice. By using ChgA 36‐44/Kd tetramers we have determined the frequency of vasostatin‐1‐specific CD8+ T cells in pancreatic islets and draining lymph nodes of NOD mice. We also demonstrate that vasostatin‐1‐specific CD4+ and CD8+ T cells constitute a significant fraction of islet‐infiltrating T cells in diabetic NOD mice. Adoptive transfer of T cells from ChgA 36‐44 peptide‐primed NOD mice into NOD/severe combined immunodeficiency (SCID) mice led to T1D development. These findings indicate that vasostatin‐1‐specific CD8+ T cells contribute to the pathogenesis of type 1 diabetes in NOD mice.  相似文献   

11.
Our laboratory has suggested that loss of tolerance to pyruvate dehydrogenase (PDC‐E2) leads to an anti‐mitochondrial antibody response and autoimmune cholangitis, similar to human primary biliary cirrhosis (PBC). We have suggested that this loss of tolerance can be induced either via chemical xenobiotic immunization or exposure to select bacteria. Our work has also highlighted the importance of genetic susceptibility. Using the non‐obese diabetic (NOD) congenic strain 1101 (hereafter referred to as NOD.1101 mice), which has chromosome 3 regions from B6 introgressed onto a NOD background, we exposed animals to 2‐octynoic acid (2OA) coupled to bovine serum albumin (BSA). 2OA has been demonstrated previously by a quantitative structural activity relationship to react as well as or better than lipoic acid to anti‐mitochondrial antibodies. We demonstrate herein that NOD.1101 mice immunized with 2OA‐BSA, but not with BSA alone, develop high titre anti‐mitochondrial antibodies and histological features, including portal infiltrates enriched in CD8+ cells and liver granulomas, similar to human PBC. We believe this model will allow the rigorous dissection of early immunogenetic cause of biliary damage.  相似文献   

12.
Neurotransmitter receptor recruitment at postsynaptic specializations is key in synaptogenesis, since this step confers functionality to the nascent synapse. The Drosophila neuromuscular junction (NMJ) is a glutamatergic synapse, similar in composition and function to mammalian central synapses. Various mechanisms regulating the extent of postsynaptic ionotropic glutamate receptor (iGluR) clustering have been described, but none are known to be essential for the initial localization and clustering of iGluRs at postsynaptic densities (PSDs). We identified and characterized the Drosophila neto (neuropilin and tolloid-like) as an essential gene required for clustering of iGluRs at the NMJ. Neto colocalizes with the iGluRs at the PSDs in puncta juxtaposing the active zones. neto loss-of-function phenotypes parallel the loss-of-function defects described for iGluRs. The defects in neto mutants are effectively rescued by muscle-specific expression of neto transgenes. Neto clustering at the Drosophila NMJ coincides with and is dependent on iGluRs. Our studies reveal that Drosophila Neto is a novel, essential component of the iGluR complexes and is required for iGluR clustering, organization of PSDs, and synapse functionality.  相似文献   

13.
Lin JW  Fu Q 《Neuroscience》2005,130(4):539-895
We have investigated the effect of serotonin (5-HT) and okadaic acid (OA) on presynaptic processes at the crayfish inhibitory neuromuscular junction. Two different physiological parameters of transmitter release were examined: release kinetics and the size of the readily releasable pool of vesicles (RRP). Using a paired pulse stimulus and high frequency trains, we established that a single broad action potential, recorded in 20 mM tetraethylammonium and 1 mM 4-amino-pyridine, released the RRP in its entirety. Thus, by measuring the amplitude of inhibitory postsynaptic potential (IPSC) we were able to directly assess the effects of 5-HT and OA on the RRP. Serotonin at 200 nM and OA at 2.5 μM each significantly increased IPSC above control levels and the effects of these two modulators were comparable. Both modulators also induced a leftward shift in the rising phase of IPSC, i.e. an apparent acceleration in release kinetics. The shift caused by OA was significantly more pronounced than that induced by 5-HT. This apparent acceleration in release was not associated with a corresponding change in the presynaptic Ca2+ transient measured at a 2 kHz resolution, suggesting that modulation was not due to an acceleration in Ca2+ channel kinetics. In view of the comparable increase in the size of the RRP by the modulators, the differential modulation of release kinetics suggests that these two parameters may be modulated by separate biochemical processes.  相似文献   

14.
15.
Miniature end-plate currents (mepcs) and membrane noise elicited by acetylcholine (ACh) iontophoresis were investigated at neuromuscular junctions of the mouse diaphragm. All the experiments were performed at a holding potential of -70 mV at a temperature of 19 degrees C. The equilibrium potential of the ACh response was estimated to be near zero; the mepcs displayed a peak amplitude of 2.46 +/- 0.13 nA (mean +/- S.E.) and relaxed exponentially with a time constant to 1.63 +/- 0.11 msec. Single ACh-activated channels had a conductance of 26.5 +/- 1.5 pS and a mean life time of 1.69 +/0- 0.13 msec.  相似文献   

16.
Type 1 diabetes is an autoimmune disease whose clinical onset signifies a lifelong requirement for insulin therapy and increased risk of medical complications. To increase the efficiency and confidence with which drug candidates advance to human type 1 diabetes clinical trials, we have generated and validated a mathematical model of type 1 diabetes pathophysiology in a well‐characterized animal model of spontaneous type 1 diabetes, the non‐obese diabetic (NOD) mouse. The model is based on an extensive survey of the public literature and input from an independent scientific advisory board. It reproduces key disease features including activation and expansion of autoreactive lymphocytes in the pancreatic lymph nodes (PLNs), islet infiltration and β cell loss leading to hyperglycaemia. The model uses ordinary differential and algebraic equations to represent the pancreas and PLN as well as dynamic interactions of multiple cell types (e.g. dendritic cells, macrophages, CD4+ T lymphocytes, CD8+ T lymphocytes, regulatory T cells, β cells). The simulated features of untreated pathogenesis and disease outcomes for multiple interventions compare favourably with published experimental data. Thus, a mathematical model reproducing type 1 diabetes pathophysiology in the NOD mouse, validated based on accurate reproduction of results from multiple published interventions, is available for in silico hypothesis testing. Predictive biosimulation research evaluating therapeutic strategies and underlying biological mechanisms is intended to deprioritize hypotheses that impact disease outcome weakly and focus experimental research on hypotheses likely to provide insight into the disease and its treatment.  相似文献   

17.
Type 1 diabetes (T1D) results from T helper type 1 (Th1)‐mediated autoimmune destruction of insulin‐producing β cells. Novel experimental therapies for T1D target immunomodulation, β cell survival and inflammation. We examined combination therapy with the dipeptidyl peptidase‐IV inhibitor MK‐626 and the histone deacetylase inhibitor vorinostat in the non‐obese diabetic (NOD) mouse model of T1D. We hypothesized that combination therapy would ameliorate T1D by providing protection from β cell inflammatory destruction while simultaneously shifting the immune response towards immune‐tolerizing regulatory T cells (Tregs). Although neither mono‐ nor combination therapies with MK‐626 and vorinostat caused disease remission in diabetic NOD mice, the combination of MK‐626 and vorinostat increased β cell area and reduced the mean insulitis score compared to diabetic control mice. In prediabetic NOD mice, MK‐626 monotherapy resulted in improved glucose tolerance, a reduction in mean insulitis score and an increase in pancreatic lymph node Treg percentage, and combination therapy with MK‐626 and vorinostat increased pancreatic lymph node Treg percentage. We conclude that neither single nor combination therapies using MK‐626 and vorinostat induce diabetes remission in NOD mice, but combination therapy appears to have beneficial effects on β cell area, insulitis and Treg populations. Combinations of vorinostat and MK‐626 may serve as beneficial adjunctive therapy in clinical trials for T1D prevention or remission.  相似文献   

18.
At the neuromuscular junction, ATP is co-released with the neurotransmitter acetylcholine (ACh) and once in the synaptic space, it is degraded to the presynaptically active metabolite adenosine. Intracellular recordings were performed on diaphragm fibers of CF1 mice to determine the action of extracellular ATP (100 muM) and the slowly hydrolysable ATP analog 5'-adenylylimidodiphosphate lithium (betagamma-imido ATP) (30 muM) on miniature end-plate potential (MEPP) frequency. We found that application of ATP and betagamma-imido ATP decreased spontaneous secretion by 45.3% and 55.9% respectively. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective A(1) adenosine receptor antagonist and alpha,beta-methylene ADP sodium salt (alphabeta-MeADP), which is an inhibitor of ecto-5'-nucleotidase, did not prevent the inhibitory effect of ATP, demonstrating that the nucleotide is able to modulate spontaneous ACh release through a mechanism independent of the action of adenosine. Blockade of Ca(2+) channels by both, Cd(2+) or the combined application of nitrendipine and omega-conotoxin GVIA (omega-CgTx) (L-type and N-type Ca(2+) channel antagonists, respectively) prevented the effect of betagamma-imido ATP, indicating that the nucleotide modulates Ca(2+) influx through the voltage-dependent Ca(2+) channels related to spontaneous secretion. betagamma-Imido ATP-induced modulation was antagonized by the non-specific P2 receptor antagonist suramin and the P2Y receptor antagonist 1-amino-4-[[4-[[4-chloro-6-[[3(or4)-sulfophenyl] amino]-1,3,5-triazin-2-yl]amino]-3-sulfophenyl] amino]-9,10-dihydro-9,10-dioxo-2-anthracenesulfonic acid (reactive blue-2), but not by pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt (PPADS), which has a preferential antagonist effect on P2X receptors. Pertussis toxin and N-ethylmaleimide (NEM), which are blockers of G(i/o) proteins, prevented the action of the nucleotide, suggesting that the effect is mediated by P2Y receptors coupled to G(i/o) proteins. The protein kinase C (PKC) antagonist chelerythrine and the calmodulin antagonist N-(6-aminohexil)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7) occluded the effect of betagamma-imido ATP, while the protein kinase A (PKA) antagonist KT-5720 and the inhibitor of the calcium/calmodulin-dependent protein kinase II (CAMKII) KN-62 failed to do so. betagamma-Imido ATP did not affect 10, 15 and 20 mM K(+)-evoked release and application of reactive blue-2 before incubation in high K(+) induced a higher asynchronous secretion. Thus, our results show that at mammalian neuromuscular junctions, ATP induces presynaptic inhibition of spontaneous ACh release due to the modulation of Ca(2+) channels related to tonic secretion through the activation of P2Y receptors coupled to G(i/o) proteins. We also demonstrated that at increasing degrees of membrane depolarization evoked by K(+), endogenously released ATP induces presynaptic inhibition as a means of preventing excessive neurotransmitter secretion.  相似文献   

19.
Adenosine deaminase reversibly increased the amplitude and the quantum content of the end-plate potentials (EPPs) recorded from superficial muscle fibers of frog sartorius preparations in which twitches have been prevented with high-magnesium solutions. Adenosine deaminase prevented the inhibitory effect of exogenously applied adenosine but not that of 2-chloroadenosine on the amplitude of EPPs. The effect of adenosine deaminase was abolished by erythro-9(2-hydroxy-3-nonyl)adenine (EHNA). The results suggest that endogenous adenosine exerts an inhibitory 'tone' over neuromuscular transmission.  相似文献   

20.
The impact of gestation and fetal-maternal interactions on pre-existent autoimmune beta cell destruction is widely unknown. The aim of this study was to investigate the influence of gestation per se and fetal mismatching on the onset of autoimmune diabetes in female non-obese diabetic (NOD) mice. We examined cumulative diabetes frequencies of NOD dams mated to syngeneic NOD, haploidentical CByB6F1/J and fully mismatched C57BL/6J male mice. Pregnancy from NOD males neither increased nor accelerated the diabetes onset of NOD dams (71% by age 28 weeks) compared to unmated female NOD mice (81% by age 28 weeks; P = 0·38). In contrast, delayed diabetes onset was observed when NOD dams were mated at 10 weeks of age with major histocompatibility complex (MHC) haploidentical CByB6F1/J male mice (38% at age 28 weeks; P = 0·01). Mating with fully MHC mismatched C57BL/6J male mice (72% diabetes by age 28 weeks; P = 0·22) or mating with the haploidentical males at the later time-point of age 13 weeks (64% versus 91% in unmated litter-matched controls; P = 0·13) did not delay diabetes significantly in NOD females. Because infusion of haploidentical male mouse splenocytes was found previously to prevent diabetes in NOD mice we looked for, but found no evidence of, persistent chimeric lymphocytes from haploidentical paternal origin within the dams' splenocytes. Gestation per se appears to have no aggravating or ameliorating effects on pre-existent autoimmune beta cell destruction, but pregnancy from MHC partially mismatched males delays diabetes onset in female NOD mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号