首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Malik 《Clinical genetics》2014,85(3):203-212
Polydactyly is one of the most common hereditary limb malformations featuring additional digits in hands and/or feet. It constituted the highest proportion among the congenital limb defects in various epidemiological surveys. Polydactyly, primarily presenting as an additional pre‐axial or post‐axial digit of autopod, is a highly heterogeneous condition and depicts broad inter‐ and intra‐familial clinical variability. There is a plethora of polydactyly classification methods reported in the medical literature which approach the heterogeneity in polydactyly in various ways. In this communication, well‐characterized, non‐syndromic polydactylies in humans are reviewed. The cardinal features, phenotypic variability and molecular advances of each type have been presented. Polydactyly at cellular and developmental levels is mainly a failure in the control of digit number. Interestingly, GLI3 and SHH (ZRS/SHH enhancer), two antagonistic factors known to modulate digit number and identity during development, have also been implicated in polydactyly. Mutations in GLI3 and ZRS/SHH cause overlapping polydactyly phenotypes highlighting shared molecular cascades in the etiology of additional digits, and thus suggesting the lumping of at least six distinct polydactyly entities. However, owing to the extreme phenotypic and clinical heterogeneity witnessed in polydactyly a substantial genetic heterogeneity is expected across different populations and ethnic groups.  相似文献   

2.
The molecular basis of Pallister Hall associated polydactyly   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
5.
Background : The Frontonasal Ectodermal Zone (FEZ) is a signaling center in the face that expresses Sonic hedgehog (Shh) and regulates patterned growth of the upper jaw. Blocking SHH in the forebrain blocks Shh expression in the FEZ and creates malformations resembling holoprosencephaly (HPE), while inhibition of BMP signaling in the mesenchyme blocks FEZ formation and causes similar dysmorphology. Thus, the brain could regulate FEZ formation by SHH or BMP signaling, and if so, activating one of these pathways in the face might alleviate the effects of repression of SHH in the brain. Results : We blocked SHH signaling in the brain while adding SHH or BMP between the neural and facial ectoderm of the frontonasal process. When applied early, SHH restored Shh expression in the FEZ and significantly improved shape outcomes, which contrasts with our previous experiments that showed later SHH treatments have no effect. BMP‐soaked beads introduced early and late caused apoptosis that exacerbated malformations. Finally, removal of Smoothened from neural crest cells did not inhibit Shh expression in the FEZ. Conclusions : Collectively, this work suggests that a direct, time‐sensitive SHH signal from the brain is required for the later induction of Shh in the FEZ. We propose a testable model of FEZ activation and discuss signaling mediators that may regulate these interactions. Developmental Dynamics 241:247–256, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
We investigated the roles of bare morphogenetic protein (BMP), sonic hedgehog (SHH) and fibroblast growth factor (FGF)-expressing signaling centers in regulating the patterned outgrowth of the telencephalic and optic vesicles. Implantation of BMP4 beads in the anterior neuropore of stage 10 chicken embryos repressed FGF8 and SHH expression. Similarly, loss of SHH expression in Shh mutant mice leads to increased BMP signaling and loss of Fgf8 expression in the prosencephalon. Increased BMP signaling and loss of FGF and SHH expression was correlated with decreased proliferation, increased cell death, and hypoplasia of the telencephalic and optic vesicles. However, decreased BMP signaling, through ectopic expression of Noggin, a BMP-binding protein, also caused decreased proliferation and hypoplasia of the telencephalic and optic vesicles, but with maintenance of Fgf8 and Shh expression, and no detectable increase in cell death. These results suggest that optimal growth requires a balance of BMP, FGF8 and SHH signaling. We suggest that the juxtaposition of Fgf8, Bmp4 and Shh expression domains generate patterning centers that coordinate the growth of the telencephalic and optic vesicles, similar to how Fgf8, Bmp4 and Shh regulate growth of the limb bud. Furthermore, these patterning centers regulate regional specification within the forebrain and eye, as exemplified by the regulation of Emx2 expression by different levels of BMP signaling.In summary, we present evidence that there is cross-regulation between BMP-, FGF- and SHH-expressing signaling centers in the prosencephalon which regulate morphogenesis of, and regional specification within, the telencephalic and optic vesicles.  相似文献   

7.
Polydactyly or polydactylism, also known as a hyperdactyly, is a congenital limb defect with various morphologic phenotypes. Apart from physical and functional impairments, the presence of polydactyly is an indication of an underlying syndrome in the newborn. Usually, it follows as an autosomal dominant/recessive inheritance pattern with defects in the limb development's anteroposterior patterning. Although mutations in several genes have been associated with polydactyly; however, the exact underlying cause, pathways, and disease mechanisms are still unexplored, thus making it of multi-factorial origin. Polydactyly is divided into three subtypes; radial, ulnar, and central polydactyly. So far, 11 loci (PAPA1-PAPA11) and seven human genes have been reported to cause non-syndromic postaxial polydactyly in humans, including the ZNF141, GLI3, IQCE, GLI1, FAM92A1, KIAA0825, and DACH1. In this review, we discuss emerging evidences of clinical and molecular characterization of polydactyly types in term of the involvement of newly associated genes and loci for non-syndromic postaxial polydactyly, and how these might impact our understanding of the genetic mechanisms and molecular etiology involved in the cause of polydactyly.  相似文献   

8.
9.
Polydactyly is a phenotypically and genetically highly heterogeneous limb malformation with preaxial and postaxial subtypes and subtypes A and B. Most polydactyly entities are associated with GLI3 mutation. We report on 10 affected individuals from a large Pakistani kindred initially evaluated as a possible new condition. The phenotype is postaxial polydactyly types A and B associated with zygodactyly, postaxial webbing of toes and additional features not previously reported for isolated polydactyly such as camptodactyly, hypoplasia of third toe, and wide space between hallux and second toe. Hypothesizing that the disorder could have resulted from a mutation in a novel gene responsible for polydactyly, we launched a genetic investigation. By linkage mapping and exome sequencing in the most severe case, we identified novel heterozygous frameshift mutation NM_000168.5 (GLI3): c.3635delG (p.(Gly1212Alafs*18)) but did not detect any other possibly deleterious mutation that could explain the unusual features of camptodactyly, hypoplasia of third toe and wide space between first and second toes. Our findings further expand the phenotypic variability of GLI3 polydactyly. We also present a review of GLI3-associated isolated limb anomalies, which indicates that GLI3 mutation leads primarily to two well-established polydactyly types: postaxial types A and B and crossed polydactyly type I. In addition, a variety of other minor digit anomalies generally accompany polydactyly, and there is no straightforward genotype-polydactyly phenotype correlation.  相似文献   

10.
11.
Sonic hedgehog: restricted expression and limb dysmorphologies   总被引:7,自引:0,他引:7       下载免费PDF全文
Sonic hedgehog, SHH, is required for patterning the limb. The array of skeletal elements that compose the hands and feet, and the ordered arrangement of these bones to form the pattern of fingers and toes are dependent on SHH. The mechanism of action of SHH in the limb is not fully understood; however, an aspect that appears to be important is the localized, asymmetric expression of Shh. Shh is expressed in the posterior margin of the limb bud in a region defined as the zone of polarizing activity (ZPA). Analysis of mouse mutants which have polydactyly (extra toes) shows that asymmetric expression of Shh is lost due to the appearance of an ectopic domain of expression in the anterior limb margin. One such polydactylous mouse mutant, sasquatch (Ssq), maps to the corresponding chromosomal region of the human condition pre-axial polydactyly (PPD) and thus represents a model for this condition. The mutation responsible for Ssq is located 1 Mb away from the Shh gene; however, the mutation disrupts a long-range cis-acting regulator of Shh expression. By inference, human pre-axial polydactyly results from a similar disruption of Shh expression. Other human congenital abnormalities also map near the pre-axial polydactyly locus, suggesting a major chromosomal region for limb dysmorphologies. The distinct phenotypes range from loss of all bones of the hands and feet to syndactyly of the soft tissue and fusion of the digits. We discuss the role played by Shh expression in mouse mutant phenotypes and the human limb dysmorphologies.  相似文献   

12.
13.
在肢体发育中,Sonic hedgehog(SHH)蛋白作为极化区(the zone of polarizing actiVity,ZPA)的调节因子,发挥着十分重要的作用。然而SHH是如何沿着肢体的前后轴发挥调控作用的还不是很清楚。最近的报道表明SHH主要是通过阻止转录因子GLI3裂解成抑制形式发挥作用,而后者也能够关闭SHH靶基因的表达。GLI基因家族的成员编码含有锌指结构的转录因子,主要对SHH的靶基因发挥调节作用。现就GLI基因在肢体发育中的表达特点及其临床意义进行综述。  相似文献   

14.
The primary cilium is an essential organelle that is important for normal cell signalling during development and homeostasis but its role in pituitary development has not been reported. The primary cilium facilitates signal transduction for multiple pathways, the best-characterised being the SHH pathway, which is known to be necessary for correct pituitary gland development. FUZ is a planar cell polarity (PCP) effector that is essential for normal ciliogenesis, where the primary cilia of Fuz−/−mutants are shorter or non-functional. FUZ is part of a group of proteins required for recruiting retrograde intraflagellar transport proteins to the base of the organelle. Previous work has reported ciliopathy phenotypes in Fuz−/− homozygous null mouse mutants, including neural tube defects, craniofacial abnormalities, and polydactyly, alongside PCP defects including kinked/curly tails and heart defects. Interestingly, the pituitary gland was reported to be missing in Fuz−/− mutants at 14.5 dpc but the mechanisms underlying this phenotype were not investigated. Here, we have analysed the pituitary development of Fuz−/− mutants. Histological analyses reveal that Rathke's pouch (RP) is initially induced normally but is not specified and fails to express LHX3, resulting in hypoplasia and apoptosis. Characterisation of SHH signalling reveals reduced pathway activation in Fuz−/− mutant relative to control embryos, leading to deficient specification of anterior pituitary fate. Analyses of the key developmental signals FGF8 and BMP4, which are influenced by SHH, reveal abnormal patterning in the ventral diencephalon, contributing further to abnormal RP development. Taken together, our analyses suggest that primary cilia are required for normal pituitary specification through SHH signalling.  相似文献   

15.
Split-hand/foot malformation (SHFM) is caused by mutations in TP63, DLX5, DLX6, FGF8, FGFR1, WNT10B, and BHLHA9. The clinical features of SHFM caused by mutations of these genes are not distinguishable. This implies that in normal situations these SHFM-associated genes share an underlying regulatory pathway that is involved in the development of the central parts of the hands and feet. The mutations in SHFM-related genes lead to dysregulation of Fgf8 in the central portion of the apical ectodermal ridge (AER) and subsequently lead to misexpression of a number of downstream target genes, failure of stratification of the AER, and thus SHFM. Syndactyly of the remaining digits is most likely the effects of dysregulation of Fgf-Bmp-Msx signaling on apoptotic cell death. Loss of digit identity in SHFM is hypothesized to be the effects of misexpression of HOX genes, abnormal SHH gradient, or the loss of balance between GLI3A and GLI3R. Disruption of canonical and non-canonical Wnt signaling is involved in the pathogenesis of SHFM. Whatever the causative genes of SHFM are, the mutations seem to lead to dysregulation of Fgf8 in AER cells of the central parts of the hands and feet and disruption of Wnt-Bmp-Fgf signaling pathways in AER.  相似文献   

16.
Background: In Ts65Dn, a mouse model of Down syndrome (DS), brain and craniofacial abnormalities that parallel those in people with DS are linked to an attenuated cellular response to sonic hedgehog (SHH) signaling. If a similarly reduced response to SHH occurs in all trisomic cells, then chronic up‐regulation of the pathway might have a positive effect on development in trisomic mice, resulting in amelioration of the craniofacial anomalies. Results: We crossed Ts65Dn with Ptch1tm1Mps/+ mice and quantified the craniofacial morphology of Ts65Dn;Ptch+/? offspring to assess whether a chronic up‐regulation of the SHH pathway rescued DS‐related anomalies. Ts65Dn;Ptch1+/? mice experience a chronic increase in SHH in SHH‐receptive cells due to haploinsufficiency of the pathway suppressor, Ptch1. Chronic up‐regulation had minimal effect on craniofacial shape and did not correct facial abnormalities in Ts65Dn;Ptch+/? mice. We further compared effects of this chronic up‐regulation of SHH with acute pathway stimulation in mice treated on the day of birth with a SHH pathway agonist, SAG. We found that SHH affects facial morphology differently based on chronic vs. acute postnatal pathway up‐regulation. Conclusions: Our findings have implications for understanding the function of SHH in craniofacial development and for the potential use of SHH‐based agonists to treat DS‐related abnormalities. Developmental Dynamics 245:114–122, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Limb anomalies are important birth defects that are incompletely understood genetically and mechanistically. GLI3, a mediator of hedgehog signaling, is a genetic cause of limb malformations including pre- and postaxial polydactyly, Pallister-Hall syndrome and Greig cephalopolysyndactyly. A closely related Gli (glioma-associated oncogene homolog)-superfamily member, ZIC3, causes X-linked heterotaxy syndrome in humans but has not been investigated in limb development. During limb development, post-translational processing of Gli3 from activator to repressor antagonizes and posteriorly restricts Sonic hedgehog (Shh). We demonstrate that Zic3 and Gli3 expression overlap in developing limbs and that Zic3 converts Gli3 from repressor to activator in vitro. In Gli3 mutant mice, Zic3 loss of function abrogates ectopic Shh expression in anterior limb buds, limits overexpression in the zone of polarizing activity and normalizes aberrant Gli3 repressor/Gli3 activator ratios observed in Gli3+/- embryos. Zic3 null;Gli3+/- neonates show rescue of the polydactylous phenotype seen in Gli3+/- animals. These studies identify a previously unrecognized role for Zic3 in regulating limb digit number via its modifying effect on Gli3 and Shh expression levels. Together, these results indicate that two Gli superfamily members that cause disparate human congenital malformation syndromes interact genetically and demonstrate the importance of Zic3 in regulating Shh pathway in developing limbs.  相似文献   

18.
ROR-1 is a member of the ROR family of tyrosine kinase like orphan receptors and is highly conserved among various species. We have isolated the chick ROR-1 (cROR-1) and show that cROR-1 expression is high and restricted to the proximal limb region until HH-stage 25. At later stages, expression spreads towards the distal limb region. In order to determine the signals that control cROR-1 expression, factors known to be involved in limb patterning (FGFs, BMPs, SHH, retinoic acid) were applied to the developing limb. Whereas neither FGFs, BMPs, nor SHH affected cROR-1 expression, upregulation could be achieved by ectopic application of retinoic acid to the distal limb region. As retinoic acid also upregulated retinoic acid receptor beta (Rar-), we assume that cROR-1 upregulation is mediated by Rar-. We conclude that ROR-1 signaling is an independently regulated pathway, which is involved in late rather than early limb development.  相似文献   

19.
20.
The Hedgehog (HH) signaling pathway is involved in patterning and development of a variety of organ systems, including the nervous system, the skeletal system, the craniofacial structures, and the gastrointestinal tract. Recent evidence also implicates this signaling pathway in the postembryonic regulation of stem-cell number in epithelia and blood. The family of HH proteins consists of at least three different members, i.e., sonic HH (SHH), Indian HH (IHH), and desert HH (DHH). SHH is the most broadly expressed member of this family and is probably responsible for the major effects of this signaling pathway. The HH signal is received and transduced via a specific receptor complex composed of patched (PTCH) and smoothened (SMOH) transmembrane proteins. Abnormalities in this signaling cascade have been found in various developmental pathologies and neoplasms such as basal cell carcinoma. The abnormalities are associated with congenital or sporadic genetic alteration affecting function of different components of the HH signaling pathway, including SHH, PTCH, SMOH and GLI proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号