首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brain aging is associated with inflammatory changes. However, data on how the brain arachidonic acid (AA) metabolism is altered as a function of age are limited and discrepant. AA is released from membrane phospholipids by phospholipase A(2) (PLA(2)) and then further metabolized to bioactive prostaglandins and thromboxanes by cyclooxygenases (COX)-1 and -2. We examined the phospholipase A(2) (PLA(2))/COX-mediated AA metabolic pathway in the hippocampus and cerebral cortex of 4-, 12-, 24- and 30-month-old rats. A two-fold increase in brain thromboxane B(2) level in 24 and 30 months was accompanied by increased hippocampal COX-1 mRNA levels at 12, 24, and 30 months. COX-2 mRNA expression was significantly decreased only at 30 months. Hippocampal Ca(2+)-independent iPLA(2) mRNA levels were decreased at 24 and 30 months without any change in Ca(2+)-dependent PLA(2) expression. In the cerebral cortex, mRNA levels of COX and PLA(2) were not significantly changed. The specific changes in the AA cascade observed in the hippocampus may alter phospholipids homeostasis and possibly increase the susceptibility of the aging brain to neuroinflammation.  相似文献   

2.

Introduction

Diabetes mellitus is complicated by accelerated atherosclerosis, resulting in an increased risk of coronary artery disease (CAD) and thrombosis. Despite the proven benefits of aspirin, previous studies indicate a reduced cardiovascular protection from aspirin in diabetic patients. We aimed to investigate whether diabetes mellitus influenced the platelet response to aspirin in patients with CAD.

Materials and Methods

Platelet aggregation and activation were evaluated during aspirin treatment in 85 diabetic and 92 non-diabetic patients with CAD. Adherence to aspirin was carefully controlled. All patients had CAD verified by coronary angiography and were taking 75 mg non-enteric coated aspirin daily.

Results

Diabetic patients showed significantly higher levels of platelet aggregation compared to non-diabetic patients evaluated by VerifyNow® Aspirin (p = 0.03) and Multiplate® aggregometry using arachidonic acid (AA) 0.5 mM (p = 0.005) and 1.0 mM (p = 0.009). In addition, platelet activation determined by soluble P-selectin was significantly higher in diabetics compared to non-diabetics (p = 0.005). The higher AA-induced aggregation was associated with higher levels of HbA1c. Compliance was confirmed by low levels of serum thromboxane B2 (below 7.2 ng/mL). Diabetics had significantly higher levels of serum thromboxane B2 (p < 0.0001).

Conclusions

Diabetic patients with CAD had significantly higher levels of both platelet aggregation and activation compared to non-diabetic patients with CAD despite treatment with the same dosage of aspirin. These findings may partly explain the reduced cardiovascular protection from aspirin in diabetic patients.  相似文献   

3.
[11C]Cimbi-36 was recently developed as a selective serotonin 2A (5-HT2A) receptor agonist radioligand for positron emission tomography (PET) brain imaging. Such an agonist PET radioligand may provide a novel, and more functional, measure of the serotonergic system and agonist binding is more likely than antagonist binding to reflect 5-HT levels in vivo. Here, we show data from a first-in-human clinical trial with [11C]Cimbi-36. In 29 healthy volunteers, we found high brain uptake and distribution according to 5-HT2A receptors with [11C]Cimbi-36 PET. The two-tissue compartment model using arterial input measurements provided the most optimal quantification of cerebral [11C]Cimbi-36 binding. Reference tissue modeling was feasible as it induced a negative but predictable bias in [11C]Cimbi-36 PET outcome measures. In five subjects, pretreatment with the 5-HT2A receptor antagonist ketanserin before a second PET scan significantly decreased [11C]Cimbi-36 binding in all cortical regions with no effects in cerebellum. These results confirm that [11C]Cimbi-36 binding is selective for 5-HT2A receptors in the cerebral cortex and that cerebellum is an appropriate reference tissue for quantification of 5-HT2A receptors in the human brain. Thus, we here describe [11C]Cimbi-36 as the first agonist PET radioligand to successfully image and quantify 5-HT2A receptors in the human brain.  相似文献   

4.
N Lu  M Zhan  C Gao  G Wu  H Zhang 《Thrombosis research》2012,130(4):e209-e215

Introduction

1-[4-[2-(4-Bromobenzene-sulfonamino)ethyl]phenylsulfonyl]-3-(trans-4-methylcy-clohexyl)urea(I4, CAS865483-06-3); a totally synthetic new sulfonylurea compound, combining the hypoglycemic active structure of Glimepiride (CAS 93479-97-1) and anti-TXA2 receptor (TP) active structure of BM-531(CAS 284464-46-6), was designed and synthesized. Its effects on TXA2 synthesis and TP have not been reported yet.

Aim

To study the inhibitory effects of I4 and its mechanisms of action on TXA2 and TP.

Methods

Platelet aggregation studies were performed on human platelet, rat whole blood platelet and rabbit platelet, platelets aggregation was induced by TP agonist U-46619(stable analog of TXA2, CAS 56985-40-1). Plasma TXB2 and 6-keto-prostaglandin F (6-keto-PGF) were used as markers to determine the effect of I4 on thromboxane synthesis. Fluo-3-AM was used to measure the cytosolic Ca2 + concentrations ([Ca2 +]i) in rabbit platelet. Aorta rings with and without endothelium were prepared and aorta contraction was induced by U-46619. A model of type 2 diabetes mellitus was established by intraperitoneal injection of low dose of streptozocin to rats fed a high-calorie diet. Both normal rats and type 2 diabetic rats were used to assay the inhibitory effect of I4 on platelet aggregation induced by U-46619.

Results

I4 exhibited a higher inhibitory potency than Glimepiride on U-46619 induced platelet aggregation in vitro and in vivo. I4 increased the ratio of plasma PGI2/TXA2 and decreased [Ca2 +]i release from platelet internal stores. In addition, I4 presented a vasorelaxant activity on isolated rat aorta contraction induced by U-46619.Oral administration of I4 (1 ~ 10 mg/kg) markedly and dose-dependently inhibited platelet aggregation in both normal rats and type 2 diabetic rats.

Conclusion

I4 significantly inhibited platelet aggregation induced by U-46619 in vitro and in vivo, and rat aorta contraction. It probably acts by partly blocking TXA2 action, decreasing the platelet intracellular Ca2 +, and increasing the PGI2/TXA2 ratio.  相似文献   

5.
This Review summarizes and updates the work on adenosine A(2A) receptor antagonists for Parkinson's disease from 2006 to the present. There have been numerous publications, patent applications, and press releases within this time frame that highlight new medicinal chemistry approaches to this attractive and promising target to treat Parkinson's disease. The Review is broken down by scaffold type and will discuss the efforts to optimize particular scaffolds for activity, pharmacokinetics, and other drug discovery parameters. The majority of approaches focus on preparing selective A(2A) antagonists, but a few approaches to dual A(2A)/A(1) antagonists will also be highlighted. The in vivo profiles of compounds will be highlighted and discussed to compare activities across different chemical series. A clinical report and update will be given on compounds that have entered clinical trials.  相似文献   

6.

Introduction

Platelet hyperreactivity associates with cardiovascular events in humans. Studies in mice and humans suggest that prostaglandin E2 (PGE2) regulates platelet activation. In mice, activation of the PGE2 receptor subtype 3 (EP3) promotes thrombosis, but the significance of EP3 in humans is less well understood.

Objectives

To characterize the regulation of thromboxane-dependent human platelet activation by PGE2.

Patients/Methods

Platelets collected from nineteen healthy adults were studied using an agonist of the thromboxane receptor (U46,619), PGE2, and selective agonists and/or antagonists of the EP receptor subtypes. Platelet activation was assayed by (1) optical aggregometry, (2) measurement of dense granule release, and (3) single-platelet counting.

Results

Healthy volunteers demonstrated significant interindividual variation in platelet response to PGE2. PGE2 completely inhibited U46,619-induced platelet aggregation and ATP release in 26% of subjects; the remaining 74% had partial or no response to PGE2. Antagonism of EP4 abolished the inhibitory effect of PGE2. In all volunteers, a selective EP2 agonist inhibited U46,619-induced aggregation. Furthermore, the selective EP3 antagonist DG-041 converted all PGE2 nonresponders to full responders.

Conclusions

There is significant interindividual variation of platelet response to PGE2 in humans. The balance between EP2, EP3, and EP4 activation determines its net effect. PGE2 can prevent thromboxane-induced platelet aggregation in an EP4-dependent manner. EP3 antagonism converts platelets of nonresponders to a PGE2-responsive phenotype. These data suggest that therapeutic targeting of EP pathways may have cardiovascular benefit by decreasing platelet reactivity.  相似文献   

7.
The goal of this work was to characterize the in-vivo behavior of [18F]mefway as a suitable positron emission tomography (PET) radiotracer for the assay of 5-hydroxytryptamine1A (5-HT1A) receptor density (Bmax). Six rhesus monkeys were studied using a multiple-injection (M-I) protocol consisting of three sequential bolus injections of [18F]mefway. Injection times and amounts of unlabeled mefway were optimized for the precise measurement of Bmax and specific binding parameters koff and kon for estimation of apparent KD. The PET time series were acquired for 180 minutes with arterial sampling performed throughout. Compartmental analysis using the arterial input function was performed to obtain estimates for K1, k2, koff, Bmax, and KDapp in the cerebral cortex and raphe nuclei (RN) using a model that accounted for nontracer doses of mefway. Averaged over subjects, highest binding was seen in the mesial temporal and dorsal anterior cingulate cortices with Bmax values of 42±8 and 36±8 pmol/mL, respectively, and lower values in the superior temporal cortex, RN, and parietal cortex of 24±4, 19±4, and 13±2 pmol/mL, respectively. The KDapp of mefway for the 5-HT1A receptor sites was 4.3±1.3 nmol/L. In conclusion, these results show that M-I [18F]mefway PET experiments can be used for the in-vivo measurement of 5-HT1A receptor density.  相似文献   

8.

Introduction

Thromboxane A2 (TXA2) induces platelet aggregation and vasoconstriction, and agents that inhibit TXA2 production or interaction with receptors may exert potential application in stroke therapy.

Aim

To illustrate the platelet aggregation antagonistic and endothelial protective effect of (E) - 3 - (3 - methoxy - 4 - ((3, 5, 6 - trimethylpyrazin - 2 - yl) methoxy) phenyl) sodium acrylate (MC-002) through TXA2 inhibition and underline mechanisms.

Materials and methods

Platelets aggregation and thoracic aorta ring contraction of rabbits were induced by U46619. Human umbilical vein endothelial cells (HUVECs) were further applied to explore the protective effect of MC-002 on endothelium when exposed to tumor necrosis factor - α (TNF-α). MTT method was used to assess cell damage, and ELISA analysis was exerted to estimate nitrogen monoxide (NO), endothelin-1 (ET-1), thromboxane B2 (TXB2) and 6-keto-prostaglandin F1α (6-keto-PGF1α) releasing. Fluorescence spectrophotometry was conducted to determine intracellular calcium concentration ([Ca2 +]i), and western blotting method was applied to evaluate the protein expressions of intracellular adhesion molecule-1 (ICAM-1), P-selectin and nuclear factor-kappa B (NF-κB).

Results and conclusions

TXA2 analog U46619 mediated obvious platelet aggregation and vasoconstriction. MC-002 inhibited platelet aggregation through administration in vivo and incubation with platelet in vitro, and relaxed aorta ring in endothelium dependent manner. MC-002 alleviated cell damage, [Ca2 +]i overload, ET-1 overexcretion and TXB2 activation, but improved NO availability reduction in HUVECs treated with TNF-α. Furthermore, MC-002 downregulated ICAM-1, P-selectin and NF-κB overexpression induced by TNF-α. In conclusion, MC-002 exerted antiplatelet aggregation effect through TXA2 inhibition and relieved inflammatory injury of endothelial cells through NF-κB signal pathway.  相似文献   

9.
Summary Serotonin2 (5-HT2) receptor binding was studied, using3H-spiperone as the ligand, in post-mortem brain specimens obtained from schizophrenic patients (N=11) and non-psychiatric controls (N=11). The maximum number of binding sites (Bmax) was significantly decreased in schizophrenic patients as compared to normal controls. This difference did not appear to be due to neuroleptic treatment. No difference in Kd (an inverse measure of the affinity of3H-spiperone to its binding sites) was observed between the two groups. However, studies with unmedicated schizophrenic patients are needed to draw any definite conclusion. The role of serotonergic processes in the psychobiology of schizophrenia is discussed.  相似文献   

10.
BACKGROUND: Genomic variation in the regulatory region of the serotonin (5-HT) 2A receptor gene (HTR2A) may contribute to altered levels of 5-HT2A receptor and to psychiatric disease. METHODS: Frequency and linkage disequilibrium (LD) were determined for promoter single nucleotide polymorphisms (SNPs) -1438A/G, -1420C/T, and -783A/G in 156 subjects. Functional relevance of -1438A/G and -783A/G was assayed in vitro using a luciferase reporter assay and ex vivo using quantitative real time polymerase chain reaction in a set of human fibroblast cell lines. RESULTS: Significant LD was observed between SNPs -1438A/G and -783A/G. In vitro assays showed no significant differences in promoter activity between the A- and G-allele of -1438 locus when expressed with the major alleles at -1420C/T and -783A/G; however, when the minor allele G at -783 was expressed with G-allele at -1438, promoter activity was significantly decreased. 5-HT2A receptor mRNA expression in human fibroblast cell lines confirmed that -783A/G polymorphism significantly modified the effects of -1438A/G SNP. CONCLUSIONS: Our results demonstrate that SNP -783A/G modifies the effects of the major SNP -1438A/G. Future studies examining the association of -1438A/G polymorphism with diseases and 5-HT2A receptor expression analyses should account for this epistasis.  相似文献   

11.
Consumption of caffeine, an adenosine receptor antagonist, was found to be inversely associated with the incidence of Alzheimer's disease. Moreover, caffeine protects cultured neurons against beta-amyloid-induced toxicity, an effect mimicked by adenosine A(2A) but not A(1) receptor antagonists. We now tested if caffeine administration would prevent beta-amyloid-induced cognitive impairment in mice and if this was mimicked by A(2A) receptor blockade. One week after icv administration of the 25-35 fragment of beta-amyloid (Abeta, 3 nmol), mice displayed impaired performance in both inhibitory avoidance and spontaneous alternation tests. Prolonged treatment with caffeine (1 mg/ml) had no effect alone but prevented the Abeta-induced cognitive impairment in both tasks when associated with acute caffeine (30 mg/kg) 30 min treatment before Abeta administration. The same protective effect was observed after subchronic (4 days) treatment with daily injections of either caffeine (30 mg/kg) or the selective adenosine A(2A) receptor antagonist SCH58261 (0.5 mg/kg). This provides the first direct in vivo evidence that caffeine and A(2A) receptor antagonists afford a protection against Abeta-induced amnesia, which prompts their interest for managing Alzheimer's disease.  相似文献   

12.

Introduction

In South Africa coronary artery disease (CAD) is less common in African than Indian or white subjects. Although the association between CAD and metabolic factors have been well documented, the role of genetic factors is as yet poorly understood. Specific polymorphisms in the platelet membrane glycoprotein (GP) IIIa gene PlA1/A2, have been implicated in the development of CAD.

Methods

The prevalence of platelet GPIIIa (PlA1/A2) polymorphisms and their effect on platelet function was determined in 313 Indian, 267 white and 227 African subjects with and without a history of CAD.

Results

In subjects without a history of CAD the frequency of the unfavourable PlA2 allele was 8.0%, 14.8% and 8.7% in the Indian, white and African populations respectively, with the frequency being significantly higher (p < 0.05) in the white than both other groups. The frequency of the PlA2 allele was higher in subjects with (23.0%) than without (10.0%; p < 0.0001) a history of CAD. Aggregation studies showed that platelets carrying the PlA2 allele were hypersensitive to the platelet aggregating agonists ADP and collagen and produced a higher amount of TXA2 when stimulated with low concentrations of both these agonists.

Conclusions

The positive association observed between the platelet GPIIIa PlA1/A2 polymorphism and platelet function suggests that the GPIIIa PlA2 allele may be a genetic factor that contributes to the risk of sudden death from myocardial infarction in the absence of known risk factors but it does not explain ethnic differences in the prevalence of CAD.  相似文献   

13.
INTRODUCTION: The purinergic receptor gene P2RX(7) is located in a major linkage hotspot for schizophrenia and bipolar disorders, 12q21-33. It has previously been associated with bipolar disorder but has never been analysed in relation to schizophrenia, although it is involved in several neuronal processes associated with schizophrenia. METHODS: Nine functionally characterised variants in P2RX(7) were genotyped in 389 patients diagnosed with schizophrenia, each matched on sex, birth-year and month with two healthy controls. RESULTS: We did not find association between P2RX(7) and schizophrenia and stratification on gender did not change this result. The high ethnic and diagnostic homogeneity of the sample adds credibility to this finding. CONCLUSION: P2XR(7) was not associated with schizophrenia in this study.  相似文献   

14.
Modification of spinal serotonergic receptors caudal to spinal injury occurs in rats that received spinal cord transections as neonates. Evaluation of the serotonin syndrome, a group of motor stereotypies elicited by serotonergic (5-HT) agents in 5-HT-depleted animals, and open field locomotor behavior were used to assess behavioral consequences of injury and treatment. We extend these findings to show that a partial 5-HT(1A) agonist activity is revealed by the 5-HT(2C) receptor antagonist (SB 206,553) in this animal model, as measured by evaluation of serotonin syndrome behavior. Treadmill stimulation enhances this motor response, caudal to the injury, in the hindlimbs and tail. These results imply a broader modification of serotonergic receptors than previously thought and suggest a potential strategy by which serotonergic agents may enhance functional recovery following neonatal injury.  相似文献   

15.
Previously we reported that 1-methyl-4-phenylpyridinium ion (MPP(+)), a dopaminergic neurotoxin, induced apoptosis of GH3 cells established from rat anterior pituitary. In the present study, the role of MPP(+) along with that of other apoptotic factors such as Ca(2+) and H(2)O(2) in cell death was examined. Ionomycin induced DNA fragmentation and lactate dehydrogenase (LDH) leakage in GH3 cells. H(2)O(2) also induced LDH leakage. Co-addition of MPP(+), in conditions where MPP(+) had no effect by itself, enhanced ionomycin- and H(2)O(2)-induced cell death. Because the stimulation of phospholipase A(2) (PLA(2)) causing arachidonic acid (AA) release has been proposed to be involved in neuronal cell death, the effect of MPP(+) on AA release in GH3 cells was investigated. MPP(+) treatment for 8 h enhanced ionomycin- and H(2)O(2)-stimulated AA release mediated by activation of cytosolic PLA(2) in a concentration-dependent manner, although MPP(+) by itself had no effect on AA release. An inhibitor of cytosolic PLA(2) inhibited MPP(+)-induced cell death. These findings suggest a synergistic effect of MPP(+) on Ca(2+)- and H(2)O(2)-induced cell death, and the involvement of cytosolic PLA(2) activation in MPP(+)-induced cell death in GH3 cells. Pretreatment with a caspase inhibitor or EGF did not modify the ionomycin- or H(2)O(2)-induced AA release, or enhancement by MPP(+), but the pretreatment inhibited the cell death in the presence and absence of MPP(+). The involvement of caspase(s) on activation of PLA(2) by MPP(+) was excluded, and EGF inhibited MPP(+)-induced cell death downstream of the AA release.  相似文献   

16.
Polymorphisms (rs 4753426 and rs 794837) and expression of the melatonin MT2 receptor gene were evaluated in 181 patients with recurrent depressive disorder (rDD) and 149 healthy subjects of Polish origin. We found an increased risk for rDD in patients with the C allele and a decreased risk in patients with the T allele (rs4753426). Patients with the AT heterozygote (rs794837) had an increased mRNA level. The significance of the MT2 receptor gene and the risk of rDD are suggested.  相似文献   

17.
18.
A serotonin (5-hydroxytryptamine, 5-HT)-releasing drug, p-chloroamphetamine elicited decreases in 5-HT levels in the mouse frontal cortex. 5-HT reduction elicited by p-chloroamphetamine was inhibited by the 5-HT(2A/2B/2C) receptor antagonist, LY 53857 and the 5-HT(2A) receptor antagonist, ketanserin. However, the 5-HT(2B/2C) receptor antagonist, SB 206553, enhanced it. LY 53857 and ketanserin can inhibit hyperthermia elicited by p-chloroamphetamine, although SB 206553 enhances it. The effects of the 5-HT(2) receptor antagonists on neurotoxicity are very similar to those on hyperthermia. Since hyperthermia facilitates neurotoxicity induced by amphetamine analogue, these 5-HT(2) receptor antagonists may modify 5-HT depletion induced by p-chloroamphetamine through responses to body temperature.  相似文献   

19.
In our study, we demonstrated that DV-7028:(3-[2-[4-(4-fluorobenzoyl)piperidin-1-yl]ethyl]-6,7,8,9-tetrahydro-2H-pyrido [1,2,-a]-1,3,5-triazine-2,4(3H)-dione maleate)—a selective 5-HT2A receptor antagonist, inhibited thrombus formation in the arterial thrombosis model and was completely ineffective in the prevention of venous thrombosis in the rat. In washed platelets prelabelled with 3H-serotonin, DV-7028 inhibited, in a dose-dependent manner, the collagen-induced secretion of serotonin. However, the uptake of serotonin into platelets was not affected by this substance. Administration of DV-7028 also inhibited platelet aggregation in the whole blood and platelet-rich plasma (PRP) induced by collagen, and diminished serotonin-induced aggregation of rat platelets in the presence of a sensitizing but nonaggregating amount of ADP, whereas it did not modify aggregation in PRP when induced by ADP. DV-7028 caused a concentration-dependent, almost parallel shift to the right of the concentration-response to serotonin for its pressor effect in the rat perfused tail artery. The present data demonstrate that DV-7028 exhibits 5-HT2A receptor antagonistic properties in the rat cardiovascular system, exhibits anthithrombotic effect in the model of arterial but not venous thrombosis in rats. These results constitute further evidence of the possible importance of serotonin as a mediator of platelet thrombosis in arteries. Moreover, they can provide a useful tool for the prevention of various thrombotic diseases.  相似文献   

20.
Harvey BH  Naciti C  Brand L  Stein DJ 《Brain research》2003,983(1-2):97-107
Post traumatic stress disorder (PTSD) is characterised by hyperarousal, anxiety and amnesic symptoms. Deficits in explicit memory recall have been causally related to volume reductions of the hippocampus and prefrontal cortex. While stress-related glucocorticoid secretion appears involved in this apparent atrophy, there is also evidence for low plasma cortisol in PTSD. Prior exposure to trauma is an important risk factor for PTSD, suggesting a role for sensitisation. Using Sprague-Dawley rats, we studied the effects of a time-dependent sensitisation (TDS) model of stress on spatial memory deficits, 1 week post-stress, using the Morris water maze. Basal and 7-day post-stress plasma corticosterone levels were also determined. Due to the putative role of serotonin in anxiety and stress, and in the treatment of PTSD, hippocampal 5HT(1A) and prefrontal cortex 5HT(2A) radioligand binding studies were performed. TDS stress evoked a marked deficit in spatial memory on day 7 post TDS stress, coupled with significantly depressed plasma corticosterone levels. Cognitive and endocrine changes at day 7 post stress were associated with a significant increase in receptor density (B(max)) and a significant decrease in receptor affinity (K(d)) for hippocampal 5HT(1A) receptors. The B(max) of prefrontal cortex 5HT(2A) receptors were unaffected, but K(d) was significantly increased. We conclude that TDS stress evokes cognitive and endocrine changes characteristic of PTSD. Moreover, TDS stress induces diverse adaptive 5HT receptor changes in critical brain areas involved in emotion and memory that may underlie the effect of stress on cognitive function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号