首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the effects of benzodiazepine receptor inverse agonists on the locomotor and exploratory behaviour of mice when tested in a familiar environment. The weak partial inverse agonist Ro 15-3505 (0.3, 1, 3 mg/kg i.p.) significantly increased locomotion and hole-dipping in habituated mice. However, the more efficacious partial inverse agonists Ro 15-4513 (0.3, 1, 3 mg/kg i.p.) and Ro 19-4603 (0.03, 0.1, 0.3 mg/kg i.p.) had no effect on these parameters. The benzodiazepine receptor antagonist flumazenil (3, 10, 20 mg/kg i.p.) also increased locomotion and hole-dipping in habituated mice, although like Ro 15-3505, these effects were of short duration occurring largely in the first 15 min following injection. Opposite effects were obtained with the partial benzodiazepine agonist Ro 17-1812 (1, 3, 10 mg/kg i.p.) which produced a longer-lasting significant decrease in hole-dipping behaviour in habituated mice without altering locomotion. Finally, in contrast to its effects in habituated animals, Ro 15-3505 (0.3, 1, 3 mg/kg i.p.) did not modify either locomotion or exploration in mice which were tested in a novel environment, showing that the effects of the inverse agonist were state-dependent. This demonstration that, under certain conditions, the weak benzodiazepine receptor inverse agonist Ro 15-3505 and the antagonist flumazenil, produce behavioural activation is in accordance with the work of others suggesting that these classes of compound may increase arousal and may therefore be of some value in treatment of memory disorders.  相似文献   

2.
Effects of the novel NMDA/glycine receptor antagonist, L-701,324, on morphine- and cocaine-induced conditioned place preference (CPP) were examined in male Wistar rats. After determination of initial preference, animals were conditioned with morphine (5 mg/kg, i.p.) or cocaine (5 mg/kg, i.p.) for 3 conditioning trials, alone or in combination of these drugs with L-701,324 (2.5 mg/kg and 5 mg/kg, p.o.). L-701,324 prevented acquisition of the place preference produced by morphine and cocaine. Administration of L-701,324 on the test day attenuated the expression of morphine-induced CPP, whereas it had no effect on cocaine CPP. When L-701,324 was given alone it did not affect dependent variables (i.e. time spent in non-preferred compartment) suggesting that L-701,324 did not display any reinforcing properties by itself. Our current data suggest that glycine site on the NMDA receptor complex may be involved in the mediation of the rewarding effects of drugs of abuse.  相似文献   

3.
The effects of acute and chronic treatment with the 1,5-benzodiazepine, clobazam, were studied on fully kindled amygdaloid seizures in rats. After acute dosing, clobazam significantly reduced all parameters of kindled seizures (seizures severity, seizure duration, duration of amygdalar afterdischarges) at doses of 7.5 or 10 mg/kg i.p. ‘Active’ plasma concentrations of clobazam ranged between 300–800 ng/ml. The elimination half-life of clobazam in plasma was about 1 h. Only very low (10–75 ng/ml) levels of the major metabolite, N-desmethylclobazam, were detected in rats. Administration of N-desmethylclobazam indicated that plasma concentrations of at least 300 ng/ml were necessary for anticonvulsant effects. During chronic administration of clobazam, 10 mg/kg 3 times daily, marked tolerance developed to the anticonvulsant and adverse (ataxiogenic and sedative) effects of the benzodiazepine. The experiment was repeated using a different protocol with minimized environmental stimuli and no amygdala stimulation during chronic clobazam administration. The loss of effects on seizure severity and motor function was similar to the first chronic experiment, whereas the loss of effects on seizure and afterdischarge duration was less marked. This indicates that conditioning of ‘learned tolerance’ is partly involved in clobazam tolerance in kindled rats. Intermittent injection of the benzodiazepine receptor antagonist, flumazenil, 5 mg/kg i.p. every third day, did not alter the loss of pharmacodynamic effects during chronic treatment with clobazam, but seemed to prevent hyperexcitation and other abstinence symptoms in the withdrawal period. The data indicate that periodic injection of a benzodiazepine receptor antagonist does not represent a possible therapeutic approach for preventing the development of tolerance during long-term benzodiazepine exposure.  相似文献   

4.
We previously reported that streptozotocin (STZ)-induced diabetic mice exhibited depressive-like behavior in the tail suspension test. In this study, we examined the involvement of benzodiazepine receptor functions in this diabetes-induced depressive-like behavior in mice. STZ-induced diabetes significantly increased the duration of immobility without affecting spontaneous locomotor activity. This increase was dose-dependently and significantly suppressed by a benzodiazepine receptor antagonist, flumazenil (0.1-1 mg/kg, i.v.). However, flumazenil (0.1-1 mg/kg, i.v.) did not affect the duration of immobility in non-diabetic mice. Furthermore, flumazenil (1 mg/kg, i.v.) had no significant effect on spontaneous locomotor activity in either non-diabetic or diabetic mice. The benzodiazepine receptor inverse agonist methyl beta-carboline-3-carboxylate (beta-CCM; 0.03-0.3 mg/kg, i.v.) dose-dependently and significantly increased the duration of immobility in non-diabetic mice, but not in diabetic mice. beta-CCM (0.3 mg/kg, i.v.) significantly suppressed spontaneous locomotor activity in non-diabetic mice, but not in diabetic mice. These results indicate that diabetic mice may have enhanced negative allosteric modulation by benzodiazepine receptor ligands, such as diazepam binding inhibitors, under stressful conditions, but not free-moving conditions, and this abnormal function of benzodiazepine receptors may cause, at least in part, the expression of depressive-like behavior in diabetic mice.  相似文献   

5.
Rationale We previously reported that the head-twitch responses induced by the 5-HT2 receptor agonist (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) (DOI-HTRs) were decreased in streptozotocin-induced diabetic mice.Objectives We examined the involvement of γ-aminobutyric acid (GABA)/benzodiazepine system on the suppression of DOI-HTRs in diabetic mice.Results The benzodiazepine receptor antagonist flumazenil (0.1–1 mg/kg, i.v.) dose-dependently and significantly increased DOI-HTRs in diabetic mice to the same levels as in nondiabetic mice. However, flumazenil (0.1–1 mg/kg, i.v.) did not affect DOI-HTRs in nondiabetic mice. The benzodiazepine receptor agonist diazepam (0.1–1 mg/kg, i.p.) had no effect on DOI-HTRs in either nondiabetic or diabetic mice. The GABAA receptor antagonist bicuculline (0.1–1 mg/kg, i.p.) and the benzodiazepine receptor partial inverse agonist Ro 15-4513 (0.1–1 mg/kg, i.v.) dose-dependently and significantly suppressed DOI-HTRs in nondiabetic mice to the same levels as in diabetic mice. Ro 15-4513-induced reduction of DOI-HTRs in nondiabetic mice was completely antagonized by flumazenil (1 mg/kg, i.v.), but not diazepam (0.3 mg/kg, i.p.).Conclusions We suggest that the abnormal diazepam-insensitive benzodiazepine receptor function partly underlies the suppression of DOI-HTRs in diabetic mice.  相似文献   

6.
The involvement of adenosine receptor agonists in benzodiazepine withdrawal signs was evaluated as the seizure susceptibility of mice. The concomitant administration of subthreshold dose of pentetrazole (55.0 or 60.0 mg/kg, s.c.) with flumazenil (10.0 mg/kg, i.p.) in mice chronically treated with temazepam or diazepam induced the appearance of withdrawal signs: clonic seizures, tonic convulsions and death episodes. The administration of the selective A1 (CPA-N6-cyclopentyladenosine), A2A (CGS 21680-2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride) and the non-selective A1/A2A (NECA-5'-N-ethylcarboxamidoadenosine) adenosine receptor agonists (i.p.) evoked the significant attenuation of benzodiazepine withdrawal signs, and these effects were more expressed in temazepam- than in diazepam-dependent mice. CPA has shown the most apparent and dose-dependent attenuating effect. The results confirm that adenosine A1 and A2A receptors are involved in benzodiazepine withdrawal signs, and adenosine A1 receptor plays a predominant role in this phenomenon.  相似文献   

7.
Ru 34000 [5-ethyl-7-methoxy-imidazo (1,2-a) pyrimidin-2-yl cyclopropyl methanone] is a novel imidazopyrimidine benzodiazepine inverse agonist that exhibits low affinity for central benzodiazepine receptors (Ki≈0.98 μM). The present study examined the in vivo actions of Ru 34000 (0.5–5 mg/kg) following intraperitoneal (i.p.), subcutaneous (s.c), oral (p.o.), and intraventral tegmental administration in alcohol-preferring (P) rats trained under a concurrent operant schedule (FR4–FR4) for ethanol (10% v/v) and a palatable saccharin (0.025% or 0.75% w/v) reinforcer. Ru 34000 (i.p., s.c., p.o.) markedly reduced ethanol responding by 28–96% of control levels without affecting saccharin responding, except for the highest dose level. Clear dose-dependent suppressant effects were observed with all routes of administration on ethanol responding. Flumazenil [ethyl-8-fluro-5, 6-dihydro-5-methyl-6-4H-imidazo [1,5-a]-[1,4]-benzodiazepine-3-carboxylate] (6 mg/kg; i.p.), a benzodiazepine receptor antagonist reversed the Ru 34000-reduction of ethanol responding, suggesting that the effects were mediated at the benzodiazepine receptor. Bilateral microinjections of Ru 34000 (50, 100, 200 ng) into the ventral tegmental area dose-dependently reduced ethanol responding by as much as 97% of control levels. The results suggest that the in vivo actions of Ru 34000 are determined not only by its binding affinity, but also by its bioavailability at active benzodiazepine sites and route of drug administration. Low affinity imidazopyrimidines may be useful pharmacological probes to further understand the role of the GABAA-benzodiazepine receptor complex in ethanol motivated behaviors.  相似文献   

8.
Summary Effects of caerulein, a cholecystokinin octapeptide (CCK-8) receptor agonist, on exploratory activity of mice were investigated. Exploratory and locomotor activity of animals were measured using elevated plus-maze and open field tests. The systemic administration of caerulein at nonsedative doses (100 ng/kg-1 µkg i. p.) resulted in a significant decrease in the exploratory activity of mice. This effect was completely blocked by proglumide, a CCK-8 antagonist (15 mg/kg i. p.), indicating the participation of CCK-8 receptors. Acute treatment with low doses (0.1–0.75 mg/kg i. p.) of diazepam did not attenuate the anxiogenic-like effect of caerulein, but at more high doses of diazepam the coadministration depressed locomotor activity in mice. After subchronic diazepam treatment (2.5 mg/kg once a day, 10 days, i.p.) tolerance was developed toward the sedative effect of diazepam, and 72 h after withdrawal of the drug the animals showed increased anxiety in the plus-maze test. 30 min after the last injection procedure the anxiogenic-like effect of caerulein (500 ng/kg i. p.) on exploration was absent in both diazepam or vehicle groups. However, 72 h after the last pretreatment injection caerulein (500 ng/kg i. p.) reduced significantly the exploratory activity in control group, whereas it was inactive after diazepam withdrawal. The results obtained in this study support the hypothesis that endogenous CCK-8 an CCK-8 receptors are involved in the neurochemistry of anxiety and the anxiolytic action of benzodiazepine tranquillizers. Send offprint requests to: J. Harro at the above address  相似文献   

9.
Animals or human subjects receiving brain stimulation in the dorsal periaqueductal gray matter (dPAG) show sudden fear-suggestive behavioral reactions and physical signs of autonomic activation which are reminiscent of the symptom profile characterizing a panic attack. An experimental situation in rats measuring dPAG stimulation self-interruption thresholds has been validated as realistically simulating several aspects of panic anxiety with objective signs of symptomatic and predictive validity using established antipanic and panicogenic agents; it was utilized here to evaluate the effects of various cholecystokinin B receptor ligands. A dose-dependent increase in self-interruption thresholds (antipanic-like effect) was recorded following injection of L-365,260 (3.2, 10 and 32 mg/kg i.p.), a CCKB receptor antagonist with good brain penetration, whereas no significant changes in thresholds were recorded following CI-988 (3.2, 10 and 32 mg/kg i.p.), a dipeptoid CCKB receptor antagonist with poor brain penetration. Latencies for self-interruption were not modified, suggesting that motor functions remained intact. No significant changes in self-interruption thresholds were recorded following peripheral administration of the CCKB receptor agonists CCK4 (0.03 to 0.32 mg/kg i.v.; 0.01 to 3.2 mg/kg i.p.) or the metabolically stabilized analog Boc-CCK4 (0.1 to 10 mg/kg i.p.). Systemic administration of the panicogenic compounds caffeine and yohimbine enhance acute anxiety in this model. These data indicate that, in the dPAG simulation of panic anxiety, central CCKB receptor blockade by L-365,260 induces antiaversive effects analogous to those observed following benzodiazepine receptor activation by clonazepam or alprazolam. Potency and efficacy of L-365,260 were lower than those of clonazepam or alprazolam, suggesting modest, but nonetheless authentic, antiaversive properties for this CCKB receptor antagonist. Lack of effects observed following peripheral administration of the agonists CCK4 and Boc-CCK4 or of the dipeptoid antagonist CI-988 is likely to reflect restricted brain penetration of those compounds in rats; it furthermore excludes a contribution of peripheral gastrin and CCKA receptors to the antipanic-like properties of selective CCKB receptor antagonists such as L-365,260.  相似文献   

10.
We investigated the mechanism underlying the anxiolytic actions of the neuropeptide nociceptin/orphanin FQ (N/OFQ) with an elevated plus-maze test. In mice, intracerebroventricular (i.c.v.) infusions of N/OFQ (0.1 and 0.32 nmol) led to an increase in time spent in the open arms (anxiolytic-like effects). A non-peptidyl N/OFQ receptor (NOP) antagonist, J-113397(1-{(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl}-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one), (1.0 and 3.2 mg/kg, s.c.) blocked the increase induced by N/OFQ. On the other hand, a benzodiazepine receptor antagonist, flumazenil, (10 mg/kg, i.p.) and a GABAA receptor antagonist, (+)-bicuculline, (5.6 mg/kg, i.p.) also inhibited the increase induced by N/OFQ. In rats, microinfusions of N/OFQ (10 and 32 pmol) into the amygdala led to an increase in time spent in the open arms. However, intracranial infusions of N/OFQ (10-100 pmol) into the dorsal hippocampus did not affect the time spent in the open arms. These findings suggest that the anxiolytic-like effects of N/OFQ may be related to the GABA/benzodiazepine system in the amygdala.  相似文献   

11.
Groups of male CF-1 mice received 3 and 10 µmol/kg diazepam, lorazepam, and oxazepam intravenously. Between 1 min and 24 h after injection, benzodiazepine concentrations were determined by gas chromatography (GLC) in plasma and in one brain hemisphere; in the other hemisphere, ex vivo benzodiazepine receptor occupancy was measured using3H-flunitrazepam displacement. Based on GLC data, diazepam entered brain rapidly, and was also cleared rapidly, yielding desmethyldiazepam and oxazepam as metabolites in plasma and brain. However, lorazepam and oxazepam entered brain slowly, with brain:plasma equilibrium achieved at 30–60 min; thereafter, the drugs were eliminated from plasma and brain in parallel. The time course and extent of ex vivo occupancy were highly consistent with GLC data (for diazepam, GLC levels were expressed as the sum of diazepam, desmethyldiazepam, and oxazepam, with metabolite concentrations, normalized for molecular weight and for in vitro benzodiazepine receptor affinity.) Between-method correlations were 0.95 or higher. Thus benzodiazepine receptor occupancy is highly dependent on benzodiazepine concentrations in brain. Differences in the time-course of onset and duration of pharmacologic activity between the highly lipophilic benzodiazepine diazepam and the less lipophilic hydroxylated derivatives lorazepam and oxazepam are largely explained by differences in systemic kinetics and in the rate of uptake into brain.Supported in part by grants MH-34223, DA-05258, and AG-00106 from the United States Public Health Service  相似文献   

12.
The effects of the benzodiazepine receptor ligand 3-(methoxycarbonyl) amino-beta-carboline (beta-CMC) were investigated on food intake in rats that had been fasted for 22 h, and on water intake in rats that had been deprived of water for 16 h. beta-CMC (2-8 mg/kg i.p.) produced a dose-related inhibition of food intake. Significant hyperphagia (p < 0.01) was observed with the 8 mg/kg dose. By contrast, the 8 mg/kg dose did not affect water intake in thirsty rats. The data suggests that beta-CMC has properties on food intake similar to those of a benzodiazepine receptor inverse agonist.  相似文献   

13.
Flupirtine (D-9998, Katadolon, CAS 56995-20-1); CAS 56995-20-1), a novel non-opioid analgesic was investigated for possible benzodiazepine-like activities. In receptor binding studies flupirtine and its metabolite were found to reveal no affinity for specific 3H-flunitrazepam binding up to a concentration of 10 mumol/l. In drug discrimination studies, rats were trained to discriminate the novel analgesic flupirtine (10 mg/kg i.p.) from no drug (NaCl 0.9%) under a two-choice fixed-ratio 5 shock-termination schedule. Flupirtine yielded a dose-response curve with an ED50 of 3.9 mg/kg i.p. In generalization tests with a benzodiazepine-type compound lorazepam (0.3 mg/kg, i.p.) did not generalize to the flupirtine training dose. In physical dependence studies using rats, during and after chronic oral administration of flupirtine (2 x 80 mg/kg p.o.) over 45 days no signs of benzodiazepine- and opiate-like physical dependence were observed in rats after withdrawal of the drug. In contrast diazepam (2 x 5 bzw. 2 x 10 mg/kg p.o.) induced typical symptoms of physical dependence. A significant weight loss of the codeine treated animals (2 x 60 mg/kg p.o.) and other typical side effects were also observed after withdrawal of codeine. These results clearly demonstrate that flupirtine has no affinity for benzodiazepine receptors and is free of benzodiazepine or opiate/opioid-like abuse potential.  相似文献   

14.
The pharmacokinetic and pharmacodynamic (i.e., receptor occupancy) properties of L-655,708, a compound with selectivity for alpha5-over alpha1-, alpha2-, and alpha3-containing GABA(A) receptors, were examined in rats with the aim of developing a formulation that would give sustained (up to 6 h) and selective occupancy of alpha5-containing GABA(A) receptors suitable for behavioral studies. Standard rat pharmacokinetic analyses showed that L-655,708 has a relatively short half-life with kinetics in the brain mirroring those in the plasma. In vivo binding experiments showed that plasma concentrations of around 100 ng/ml gave relatively selective in vivo occupancy of rat brain alpha5-versus alpha1-, alpha2-, and alpha3-containing GABA(A) receptors. Therefore, this plasma concentration was chosen as a target to achieve relatively selective occupancy of alpha5-containing receptors using s.c. implantations of L-655,708 (0.4, 1.5, or 2.0 mg) formulated into tablets of various size (20 or 60 mg) containing different amounts of L-655,708 and combinations of low and high viscosity hydroxypropyl methylcellulose (LV- and HV-HPMC). The optimum formulation, 1.5 mg of L-655,708 compressed into a 60-mg tablet with 100% HV-HPMC, resulted in relatively constant plasma concentrations being maintained for at least 6 h with very little difference between C(max) concentrations (125-150 ng/ml) and plateau concentrations (100-125 ng/ml). In vivo binding experiments confirmed the selective occupancy of rat brain alpha5-over alpha1-, alpha2-, and alpha3-containing GABA(A) receptors.  相似文献   

15.
The anti-emetic profile of the novel brain penetrant tachykinin NK1 receptor antagonist MK-0869 (L-754,030) 2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenylethoxy)-3-(S)-(4-fluor o)phenyl-4-(3-oxo-1,2,4-triazol-5-yl)methylmorpholine and its water soluble prodrug, L-758,298, has been examined against emesis induced by cisplatin in ferrets. In a 4 h observation period, MK-0869 and L-758,298 (3 mg/kg i.v. or p.o.) inhibited the emetic response to cisplatin (10 mg/kg i.v.). The anti-emetic protection afforded by MK-0869 (0.1 mg/kg i.v.) was enhanced by combined treatment with either dexamethasone (20 mg/kg i.v.) or the 5-HT3 receptor antagonist ondansetron (0.1 mg/kg i.v.). In a model of acute and delayed emesis, ferrets were dosed with cisplatin (5 mg/kg i.p.) and the retching and vomiting response recorded for 72 h. Pretreatment with MK-0869 (4-16 mg/kg p.o.) dose-dependently inhibited the emetic response to cisplatin. Once daily treatment with MK-0869 (2 and 4 mg/kg p.o.) completely prevented retching and vomiting in all ferrets tested. Further when daily dosing began at 24 h after cisplatin injection, when the acute phase of emesis had already become established, MK-0869 (4 mg/kg p.o. at 24 and 48 h after cisplatin) prevented retching and vomiting in three out of four ferrets. These data show that MK-0869 and its prodrug, L-758,298, have good activity against cisplatin-induced emesis in ferrets and provided a basis for the clinical testing of these agents for the treatment of emesis associated with cancer chemotherapy.  相似文献   

16.
In vivo treatment of mice with peripheral benzodiazepine receptor ligands exerts an inhibitory effect on the inflammatory response in two models of acute inflammation. In the first model, pretreatment of the animals (24 h) with 1-(2-chlorophenyl)-N-methyl-N(1-methylpropyl)-3-isoquinoline carboxamide (PK11195) and 7-chloro-5-(4-Chlorophenyl)-1, 3-dihydro-1-methyl-2-H-1,4-benzodiazepin-2 (Ro5-4864), at different doses (0.00001-10 mg/kg, i.p.) dose dependently inhibited the formation of mouse paw oedema induced by carrageenan with mean ID(50s) of 0.009 (95% confidence limits=0.0076-0.013) and 0.04 (95% confidence limits=0.025-0.0086) mg/kg, respectively. Both ligands (0. 1 mg/kg, i.p.) inhibited in the same way the mouse paw oedema induced by carrageenan in animals with and without adrenal glands. PK11195 and Ro5-4864 (0.1 mg/kg, i.p.) inhibited the mouse paw oedema induced by several inflammatory mediators. In the second model, the pretreatment (24 h) with peripheral benzodiazepine receptor ligands (0.1 mg/kg, i.p.) exerted an inhibitory effect on neutrophil influx and produce a marked inhibition of carrageenan-produced interleukin-13 and interleukin-6 in pleural exudation. Our results extend previous findings that peripheral benzodiazepine receptor is involved in the inflammatory response, and suggest that this action may be linked to the action of different inflammatory mediators, probably mainly by the inhibition of the release of pro-inflammatory cytokines.  相似文献   

17.
The effect of the benzodiazepine receptor antagonist flumazenil was examined on an antiaggressive effect of (S)-5-[3-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3- benzodioxole HCl (MKC-242), a 5-HT(1A) receptor agonist. MKC-242 (0.1-1.0 mg/kg, p.o.) selectively reduced isolation-induced aggressive behavior in a dose-dependent manner. Flumazenil (10 mg/kg, i.p.) antagonized the antiaggressive effects of MKC-242 and diazepam, although it alone did not affect the behaviors of isolated mice. These findings suggest that a gamma-aminobutyric acid(A) (GABA(A)) receptor system is involved in the antiaggressive effect by 5-HT(1A) receptor activation.  相似文献   

18.
Objectives To clarify whether alterations in midazolam pharmacokinetics resulting from changes in cytochrome P450 3A (CYP3A) activity lead to changes in its pharmacodynamic effects, benzodiazepine receptor occupancy was measured in the brain of rats after oral administration of midazolam. Methods Receptor occupancy was measured by radioligand binding assay in rats pretreated with ursodeoxycholic acid (UDCA), ketoconazole and dexamethasone, and the plasma concentration of midazolam was simultaneously determined. Key findings There was a significant increase in the apparent dissociation constant and decrease in the maximum number of binding sites for specific [3H]flunitrazepam binding after oral administration of midazolam at pharmacologically relevant doses, suggesting that midazolam binds significantly to brain benzodiazepine receptors. Pretreatment with UDCA significantly enhanced the binding. This correlated well with significant enhancement by UDCA of the plasma midazolam concentration. The brain benzodiazepine receptor binding of oral midazolam was significantly enhanced by pretreatment with ketoconazole, a potent inhibitor of CYP3A, whereas it was significantly reduced by treatment with dexamethasone, an inducer of this enzyme. These effects paralleled changes in the plasma concentration of midazolam. Conclusions The results indicate that pharmacokinetic changes such as altered CYP3A activity significantly influence the pharmacodynamic effect of midazolam by affecting occupancy of benzodiazepine receptors in the brain. They also suggest in‐vivo or ex‐vivo time‐dependent measurements of receptor occupancy by radioligand binding assay to be a tool for elucidating the pharmacokinetic interaction of benzodiazepines with other agents in pre‐clinical and clinical evaluations.  相似文献   

19.
A previous receptor binding assay indicated that baicalein, one of the active principles of the Chinese herbal drug, Huangqin (Scutellariae Radix), interacts with the benzodiazepine binding site of GABA(A) receptors in mouse cortex membrane preparations with a K(i) value of 13.1 microM. Therefore, the present study examined whether baicalein and its 7-glucuronide, baicalin, have anxiolytic-like effects in a Vogel conflict test adapted for ICR mice. The results showed that both baicalein (10 mg/kg, i.p.) and baicalin (20 mg/kg, i.p.) significantly increased the number of shocks accepted in the Vogel lick-shock conflict paradigm over 9 min, as did a benzodiazepine receptor agonist, chlordiazepoxide (5.0 mg/kg, i.p.) and a 5-HT(1A) receptor agonist, 8-hydroxy-2(di-n-propylamino)tetralin (0.5 mg/kg, i.p.). Since the total volume of water intake and the shock sensitivity of mice were not significantly changed after drug treatment, the effect of baicalein or baicalin was not due to an enhancement of thirst or shock tolerance. Furthermore, this anxiolytic-like effect of baicalein or baicalin was antagonized by co-administration with a benzodiazepine receptor antagonist, flumazenil (2 mg/kg, i.p.), but not with a 5-HT(1A) receptor antagonist, pindolol (10 mg/kg, i.p.). It is concluded that the anxiolytic-like effect of baicalein or baicalin may be mediated through activation of the benzodiazepine binding site of GABA(A) receptors.  相似文献   

20.
The effects of a selective 5-HT(6) receptor antagonist, SB-399885 (N-[3,5-dichloro-2-(methoxy)phenyl]-4-(methoxy)-3-(1-piperazinyl)benzenesulfonamide), were evaluated in behavioural tests sensitive to clinically effective anxiolytic- and antidepressant-compounds using diazepam and imipramine as reference drugs. In the Vogel conflict drinking test in rats, SB-399885 (1-3mg/kg i.p.) caused an anxiolytic-like activity comparable to that of diazepam (2.5-5mg/kg i.p.). An anxiolytic-like effect was also seen in the elevated plus-maze test in rats, where SB-399885 (0.3-3mg/kg i.p.) was slightly weaker than diazepam (2.5-5mg/kg i.p.). In the four-plate test in mice, SB-399885 (3-20mg/kg i.p.) showed an anxiolytic-like effect which was weaker than that produced by diazepam (2.5-5mg/kg i.p.). In the forced swim test in rats, SB-399885 (10mg/kg i.p.) significantly shortened the immobility time and the effect was stronger than that of imipramine (30mg/kg i.p.). In the forced swim test in mice, SB-399885 (20-30mg/kg i.p.) had an anti-immobility action, comparable to imipramine (30mg/kg i.p.) and also in the tail suspension test in mice, SB-399885 (10-30mg/kg i.p.) had an antidepressant-like effect, though was weaker than imipramine (10-20mg/kg i.p.). The tested 5-HT(6) antagonist (3-20mg/kg i.p.) shortened the walking time of rats in the open field test and, at a dose of 30mg/kg i.p. reduced the locomotor activity of mice. SB-399885 (in doses up to 30mg/kg i.p.) did not affect motor coordination in mice and rats tested in the rota-rod test. Such data indicate that the selective 5-HT(6) receptor antagonist SB-399885had specific effects, indicative of this compound's anxiolytic and antidepressant potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号