首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparing the FAISE method with conventional dual-echo sequences.   总被引:1,自引:0,他引:1  
The FAISE (fast-acquisition interleaved spin-echo) technique consists of a hybrid rapid-acquisition relaxation-enhanced (RARE) sequence combined with a specific phase-encode reordering method. Implemented on a 1.5-T unit, this multisection, high-resolution technique permits convenient contrast manipulation similar to that of spin-echo imaging, with selection of a pseudo-echo-time parameter and a TR interval. With a TR of 2 seconds, eight 256 x 256 images are obtained in 34 seconds with either T2 or proton-density weighting. A direct comparison between FAISE and spin echo for obtaining T2-weighted head images in healthy subjects indicates that FAISE and spin-echo images are qualitatively and quantitatively similar. Image artifacts are more pronounced on "proton-density" FAISE images than on the T2-weighted FAISE images. T1 contrast can be obtained with inversion recovery and short TR FAISE images. Preliminary temperature measurements in saline phantoms do not indicate excessive temperature increases with extended FAISE acquisitions. However, extensive studies of radio-frequency power deposition effects should be performed if the FAISE technique is to be fully exploited.  相似文献   

2.
The fast acquisition interleaved spin-echo (FAISE) sequence and its dual-echo version (DEFAISE) are partial RF echo-planar methods which utilize a specific phase-encode reordering algorithm to manipulate T2 contrast via an operator-controlled pseudo-echo time, pTE. The repetition time, TR, between successive applications of the Carr-Purcell-Meiboom-Gill (CPMG) echo trains used in FAISE may be reduced to introduce T1 weighting. To quantitatively determine the extent to which FAISE T1 and T2 contrast characteristics agree with spin-echo methods, signal intensities from FAISE acquisitions were compared with signal intensities from equivalent CPMG acquisitions. In phantoms and in human heads, the contrast characteristics of FAISE are found to be highly correlated with that obtained with equivalent CPMG sequences. However, conventional SE sequences generally utilize longer echo spacings than employed with FAISE/CPMG. Thus, echo spacing-dependent mechanisms such as spin-spin coupling and magnetic susceptibility lead to some differences in contrast between conventional SE and FAISE. Finally, FAISE appears to be more sensitive to magnetization transfer effects than conventional SE sequences since more off-resonance irradiation is applied to individual slices during multislice acquisitions.  相似文献   

3.
GRASE (Gradient- and spin-echo) imaging: a novel fast MRI technique.   总被引:1,自引:0,他引:1  
A fast multi-section MR imaging technique is described. Gradient- and spin-echo (GRASE) imaging utilizes the speed advantages of gradient refocusing while overcoming the image artifacts arising from static field inhomogeneity and chemical shift. Image contrast is determined by the T2 contrast in the Hahn spin echoes. A novel k-space trajectory temporally modulates signals and demodulates artifacts.  相似文献   

4.
PURPOSETo determine the value of the gradient- and spin-echo (GRASE) technique as compared with the fast spin-echo and conventional spin-echo techniques in MR imaging of the brain.METHODSSixty-six patients with ischemic and neoplastic brain lesions were examined with T2-weighted spin-echo, fast spin-echo, and GRASE sequences. Three independent observers evaluated the contrast characteristics of anatomic and pathologic structures and of artifacts. Quantitative image analysis included region-of-interest measurements of anatomic structures and lesions.RESULTSThe contrast of anatomic structures was superior in images obtained with conventional and fast spin-echo techniques as compared with those obtained with the GRASE technique. Extended lesions, such as tumors and territorial infarcts, were identified equally with all techniques. For delineation of small ischemic lesions, GRASE was slightly inferior to fast and conventional spin-echo sequences. Flow artifacts were considerably reduced with fast spin-echo and GRASE sequences. Chemical-shift artifacts were significantly reduced, but ringing artifacts were more pronounced with GRASE.CONCLUSIONFast spin-echo remains the standard technique in MR imaging of the brain. However, GRASE might be useful in special cases, such as with uncooperative patients whose conventional or fast spin-echo images show severe motion artifacts.  相似文献   

5.
Radially acquired fast spin-echo data can be processed to obtain T2-weighted images and a T2 map from a single k-space data set. The general approach is to use data at a specific TE (or narrow TE range) in the center of k-space and data at other TE values in the outer part of k-space. With this method high-resolution T2-weighted images and T2 maps are obtained in a time efficient manner. The mixing of TE data, however, introduces errors in the T2-weighted images and T2 maps that affect the accuracy of the T2 estimates. In this work, various k-space data processing methods for reconstructing T2-weighted images and T2 maps from a single radial fast spin-echo k-space data set are analyzed in terms of the accuracy of T2 estimates. The analysis is focused on the effect of image artifacts, object dependency, and noise on the T2 estimates. Results are presented in computer-generated phantoms and in vivo.  相似文献   

6.
RATIONALE AND OBJECTIVES: We compared contrast-enhanced T1-weighted magnetic resonance (MR) imaging of the brain using different types of data acquisition techniques: periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER, BLADE) imaging versus standard k-space sampling (conventional spin-echo pulse sequence) in the unsedated pediatric patient with focus on artifact reduction, overall image quality, and lesion detectability. MATERIALS AND METHODS: Forty-eight pediatric patients (aged 3 months to 18 years) were scanned with a clinical 1.5-T whole body MR scanner. Cross-sectional contrast-enhanced T1-weighted spin-echo sequence was compared to a T1-weighted dark-fluid fluid-attenuated inversion-recovery (FLAIR) BLADE sequence for qualitative and quantitative criteria (image artifacts, image quality, lesion detectability) by two experienced radiologists. Imaging protocols were matched for imaging parameters. Reader agreement was assessed using the exact Bowker test. RESULTS: BLADE images showed significantly less pulsation and motion artifacts than the standard T1-weighted spin-echo sequence scan. BLADE images showed statistically significant lower signal-to-noise ratio but higher contrast-to-noise ratios with superior gray-white matter contrast. All lesions were demonstrated on FLAIR BLADE imaging, and one false-positive lesion was visible in spin-echo sequence images. CONCLUSION: BLADE MR imaging at 1.5 T is applicable for central nervous system imaging of the unsedated pediatric patient, reduces motion and pulsation artifacts, and minimizes the need for sedation or general anesthesia without loss of relevant diagnostic information.  相似文献   

7.
k-space undersampling in PROPELLER imaging.   总被引:2,自引:0,他引:2  
PROPELLER MRI (periodically rotated overlapping parallel lines with enhanced reconstruction) provides images with significantly fewer B(0)-related artifacts than echo-planar imaging (EPI), as well as reduced sensitivity to motion compared to conventional multiple-shot fast spin-echo (FSE). However, the minimum imaging time in PROPELLER is markedly longer than in EPI and 50% longer than in conventional multiple-shot FSE. Often in MRI, imaging time is reduced by undersampling k-space. In the present study, the effects of undersampling on PROPELLER images were evaluated using simulated and in vivo data sets. Undersampling using PROPELLER patterns with reduced number of samples per line, number of lines per blade, or number of blades per acquisition, while maintaining the same k-space field of view (FOV(k)) and uniform sampling at the edges of FOV(k), reduced imaging time but led to severe image artifacts. In contrast, undersampling by means of removing whole blades from a PROPELLER sampling pattern that sufficiently samples k-space produced only minimal image artifacts, mainly manifested as blurring in directions parallel to the blades removed, even when reducing imaging time by as much as 50%. Finally, undersampling using asymmetric blades and taking advantage of Hermitian symmetries to fill-in the missing data significantly reduced imaging time without causing image artifacts.  相似文献   

8.
A liver-metastasis model was used to study the ability of fast spin-echo (FSE) imaging to show small lesions (1 pixel in diameter) relative to conventional spin-echo imaging. FSE images of the liver-metastasis phantom were acquired with various phase-encode reordering schemes to manipulate T2 contrast. The imaging time for multisection acquisitions was 27 seconds for FSE imaging and 6 minutes 48 seconds for conventional spin-echo imaging. Computer simulations were performed to determine how the point spread function varies with the different phase-encoding orders in FSE imaging. Contrast-to-noise ratios and signal profiles of the lesions were measured as a function of the effective TE and lesion size. Experimental results and theoretical simulations showed that T2-weighted FSE imaging provides high contrast and good edge definition even for small lesions. The results indicate that FSE imaging may become a powerful method for the early detection of liver metastases.  相似文献   

9.
Automatic compensation of motion artifacts in MRI.   总被引:1,自引:0,他引:1  
Patient motion during the acquisition of a magnetic resonance image can cause blurring and ghosting artifacts in the image. This paper presents a new post-processing strategy that can reduce artifacts due to in-plane, rigid-body motion in times comparable to that required to re-scan a patient. The algorithm iteratively determines unknown patient motion such that corrections for this motion provide the best image quality, as measured by an entropy-related focus criterion. The new optimization strategy features a multi-resolution approach in the phase-encode direction, separate successive one-dimensional searches for rotations and translations, and a novel method requiring only one re-gridding calculation for each rotation angle considered. Applicability to general rigid-body in-plane rotational and translational motion and to a range of differently weighted images and k-space trajectories is demonstrated. Motion artifact reduction is observed for data from a phantom, volunteers, and patients.  相似文献   

10.
Two types of artifacts--a mirror-reversed image about the phase-encode direction and a wave-like intensity variation across the image--may appear when using a conventional multiecho spin-echo sequence. We describe and demonstrate a new method, which eliminates such artifacts, using only one excitation per phase-encoding step and without the need for spoiler gradients.  相似文献   

11.
Rigid body translations of an object in MRI create image artifacts along the phase-encode (PE) direction in standard 2DFT imaging. If two images are acquired with swapped PE direction, it is possible to determine and correct for arbitrary in-plane translational interview motions in both images directly from phase differences in the k-space acquisitions by solving a large system of linear equations. For example, if one assumes two N x N 2D acquisitions with in-plane translational interview motion, 4N unknown motions may corrupt the two images, but the phase difference at each point in k-space yields a system of N(2) equations in these 4N unknowns. If the acquisitions have orthogonal PE directions, this highly overdetermined system of equations can be solved to provide the motion records, which in turn can be used to correct the motion artifacts in each image. The theory of this orthogonal k-space phase difference (ORKPHAD) technique is described, and results are presented for synthetic and in vivo motion-corrupted data sets. In all cases, the data showed clear improvement of translation-induced artifacts. These methods do not require special pulse sequences and are theoretically generalizable to partial Fourier imaging and 3D acquisitions.  相似文献   

12.
BACKGROUND AND PURPOSE: T1-weighted spin-echo imaging has been widely used to study anatomic detail and abnormalities of the brain; however, the image contrast of this technique is often poor, especially at low field strengths. We tested a new pulse sequence, T1-weighted fluid-attenuated inversion recovery (FLAIR), which provides good contrast between lesions, surrounding edematous tissue, and normal parenchyma at low field strengths and at acquisition times comparable to those of T1-weighted spin-echo imaging. METHODS: Thirteen patients with brain lesions underwent T1-weighted spin-echo and T1-weighted FLAIR imaging during the same imaging session. T1-weighted spin-echo and T1-weighted FLAIR images were compared on the basis of four quantitative (lesion-white matter [WM] contrast-to-noise ratio [CNR], lesion-CSF CNR, gray matter-WM CNR, and WM-CSF CNR) and three qualitative criteria (conspicuousness of lesions, image artifacts, and overall image contrast). RESULTS: CNRs obtained with T1-weighted FLAIR were comparable but statistically superior to those obtained with T1-weighted spin-echo imaging. In general, T1-weighted FLAIR and T1-weighted spin-echo imaging produced comparable image artifacts. Conspicuousness of lesions and the overall image contrast were judged to be superior on T1-weighted FLAIR images. CONCLUSION: T1-weighted FLAIR imaging may be a valuable alternative to conventional T1-weighted imaging, because the former technique offers superior image contrast at low field strengths and comparable acquisition times.  相似文献   

13.
The correction of motion artifacts continues to be a significant problem in MRI. In the case of uncooperative patients, such as children, or patients who are unable to remain stationary, the accurate determination and correction of motion artifacts becomes a very important prerequisite for achieving good image quality. The application of conventional motion-correction strategies often produces inconsistencies in k-space data. As a result, significant residual artifacts can persist. In this work a formalism is introduced for parallel imaging in the presence of motion. The proposed method can improve overall image quality because it diminishes k-space inconsistencies by exploiting the complementary image encoding capacity of individual receiver coils. Specifically, an augmented version of an iterative SENSE reconstruction is used as a means of synthesizing the missing data in k-space. Motion is determined from low-resolution navigator images that are coregistered by an automatic registration routine. Navigator data can be derived from self-navigating k-space trajectories or in combination with other navigation schemes that estimate patient motion. This correction method is demonstrated by interleaved spiral images collected from volunteers. Conventional spiral scans and scans corrected with proposed techniques are shown, and the results illustrate the capacity of this new correction approach.  相似文献   

14.
Recently a new technique for the combined acquisition of multicontrast images, termed "combo acquisition," was introduced. In combo acquisitions, the three concepts of 1) variable acquisition parameters, 2) k-space data sharing, and 3) multicontrast imaging are systematically integrated to reduce MRI scan time and improve data utilization in a clinical setting. In this study, two-contrast and three-contrast spin-echo (SE) and turbo spin-echo (TSE) combo acquisition protocols that were designed and optimized in simulation experiments were implemented on a 1.5 T clinical scanner. Phantom and human brain data from volunteers and patients were acquired. Scan time reductions of 25-52% were achieved compared to standard acquisitions, largely confirming the simulation results. We evaluated the resulting images by quantitatively analyzing the preservation of contrast and the signal-to-noise ratio (SNR). In addition, data sets for 10 clinical cases obtained with TSE combo and corresponding standard acquisitions were graded by two experienced neuroradiologists in terms of the level of artifacts and image quality for comparison. Only minor image degradation with the combo scans was observed, indicating an inherent trade-off between scan time reduction and image quality. The specific aspects of combo acquisitions with respect to motion, flow, and k-space data weighting are discussed.  相似文献   

15.
An extremely rapid MR imaging technique is described, and its use on a new 2.0-T high-speed MR system is demonstrated. This implementation permits complete filling of the two-dimensional spatial-frequency domain (k-space) within an acquisition window of 26 msec. With this acquisition window placed under the spin-echo signal envelope generated by a 90-180 degree pulse pair, the image contrast is the same as that of a conventional spin-echo pulse sequence. Resultant proton images have a motion-independent voxel resolution of 0.08 cm3 and a signal-to-noise ratio for cardiac muscle of approximately 30:1 (for TE = 30 msec) with no signal averaging. The pulse sequence yields images that are chemical shift-resolved. The total proton density distribution is optionally presented with lipid and water signals displayed in two different colors. Cardiac function is observed by displaying multiple images, acquired at different times in successive cardiac periods, in a cyclic movie format. Such motion pictures are obtained within a single period of suspended respiration, thereby assuring freedom from respiratory related motion artifacts. As preliminary examples, we present MR images of the normal adult human heart that have total acquisition times of only 40 msec/image and that show the major cardiac anatomy. Frames from movie loops show contraction of cardiac chambers and left ventricular wall thickening. The extremely rapid acquisition time of this technique suggests that it may hold promise for the routine and cost-effective evaluation of cardiac anatomy and function.  相似文献   

16.
PURPOSETo compare T2-weighted conventional spin-echo (CSE), fast spin-echo (FSE), shorttau inversion recovery (STIR) FSE, and fluid-attenuated inversion recovery (FLAIR) FSE sequences in the assessment of cervical multiple sclerosis plaques.METHODSTwenty patients with clinically confirmed multiple sclerosis and signs of cervical cord involvement were examined on a 1.5-T MR system. Sagittal images of T2-weighted and proton density-weighted CSE sequences, T2-weighted FSE sequences with two different sets of sequence parameters, STIR-FSE sequences, and FLAIR-FSE sequences were compared by two independent observers. In addition, contrast-to-noise measurements were obtained.RESULTSSpinal multiple sclerosis plaques were seen best on STIR-FSE images, which yielded the highest lesion contrast. Among the T2-weighted sequences, the FSE technique provided better image quality than did the CSE technique, but lesion visibility was improved only with a repetition time/echo time of 2500/90; parameters of 3000/150 provided poor lesion contrast but the best myelographic effect and overall image quality. CSE images were degraded by prominent image noise; FLAIR-FSE images showed poor lesion contrast and strong cerebrospinal fluid pulsation artifacts.CONCLUSIONSThe STIR-FSE sequence is the best choice for assessment of spinal multiple sclerosis plaques. For T2-weighted FSE sequences, shorter echo times are advantageous for spinal cord imaging, long echo times are superior for extramedullary and extradural disease. FLAIR-FSE sequences do not contribute much to spinal imaging for multiple sclerosis detection.  相似文献   

17.
T1rho contrast weighting using a magnetization-prepared projection encoding (MaPPE) pulse sequence was investigated. Fast radial imaging was implemented by applying magnetization preparation pulses, each followed by multiple RF alpha pulses encoding radial trajectories of k-space. Acquiring multiple views per preparatory pulse imposes view-to-view variation; the resultant distortion of the point-spread function is examined. The issue of maximizing signal while preserving the intended contrast weighting is addressed. Under modification of repetition time and flip angle (alpha), three distinct behavior regimes of the sequence are identified. The utility of the pulse sequence as a quantitative relaxation measurement tool is also examined by comparing imaging and spectroscopy experiments. A mouse was imaged in vitro to demonstrate the viability of application to MR histology. These images exhibit the utility of spinlocking and projection encoding as an aftemative contrast source to both T2-weighted MaPPE images and conventional T2-weighted spin-echo images.  相似文献   

18.
A novel technique for manipulating contrast in projection reconstruction MRI is described. The method takes advantage of the fact that the central region of k-space is oversampled, allowing one to choose different filters to enhance or reduce the amount that each view contributes to the central region, which dominates image contrast. The technique is implemented into a fast spin-echo (FSE) sequence, and it is shown that multiple T(2)-weighted images can be reconstructed from a single image data set. These images are shown to be nearly identical to those acquired with the Cartesian-sampled FSE sequence at different effective echo times. Further, it is demonstrated that T(2) maps can be generated from a single image data set. This technique also has the potential to be useful in dynamic contrast enhancement studies, capable of yielding a series of images at a significantly higher effective temporal resolution than what is currently possible with other methods, without sacrificing spatial resolution.  相似文献   

19.
OBJECTIVE: We retrospectively evaluated the use of echo-planar imaging for ultrafast detection of brain lesions. MATERIALS AND METHODS: In our retrospective study, 61 patients were imaged with the following echo-planar sequences: single-shot proton density-weighted, single-shot T2-weighted, single-shot T2-weighted high-resolution, multishot proton density-weighted, and multishot T2-weighted. Lesions revealed in these patients ranged from 0.5 to 12.0 cm (mean, 3.7 cm) and were the result of tumor (n = 16), stroke (n = 21), demyelination (n = 18), and toxoplasmosis (n = 2). Four patients had scans with normal findings. Two neuroradiologists who were unaware of pertinent clinical data reviewed the images. The images were retrospectively compared with conventional spin-echo images for diagnosis, sensitivity of lesion detection, and qualitative criteria: subjective image quality, gray and white matter differentiation, lesion conspicuity, delineation of lesion borders, and artifacts. (Artifacts included those caused by motion, susceptibility, pulsation, and ghosting.) Quantitative criteria, including signal-to-noise and signal difference-to-noise measurements, were also evaluated in 40 lesions. RESULTS: Sensitivity for lesion detection was 97% for single-shot echo-planar T2-weighted MR images and 100% for multishot echo-planar T2-weighted MR images. Single-shot echo-planar proton density-weighted MR images had the highest signal-to-noise ratio (91.2+/-19.3). Echo-planar T2-weighted MR images had the highest signal difference-to-noise (33.8+/-22.9). Echo-planar sequences were superior to spin-echo sequences regarding motion and pulsation artifacts. Spin-echo sequences lacked susceptibility and ghosting artifacts, and were superior in lesion conspicuity and delineation of lesion borders. CONCLUSION: In this study, echo-planar sequences were as sensitive as conventional spin-echo imaging for the diagnostic assessment of lesions. Echo-planar sequences had a strikingly shorter acquisition time and substantially reduced motion and pulsation artifacts. Echo-planar sequences may be a useful diagnostic tool for use in claustrophobic and unstable patients.  相似文献   

20.
Subject motion during diffusion-weighted interleaved echo-planar imaging causes k-space offsets which lead to irregular sampling in the phase-encode direction. For each image, the k-space shifts are monitored using 2D navigator echoes, and are shown to lead to a frequent violation of the Nyquist condition when an ungated sequence is used on seven subjects. Combining data from four repeat acquisitions allows the Nyquist condition to be satisfied in all but 1% of images. Reconstruction of the irregularly-sampled data can be performed using a matrix inversion technique. The repeated acquisitions make the inversion more stable and additionally improve the signal-to-noise ratio. The resultant isotropic diffusion-weighted images and average apparent diffusion coefficient (ADC) maps show high resolution and enable clear localization of a stroke lesion. Residual ADC artifacts with a slow spatial variation are observed and assumed to originate from non-rigid pulsatile brain motion. Magn Reson Med 44:101-109, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号