首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emerging paradigm of "oncogene addiction" has been called an Achilles' heel of cancer that can be exploited therapeutically. Here, we show that integrin-linked kinase (ILK), which is either activated or overexpressed in many types of cancers, is a critical regulator of breast cancer cell survival through the protein kinase B (PKB)/Akt pathway but is largely dispensable for the survival of normal breast epithelial cells and mesenchymal cells. We show that inhibition of ILK activity with a pharmacologic ILK inhibitor, QLT-0267, results in the inhibition of PKB/Akt Ser473 phosphorylation, stimulation of apoptosis, and a decrease in mammalian target of rapamycin (mTOR) expression in human breast cancer cells. In contrast, QLT-0267 treatment has no effect on PKB/Akt Ser473 phosphorylation or apoptosis in normal human breast epithelial, mouse fibroblast, or vascular smooth muscle cells. The inhibition of PKB/Akt Ser473 phosphorylation by QLT-0267 in breast cancer cells was rescued by a kinase-active ILK mutant but not by a kinase-dead ILK mutant. Furthermore, a dominant-negative ILK mutant increased apoptosis in the MDA-MB-231 breast cancer cell line but not in normal human breast epithelial cells. The inhibitor was active against ILK isolated from all cell types but did not have any effect on cell attachment and spreading. Our data point to an "ILK addiction" of breast cancer cells whereby they become dependent on ILK for cell survival through the mTOR-PKB/Akt signaling pathway and show that ILK is a promising target for the treatment of breast cancer.  相似文献   

2.
Interaction between cell surface integrin receptors with extracellular matrix (ECM) plays an important role in cell survival, proliferation, and migration including tumor development and invasion. Binding of ECM to integrins initiates intracellular signaling cascades, modulating expression and activity of different matrix metalloproteinases (MMPs) which is important in ECM degradation. The present study investigates fibronectin–integrin-mediated signaling and thereby modulation of MMPs expression and activity in human breast cancer cell line, MDA-MB-231. Culture of MDA-MB-231 cells on fibronectin (FN) induced expression and activity of pro-matrixmetalloproteinase-9 (MMP-9). Appreciable reduction of FN-induced pro-MMP-9 activity was observed in anti-α5 antibody treated cells. Inhibitor studies revealed that inhibitors of phosphatidyl inositiol-3-kinase (PI-3K), and nuclear factor kappa B (NF-κB) inhibited FN-induced pro-MMP-9 activity. FN increased tyrosine phosphorylation of focal adhesion kinase (FAK), integrin linked kinase (ILK), and PI-3K in MDA-MB-231 cells. FN-induced the transactivation of MMP-9 promoter by enhancing DNA binding activity of NF-κB and Sp1. Wound healing assay showed faster migration of MDA-MB-231cells grown on fibronectin-coated as surface as compared to control. Our findings indicated that culture of MDA-MB-231 on fibronectin perhaps send signals via fibronectin–integrin-mediated signaling pathways recruiting FAK, PI-3K, ILK, NF-κB, and modulate expression and activation of pro-MMP-9. These observations may enrich fundamental aspects of cancer biology especially role of α5β1 integrin in regulation of MMPs expression and activity.  相似文献   

3.
4.
Overexpression of Notch1 has been associated with breast cancer. We recently showed that visfatin stimulates breast cancer cell proliferation and invasion. The present study was undertaken to determine whether Notch1 signaling is affected by visfatin and to characterize the functional role of the visfatin-Notch1 axis in breast cancer. Visfatin and Notch1 were expressed at higher levels in breast tumors than in matched control tissues. Visfatin induced Notch1 expression in MDA-MB-231 breast cancer cell line and in nontransformed MCF10A mammary epithelial cells, whereas visfatin depletion reduced Notch1 mRNA and protein levels. Depletion of Notch1 in MDA-MB-231 cells attenuated cell growth in vitro and in vivo; visfatin depletion produced similar effects, but was less potent. Additionally, Notch1 depletion inhibited cell proliferation induced by visfatin. Analysis of the signaling pathways underlying visfatin-mediated Notch1 upregulation revealed that visfatin activated NF-κB p65. Blockade of NF-κB signaling suppressed the effects of visfatin on Notch1 upregulation and breast cancer cell proliferation. Breast tumors expressing high levels of NF-κB p65 exhibited increased expression of Notch1. Our results demonstrate that the visfatin-Notch1 axis contributes to breast tumor growth through the activation of the NF-κB pathway. Study of the visfatin-Notch1 axis may offer new therapeutic directions for breast cancer.  相似文献   

5.
6.
Integrin-linked kinase (ILK) and estrogen receptor (ER)-alpha modulate cell migration. However, the crosstalk between ERalpha and ILK and the role of ILK in ERalpha-mediated cell migration remain unexplored. Here, we report that ILK participates in ERalpha signaling in breast cancer cells. We found that ILK binds ERalpha in vitro and in vivo through a LXXLL motif in ILK. Estrogen prevented ERalpha-ILK binding, resulting in phosphatidylinositol 3-kinase (PI3K)-dependent increase in ILK kinase activity. Furthermore, the regulation of ERalpha-ILK interaction was dependent on the PI3K pathway. Unexpectedly, transient knockdown or inhibition of ILK caused hyperphosphorylation of ERalpha Ser(118) in an extracellular signal-regulated kinase/mitogen-activated protein kinase pathway-dependent manner and an enhanced ERalpha recruitment to the target chromatin and gene expression, a process reversed by overexpression of ILK. Compatible with these interactions, estrogen regulated cell migration via the PI3K/ILK/AKT pathway with stable ILK overexpression hyperactivating cell migration. Thus, status of ILK signaling may be an important modifier of ER signaling in breast cancer cells and this pathway could be exploited for therapeutic intervention in breast cancer cells.  相似文献   

7.
PURPOSE: Drug resistance and metastasis pose major impediments in the successful treatment of cancer. We previously reported that multidrug-resistant breast cancer cells exhibit high levels of tissue transglutaminase (TG2; EC 2.3.2.13). Because the drug-resistant and metastatic phenotypes are thought to share some common pathways, we sought to determine whether metastatic breast cancer cells express high levels of TG2. EXPERIMENTAL DESIGN: The metastatic breast cancer cell line MDA-MB-231 and the sublines derived from it were tested for TG2 expression. Similarly, several sublines derived from an immortal but normal breast epithelial cell line, MCF10A, representing various stages in breast cancer progression were studied for TG2 expression. The primary and nodal tumor samples from 30 patients with breast cancer were also studied for TG2 expression. RESULTS: The MDA-MB-231 cells expressed high basal levels of TG2. Two clones derived from this cell line, MDA231/cl.9 and MDA231/cl.16, showed a 10- to 15-fold difference in TG2 level. TG2-deficient MDA231/cl.9 cells exhibited higher sensitivity to doxorubicin and were less invasive than were the TG2-sufficient MDA231/cl.16 cells. The MCF10A-derived sublines had increased TG2 expression as they advanced from noninvasive to an invasive phenotype. Importantly, the metastatic lymph node tumors from patients with breast cancer showed significant higher levels of TG2 expression compared with the primary tumors from the same patients. CONCLUSIONS: TG2 expression is up-regulated in drug-resistant and metastatic breast cancer cells, and it can serve as a valuable prognostic marker for these phenotypes.  相似文献   

8.
A D Gruber  B U Pauli 《Cancer research》1999,59(21):5488-5491
The human Ca2+-activated chloride channel-2 (CLCA2) is expressed in normal breast epithelium but not in breast tumors of different stages of progression. Northern analysis of nontransformed and transformed breast epithelial cell lines revealed CLCA2 expression in the nontransformed cell line MCF10A and the nontumorigenic cell line MDA-MB-453, whereas all tumorigenic cell lines were negative (MDA-MB-231, MDA-MB-435, MDA-MB-468, and MCF7). When stably reintroduced into CLCA2-negative MDA-MB-231 and MDA-MB-435 cells, CLCA2 expression reduced Matrigel invasion in vitro and inducibility of s.c. and metastatic tumors of MDA-MB-231 cells in nude mice. Our results suggest that CLCA2 may act as a tumor suppressor in breast cancer.  相似文献   

9.
目的 探讨miR-4319与泛素特异性蛋白酶2(USP2)表达的相关性以及miR-4319靶向USP2通过核转录因子κB(NF-κB)信号通路对乳腺癌细胞侵袭的影响.方法 实时荧光定量PCR(qRT-PCR)检测miR-4319在正常乳腺癌上皮细胞(MCF10A)、低侵袭性乳腺癌细胞(MCF7)和高侵袭性乳腺癌细胞(M...  相似文献   

10.
Increased protein kinase C (PKC) activity in malignant breast tissue and in most aggressive breast cancer cell lines has suggested a possible role of PKC in breast carcinogenesis and tumor progression. We have investigated here the involvement of PKC in the in vitro invasiveness and motility of several breast cancer cell lines. Modulation of PKC activity by treatment with a phorbol ester (TPA), drastically increased the invasiveness of 2 estrogen receptor-positive (ER+) lines (MCF7 and ZR 75.1), whereas it markedly decreased the invasiveness of 2 ER cell lines (MDA-MB-231 and MDA-MB-435). A PKC inhibitor (H7) reversed the TPA effects in MCF7 cells, whereas it mimicked TPA action in MDA-MB-231 cells. All of these effects of TPA also were observed to a similar extent for cell chemotaxis, and they were not dependent on protein neo-synthesis. In parallel, short TPA treatment induced cell spreading and microtubule organization in MCF7 cells and inverse morphological changes in MDA-MB-231 cells. In ER+ cells, constitutive PKC activity and PKCα expression were very low as compared to ER cells, and this correlated with the invasive potential of the cells. The opposed effects of TPA in ER+ and ER cells could be due to the abnormal TPA regulation of PKCα observed in ER cells. Int. J. Cancer 75:750–756, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

11.
Mammalian target of rapamycin (mTOR) is an attractive target for cancer treatment. While rapamycin and its derivatives (e.g., everolimus) have been shown to inhibit mTOR signaling and cell proliferation in preclinical models of breast cancer, mTOR inhibition has demonstrated variable clinical efficacy with a trend toward better responses in estrogen receptor alpha positive (ERα+) compared to ERα negative (ERα-) tumors. Recently, serum- and glucocorticoid-regulated kinase 1 (SGK1) was identified as a substrate of mTOR kinase activity. Previous studies have alternatively suggested that either mTORC1 or mTORC2 is exclusively required for SGK1's Ser422 phosphorylation and activation in breast cancer cells. We investigated the effect of rapamycin on the growth of several ERα+ and ERα- breast cancer cell lines and examined differences in the phosphorylation of mTOR substrates (SGK1, p70S6K, and Akt) that might account for the differing sensitivity of these cell lines to rapamycin. We also examined which mTOR complex contributes to SGK1-Ser422 phosphorylation in ERα+ versus ERα- breast cell lines. We then assessed whether inhibiting SGK1 activity added to rapamycin-mediated cell growth inhibition by either using the SGK1 inhibitor GSK650394A or expressing an SGK1 shRNA. We observed sensitivity to rapamycin-mediated growth inhibition and inactivation of insulin-mediated SGK1-Ser422 phosphorylation in ERα+ MCF-7 and T47D cells, but not in ERα- MDA-MB-231 or MCF10A-Myc cells. In addition, either depleting SGK1 with shRNA or inhibiting SGK1 with GSK650394A preferentially sensitized MDA-MB-231 cells to rapamycin. Finally, we found that rapamycin-sensitive SGK1-Ser422 phosphorylation required ERα expression in MCF-7 derived cell lines. Therefore, targeting SGK1 activity may improve the efficacy of rapamycin and its analogs in the treatment of ERα- breast cancer.  相似文献   

12.
Phospholipase D confers rapamycin resistance in human breast cancer cells   总被引:4,自引:0,他引:4  
Chen Y  Zheng Y  Foster DA 《Oncogene》2003,22(25):3937-3942
mTOR (mammalian target of rapamycin) is a protein kinase that regulates cell cycle progression and cell growth. Rapamycin is a highly specific inhibitor of mTOR in clinical trials for the treatment of breast and other cancers. mTOR signaling was reported to require phosphatidic acid (PA), the metabolic product of phospholipase D (PLD). PLD, like mTOR, has been implicated in survival signaling and the regulation of cell cycle progression. PLD activity is frequently elevated in breast cancer. We have investigated the effect of rapamycin on breast cancer cell lines with different levels of PLD activity. MCF-7 cells, with relatively low levels of PLD activity, were highly sensitive to the growth-arresting effects of rapamycin, whereas MDA-MB-231 cells, with a 10-fold higher PLD activity than MCF-7 cells, were highly resistant to rapamycin. Elevating PLD activity in MCF-7 cells led to rapamycin resistance; and inhibition of PLD activity in MDA-MB-231 cells increased rapamycin sensitivity. Elevated PLD activity in MCF-7 cells also caused rapamycin resistance for S6 kinase phosphorylation and serum-induced Myc expression. These data implicate mTOR as a critical target for survival signals generated by PLD and suggest that PLD levels in breast cancer could be a valuable indicator of the likely efficacy of rapamycin treatment.  相似文献   

13.
14.
Some kinds of breast cancer cell lines, similar to several types of solid tumors, express epidermal growth factor receptor (EGFR). However, gefitinib, an EGFR tyrosine kinase inhibitor, is not effective for all these cell lines. Similarly, taxane is effective for many of the cell lines, although some, such as the multidrug-resistant MCF7/ADR cell line, show taxane-resistance. Here, we examined the growth inhibitory effect of combination treatment with gefitinib and taxane on the breast cancer cell lines MDA-MB-231 (EGFR-positive) and MCF7/ADR (EGFR- and HER2-positive). To estimate the combined effect, a Combination Index was calculated for each cell line. The combination of gefitinib and taxane showed a strong synergistic effect on MCF7/ADR cells, but an invitro additive-antagonistic effect on MDA-MB-231 cells. Similarly, the combination treatment showed a significantly increased tumor inhibitory effect on MCF7/ADR xenografts, but not on MDA-MB-231 xenografts. Regarding the mechanism of the synergistic effect, Western blotting analysis revealed that taxane activated the EGFR-Akt pathway in MCF7/ADR cells but not in MDA-MB-231. To determine the optimal sequential administration of gefitinib and taxane for MCF7/ADR cells, we used flow cytometry to analyze the cell cycle and apoptosis; finding that taxane treatment followed by gefitinib produced a higher rate of G2 arrest and apoptosis than gefitinib treatment followed by taxane. These results suggest gefitinib overcomes the drug-resistance of these cells, thereby increasing the effects of taxane on MCF7/ADR cells. Further, activation of the EGFR-Akt pathway by taxane is related to this synergistic effect.  相似文献   

15.
趋化因子受体CXCR4在乳腺癌中表达的研究   总被引:4,自引:0,他引:4  
目的探讨趋化受体CXCR4在乳腺癌中的表达及其与肿瘤转移的关系,以及脂多糖(LPS)对其表达的影响.方法采用流式细胞仪和RT-PCR法检测23例乳腺癌患者的癌组织、癌旁组织、正常组织以及MDA-MB-231细胞中CXCR4在蛋白质和mRNA水平的表达情况,以及LPS对MDA-MB-231细胞 CXCR4表达的影响;用Transwell板检测经LPS作用前后MDA-MB-231对趋化因子SDF-1趋化活性的影响.结果乳腺癌组织MDA-MB-231细胞的趋化因子受体CXCR4在蛋白质和mRNA水平的表达均显著高于癌旁组织和正常组织(P<0.05),并且CXCR4的表达与乳腺癌的转移密切相关;脂多糖(LPS)能下调CXCR4的表达,经LPS作用后乳腺癌细胞趋化活性降低.结论趋化因子受体在乳腺癌的转移中起重要作用,下调乳腺癌细胞CXCR4的表达水平,可减少或抑制其转移.  相似文献   

16.
Ju JH  Jang K  Lee KM  Kim M  Kim J  Yi JY  Noh DY  Shin I 《Carcinogenesis》2011,32(10):1474-1483
Cluster of differentiation 24 (CD24) is a small glycosylphosphatidylinositol-linked cell surface molecule that is expressed in a variety of human carcinomas, including breast cancer. To determine the role of CD24 in breast cancer cells, we expressed CD24 in CD24-negative/low and cluster of differentiation 44 (CD44)-positive MDA-MB-231 metastatic breast cancer cells. Forced expression of CD24 resulted in a decrease in c-Raf/mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)/mitogen-activated protein kinase signaling and reduced cell proliferation. Apoptosis induced by DNA damage was greatly enhanced in MDA-MB-231 CD24 cells as compared with MDA-MB-231 vec cells. CD24 expression efficiently attenuated DNA damage-induced nuclear factor-kappaB (NF-κB) signaling in MDA-MB-231 cells. However, in CD24-positive and CD44-negative/low MCF-7 cells, knockdown of CD24 did not significantly affect DNA damage-induced apoptosis nor NF-κB signaling. Silencing of CD24 in CD24/CD44-double-positive MDA-MB-468 cells partially rescued DNA damage-induced apoptosis. Transient transfection studies with 293T cells also revealed that CD24 attenuated cell viability and NF-κB signaling only when CD44 was cotransfected. These data indicate that CD24 expression potentiated DNA-induced apoptosis by suppressing antiapoptotic NF-κB signaling in CD44-expressing cells.  相似文献   

17.
目的 探讨防己诺林碱(FAN)对三阴性乳腺癌(TNBC)的抗肿瘤机制.方法 体外细胞培养人乳腺癌细胞MDA-MB-231,Alamar-Blue法检测FAN对人乳腺癌细胞MDA-MB-231的半抑制浓度(IC50);6孔板检测细胞迁移情况;细胞流式技术检测细胞凋亡情况;Western Blot检测磷脂酰肌醇-3羟基激酶(PI3K)、蛋白激酶B(AKT)、哺乳类动物雷帕霉素靶蛋白(mTOR)及磷酸化PI3K、AKT、mTOR蛋白表达.结果 FAN可抑制人乳腺癌细胞MDA-MB-231的活力(IC50为6.25μmol/L),抑制人乳腺癌细胞MDA-MB-231的迁移能力,且随着FAN浓度升高,抑制作用明显.FAN可以诱导人乳腺癌细胞MDA-MB-231凋亡,且随着FAN浓度升高,细胞凋亡率增高,同时FAN还可以下调PI3K、AKT、mTOR及磷酸化PI3K、AKT、mTOR蛋白的表达,随药物浓度的升高,其蛋白表达降低.结论 FAN可通过下调TNBC MDA-MB-231细胞凋亡PI3K/AKT/mTOR信号通路,抑制TNBC细胞的增殖、迁移,诱导细胞凋亡,可能具有抗肿瘤作用.  相似文献   

18.
TRIP-Br1 oncogenic protein has been shown to have multiple biological functions in cells. In this study, we demonstrate that TRIP-Br1 functions as an oncoprotein by inhibiting autophagy, apoptosis, and necroptosis of cancer cells and eventually helping them to survive under the nutrient/serum starved condition. TRIP-Br1 expression level was significantly increased in conditions with low levels of nutrients. Nutrient depleted conditions were induced by culturing cancer cells until they were overcrowded with high cell density or in media deprived of glucose, amino acids, or serum. Among them, serum starvation significantly enhanced the expression of TRIP-Br1 only in all tested breast cancer cell lines (MCF7, MDA-MB-231, T47D, MDA-MB-435, Hs578D, BT549, and MDA-MB-435) but not in the three normal cell lines (MCF10A, HfCH8, and NIH3T3). As compared with the control cells, the introduction of TRIP-Br1 silencing siRNA into MCF7 and MDA-MB-231 cells accelerated cell death by inducing apoptosis and necroptosis. In this process, TRIP-Br1 confers resistance to serum starvation-induced cell deaths by stabilizing the XIAP protein and inhibiting cellular ROS production. Moreover, our data also show that the intracellular increase of TRIP-Br1 protein resulting from serum starvation seems to occur in part through the blockage of PI3K/AKT signaling pathway.  相似文献   

19.
20.
背景与目的:甲状腺激素及其受体与乳腺癌关系密切,甲状腺激素受体相互作用蛋白6(thyroid receptor-interacting protein 6,TRIP6)可能通过与甲状腺受体相互作用促进乳腺癌的发生、发展.探讨TRIP6在乳腺癌中的作用及可能机制.方法:采用免疫组织化学染色法检测2011年1月—2013年...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号