首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background:

Altered transmission of gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter, may contribute to the development of schizophrenia. The purpose of the present study was to investigate the presence of GABA-A/benzodiazepine (BZ) receptor binding abnormalities in individuals at ultra-high risk (UHR) for psychosis in comparison with normal controls using [18F]-fluoroflumazenil (FFMZ) positron emission tomography (PET). In particular, we set regions of interest in the striatum (caudate, putamen, and nucleus accumbens) and medial temporal area (hippocampus and parahippocampal gyrus).

Methods:

Eleven BZ-naive people at UHR and 15 normal controls underwent PET scanning using [18F]-FFMZ to measure GABA-A/BZ receptor binding potential. The regional group differences between UHR individuals and normal controls were analyzed using Statistical Parametric Mapping 8 software. Participants were evaluated using the structured interview for prodromal syndromes and neurocognitive function tasks.

Results:

People at UHR demonstrated significantly reduced binding potential of GABA-A/BZ receptors in the right caudate.

Conclusions:

Altered GABAergic transmission and/or the imbalance of inhibitory and excitatory systems in the striatum may be present at the putative prodromal stage and play a pivotal role in the pathophysiology of psychosis.Key words: GABA, schizophrenia, ultra-high, risk for psychosis, caudate, PET, fluoroflumazenil  相似文献   

2.

Objective

Recent neuroimaging studies have suggested that brain changes occur in subjects at ultra-high risk (UHR) for psychosis while experiencing prodromal symptoms, among which depression may increase the risk of developing a psychotic disorder. The goal of this study is to examine brain metabolite levels in the anterior cingulate cortex, the left dorsolateral prefrontal cortex and the left thalamus in subjects at UHR for psychosis and to compare brain metabolite levels between the UHR subjects with comorbid major depressive disorder and healthy controls.

Methods

Proton magnetic resonance spectroscopy was used to examine brain metabolite levels. Twenty UHR subjects and 20 age- and intelligence quotient (IQ)-matched healthy controls were included in this study.

Results

Overall, no significant differences were observed in any metabolite between the UHR and healthy control group. However, UHR subjects with major depressive disorder showed significantly higher myo-inositol (Ins) levels in the left thalamus, compared to the healthy control.

Conclusion

Our results demonstrate that increased thalamic Ins level is associated with prodromal depressive symptoms. Further longitudinal follow-up studies with larger UHR sample sizes are required to investigate the function of Ins concentrations as a biomarker of vulnerability to psychosis.  相似文献   

3.

Background

Reduced prepulse inhibition (PPI) of the auditory startle reflex is a hallmark feature of attention-processing deficits in patients with schizophrenia and other psychotic disorders. Recent evidence suggests that these deficits may also be present before the onset of psychosis in individuals at ultra-high risk (UHR) and become progressively worse as psychosis develops. We conducted a longitudinal follow-up study to observe the development of PPI over time in UHR adolescents and healthy controls.

Methods

Two-year follow-up data of PPI measures were compared between UHR adolescents and a matched control group of typically developing individuals.

Results

We included 42 UHR adolescents and 32 matched controls in our study. Compared with controls, UHR individuals showed reduced PPI at both assessments. Clinical improvement in UHR individuals was associated with an increase in PPI parameters.

Limitations

A developmental increase in startle magnitude partially confined the interpretation of the association between clinical status and PPI. Furthermore, post hoc analyses for UHR individuals who became psychotic between assessments had limited power owing to a low transition rate (14%).

Conclusion

Deficits in PPI are present before the onset of psychosis and represent a stable vulnerability marker over time in UHR individuals. The magnitude of this marker may partially depend on the severity of clinical symptoms.  相似文献   

4.

Background

Psychotic disorders are associated with widespread reductions in white matter (WM) integrity. However, the stage at which these abnormalities first appear and whether they are correlates of psychotic illness, as opposed to an increased vulnerability to psychosis, is unclear. We addressed these issues by using diffusion tensor imaging (DTI) to study subjects at ultra high risk (UHR) of psychosis before and after the onset of illness.

Methods

Thirty-two individuals at UHR for psychosis, 32 controls, and 15 patients with first-episode schizophrenia were studied using DTI. The UHR subjects and controls were re-scanned after 28 months. During this period, 8 UHR subjects had developed schizophrenia. Between-group differences in fractional anisotropy (FA) and diffusivity were evaluated cross sectionally and longitudinally using a nonparametric voxel-based analysis.

Results

At baseline, WM DTI properties were significantly different between the 3 groups (P < .001). Relative to controls, first-episode patients showed widespread reductions in FA and increases in diffusivity. DTI indices in the UHR group were intermediate relative to those in the other 2 groups. Longitudinal analysis revealed a significant group by time interaction in the left frontal WM (P < .001). In this region, there was a progressive reduction in FA in UHR subjects who developed psychosis that was not evident in UHR subjects who did not make a transition.

Conclusions

People at UHR for psychosis show alterations in WM qualitatively similar to, but less severe than, those in patients with schizophrenia. The onset of schizophrenia may be associated with a progressive reduction in the integrity of the frontal WM.  相似文献   

5.

Background:

Ultra-high risk (UHR) for psychosis has been associated with widespread structural brain changes in young adults. The onset of these changes and their subsequent progression over time are not well understood.

Methods:

Rate of brain change over time was investigated in 43 adolescents at UHR for psychosis compared with 30 healthy controls. Brain volumes (total brain, gray matter, white matter [WM], cerebellum, and ventricles), cortical thickness, and voxel-based morphometry were measured at baseline and at follow-up (2 y after baseline) and compared between UHR individuals and controls. Post hoc analyses were done for UHR individuals who became psychotic (N = 8) and those who did not (N = 35).

Results:

UHR individuals showed a smaller increase in cerebral WM over time than controls and more cortical thinning in the left middle temporal gyrus. Post hoc, a more pronounced decrease over time in total brain and WM volume was found for UHR individuals who became psychotic relative to controls and a greater decrease in total brain volume than individuals who were not psychotic. Furthermore, UHR individuals with subsequent psychosis displayed more thinning than controls in widespread areas in the left anterior cingulate, precuneus, and temporo-parieto-occipital area. Volume loss in the individuals who developed psychosis could not be attributed to medication use.

Conclusion:

The development of psychosis during adolescence is associated with progressive structural brain changes around the time of onset. These changes cannot be attributed to (antipsychotic) medication use and are therefore likely to reflect a pathophysiological process related to clinical manifestation of psychosis.  相似文献   

6.

Introduction

Phenomenological research indicates that disturbance of the basic sense of self may be a core phenotypic marker of schizophrenia spectrum disorders. Basic self-disturbance refers to a disruption of the sense of ownership of experience and agency of action and is associated with a variety of anomalous subjective experiences. In this study, we investigated the presence of basic self-disturbance in an “ultra high risk” (UHR) for psychosis sample compared with a healthy control sample and whether it predicted transition to psychotic disorder.

Methods

Forty-nine UHR patients and 52 matched healthy control participants were recruited to the study. Participants were assessed for basic self-disturbance using the Examination of Anomalous Self-Experience (EASE) instrument. UHR participants were followed for a mean of 569 days.

Results

Levels of self-disturbance were significantly higher in the UHR sample compared with the healthy control sample (P < .001). Cox regression indicated that total EASE score significantly predicted time to transition (P < .05) when other significant predictors were controlled for. Exploratory analyses indicated that basic self-disturbance scores were higher in schizophrenia spectrum cases, irrespective of transition to psychosis, than nonschizophrenia spectrum cases.

Discussion

The results indicate that identifying basic self-disturbance in the UHR population may provide a means of further “closing in” on individuals truly at high risk of psychotic disorder, particularly of schizophrenia spectrum disorders. This may be of practical value by reducing inclusion of “false positive” cases in UHR samples and of theoretical value by shedding light on core phenotypic features of schizophrenia spectrum pathology.  相似文献   

7.

Background

Previous magnetic resonance imaging (MRI) studies of patients with major depressive disorder (MDD) have consistently shown bilateral and unilateral reductions in hippocampal volume relative to healthy controls. Recent structural MRI studies have addressed the question of whether changes in the volume of hippocampal subregions may be associated with MDD.

Methods

We used a comprehensive and reliable 3-dimensional tracing protocol that enables delineation of hippocampal subregions (head, body, tail) to study changes in the hippocampus of patients with MDD. We recruited 39 MDD patients (16 medicated, 23 unmedicated) and 34 healthy age- and sex-matched controls. We acquired images using a magnetization-prepared rapid acquisition gradient echo sequence on a 1.5-T scanner with a spatial resolution of 1.5 mm × 0.5 mm × 0.5 mm. We performed volumetric analyses, blinded to diagnosis, using the interactive software package Display. All volumes were adjusted for intracranial volume.

Results

We found a significant reduction in the volume of the hippocampal tail bilaterally, right hippocampal head and right total hippocampus in MDD patients. Medicated MDD patients showed increased hippocampal body volume compared with both healthy controls and unmedicated patients.

Limitations

This study was cross-sectional. Further prospective studies are needed to determine the direct effect of antidepressant treatment.

Conclusion

Our results suggest that decreased hippocampal tail and hippocampal head volumes could be trait changes, whereas hippocampal body changes may be dependent on treatment. We showed that long-term antidepressant treatment may affect hippocampal volume in patients with MDD.  相似文献   

8.

Background

Neuroimaging studies of ultra-high risk (UHR) and first-episode psychosis (FEP) have revealed widespread alterations in brain structure and function. Recent evidence suggests there is an intrinsic relationship between these 2 types of alterations; however, there is very little research linking these 2 modalities in the early stages of psychosis.

Methods

To test the hypothesis that functional alteration in UHR and FEP participants would be associated with corresponding structural alteration, we examined brain function and structure in these participants as well as in a group of healthy controls using multimodal MRI. The data were analyzed using statistical parametric mapping.

Results

We included 24 participants in the FEP group, 18 in the UHR group and 21 in the control group. Patients in the FEP group showed a reduction in functional activation in the left superior temporal gyrus relative to controls, and the UHR group showed intermediate values. The same region showed a corresponding reduction in grey matter volume in the FEP group relative to controls. However, while the difference in grey matter volume remained significant after including functional activation as a covariate of no interest, the reduction in functional activation was no longer evident after including grey matter volume as a covariate of no interest.

Limitations

Our sample size was relatively small. All participants in the FEP group and 2 in the UHR group had received antipsychotic medication, which may have impacted neurofunction and/or neuroanatomy.

Conclusion

Our results suggest that superior temporal dysfunction in early psychosis is accounted for by a corresponding alteration in grey matter volume. This finding has important implications for the interpretation of functional alteration in early psychosis.  相似文献   

9.

Background

Abnormalities in the corpus callosum have long been implicated in schizophrenia. Previous diffusion tensor imaging (DTI) studies in patients with different durations of schizophrenia yielded inconsistent results. By comparing patients with different durations of schizophrenia, we investigated if white matter abnormalities of the corpus callosum emerge at an early stage in the illness or result from pathological progression.

Methods

We recruited patients with first-episode schizophrenia, patients with chronic schizophrenia and age-, sex-and handedness-matched healthy controls. We used 2 DTI techniques (voxel-based and fibre-tracking DTI) to investigate differences in corpus callosum integrity among the 3 groups.

Results

With both DTI techniques, significantly decreased fractional anisotropy values were identified in the genu of corpus callosum in patients with chronic schizophrenia, but not first-episode schizophrenia, compared with healthy controls.

Limitations

This study was cross-sectional, and the sample size was relatively small.

Conclusion

Abnormalities in the genu of the corpus callosum might be a progressive process in schizophrenia, perhaps related to disease severity and prognosis.  相似文献   

10.

Background

Psychosis onset is characterized by white matter and electrophysiologic abnormalities. The relation between these factors in the development of illness is almost unknown. We studied the relation between white matter volumes and P300 in prodromal psychosis.

Methods

We assessed white matter volume (detected using magnetic resonance imaging) and electrophysiologic response during an oddball task (P300) in healthy controls and individuals at high clinical risk for psychosis (with an “at-risk mental state” [ARMS]).

Results

We included 41 controls and 39 patients with an ARMS in our study. A psychotic disorder developed in 26% of the ARMS group within the follow-up period of 2 years. The P300 amplitude was significantly lower in the ARMS group than in the control group. The ARMS group showed reduced volume of white matter underlying the left superior temporal gyrus and the left superior frontal gyrus and increased volume of white matter underlying the right insula and the right angular gyrus compared with controls. Relative to individuals who did not later become psychotic, the subgroup in whom psychosis subsequently developed had a smaller volume of white matter underlying the left precuneus and the right middle temporal gyrus and increased volume in the white matter underlying the right middle frontal gyrus. We observed a significant interaction in the right middle frontal gyrus: white matter volume was negatively associated with P300 amplitude in the ARMS group and positively associated with P300 amplitude in the control group.

Limitations

The voxel-based morphometry method alone cannot determine whether abnormal white matter volumes are due to an altered number of axonal connections or decreased myelination.

Conclusion

P300 abnormalities precede the onset of psychosis and are directly related to white matter alterations, representing a correlate of an increased vulnerability to disease.  相似文献   

11.

Background

Structural and functional brain imaging studies suggest abnormalities of the amygdala and hippocampus in posttraumatic stress disorder and major depressive disorder. However, structural brain imaging studies in social phobia are lacking.

Methods

In total, 24 patients with generalized social phobia (GSP) and 24 healthy controls underwent 3-dimensional structural magnetic resonance imaging of the amygdala and hippocampus and a clinical investigation.

Results

Compared with controls, GSP patients had significantly reduced amygdalar (13%) and hippocampal (8%) size. The reduction in the size of the amygdala was statistically significant for men but not women. Smaller right-sided hippocampal volumes of GSP patients were significantly related to stronger disorder severity.

Limitations

Our sample included only patients with the generalized subtype of social phobia. Because we excluded patients with comorbid depression, our sample may not be representative.

Conclusion

We report for the first time volumetric results in patients with GSP. Future assessment of these patients will clarify whether these changes are reversed after successful treatment and whether they predict treatment response.  相似文献   

12.

Background

Enlarged ventricles and reduced hippocampal volume are consistently found in patients with first-episode schizophrenia. Studies investigating brain structure in antipsychotic-naive patients have generally focused on the striatum. In this study, we examined whether ventricular enlargement and hippocampal and caudate volume reductions are morphological traits of antipsychotic-naive first-episode schizophrenia.

Methods

We obtained high-resolution 3-dimensional T1-weighted magnetic resonance imaging scans for 38 antipsychotic-naive first-episode schizophrenia patients and 43 matched healthy controls by use of a 3-T scanner. We warped the brain images to each other by use of a high-dimensional intersubject registration algorithm. We performed voxel-wise group comparisons with permutation tests. We performed small volume correction for the hippocampus, caudate and ventricles by use of a false discovery rate correction (p < 0.05) to control for multiple comparisons. We derived and analyzed estimates of brain structure volumes. We grouped patients as those with (n = 9) or without (n = 29) any lifetime substance abuse to examine the possible effects of substance abuse.

Results

We found that hippocampal and caudate volumes were decreased in patients with first-episode schizophrenia. We found no ventricular enlargement, differences in global volume or significant associations between tissue volume and duration of untreated illness or psycho-pathology. The hippocampal volume reductions appeared to be influenced by a history of substance abuse. Exploratory analyses indicated reduced volume of the nucleus accumbens in patients with first-episode schizophrenia.

Limitations

This study was not a priori designed to test for differences between schizophrenia patients with or without lifetime substance abuse, and this subgroup was small.

Conclusion

Reductions in hippocampal and caudate volume may constitute morphological traits in antipsychotic-naive first-episode schizophrenia patients. However, the clinical implications of these findings are unclear. Moreover, past substance abuse may accentuate hippocampal volume reduction. Magnetic resonance imaging studies addressing the potential effects of substance abuse in antipsychotic-naive first-episode schizophrenia patients are warranted.  相似文献   

13.

Background:

Neuropsychological impairment is heterogeneous in psychosis. The association of intracranial volume (ICV) and total brain volume (TBV) with cognition suggests brain structure abnormalities in psychosis will covary with the severity of cognitive impairment. We tested the following hypotheses: (1) brain structure abnormalities will be more extensive in neuropsychologically impaired psychosis patients; (2) psychosis patients with premorbid cognitive limitations will show evidence of hypoplasia (ie, smaller ICV); and (3) psychosis patients with evidence of cognitive decline will demonstrate atrophy (ie, smaller TBV, but normal ICV).

Methods:

One hundred thirty-one individuals with psychosis and 97 healthy subjects underwent structural magnetic resonance imaging and neuropsychological testing. Patients were divided into neuropsychologically normal and impaired groups. Impaired patients were further subdivided into deteriorated and compromised groups if estimated premorbid intellect was average or below average, respectively. ICV and TBV were compared across groups. Localized brain volumes were qualitatively examined using voxel-based morphometry.

Results:

Compared to healthy subjects, neuropsychologically impaired patients exhibited smaller TBV, reduced grey matter volume in frontal, temporal, and subcortical brain regions, and widespread white matter volume loss. Neuropsychologically compromised patients had smaller ICV relative to healthy subjects, and neuropsychologically normal and deteriorated patient groups, but relatively normal TBV. Deteriorated patients exhibited smaller TBV compared to healthy subjects, but relatively normal ICV. Unexpectedly, TBV, adjusted for ICV, was reduced in neuropsychologically normal patients.

Conclusions:

Patients with long-standing cognitive limitations exhibit evidence of early cerebral hypoplasia, whereas neuropsychologically normal and deteriorated patients show evidence of brain tissue loss consistent with progression or later cerebral dysmaturation.Key words: psychosis, cognition, brain volume, neurodevelopmental, neuroprogressive  相似文献   

14.

Background

Several studies have investigated volumetric brain changes in patients with posttraumatic stress disorder (PTSD) and borderline personality disorder (BPD). Both groups exhibit volume reductions of the hippocampus and amygdala. Our aim was to investigate the influence of comorbid PTSD on hippocampus and amygdala volumes in patients with BPD.

Methods

We compared 2 groups of unmedicated female patients with BPD (10 with and 15 without comorbid PTSD) and 25 healthy female controls. We used T1- and T2-weighted magnetic resonance images for manual tracing and 3-dimensional reconstruction of the hippocampus and amygdala.

Results

Hippocampus volumes of patients with BPD and PTSD were smaller than those of healthy controls. However, there was no significant difference between patients with BPD but without PTSD and controls. Impulsiveness was positively correlated with hippocampus volumes in patients with BPD.

Limitations

Our study did not allow for disentangling the effects of PTSD and traumatization. Another limitation was the relatively small sample size.

Conclusion

Our findings highlight the importance of classifying subgroups of patients with BPD. Comorbid PTSD may be related to volumetric alterations in brain regions that are of central importance to our understanding of borderline psychopathology.  相似文献   

15.

Background

To our knowledge, no whole brain investigation of morphological aberrations in dissociative disorder is available to date. Previous region-of-interest studies focused exclusively on amygdalar, hippocampal and parahippocampal grey matter volumes and did not include patients with depersonalization disorder (DPD). We therefore carried out an explorative whole brain study on structural brain aberrations in patients with DPD.

Methods

We acquired whole brain, structural MRI data for patients with DPD and healthy controls. Voxel-based morphometry was carried out to test for group differences, and correlations with symptom severity scores were computed for grey matter volume.

Results

Our study included 25 patients with DPD and 23 controls. Patients exhibited volume reductions in the right caudate, right thalamus and right cuneus as well as volume increases in the left dorsomedial prefrontal cortex and right somatosensory region that are not a direct function of anxiety or depression symptoms.

Limitations

To ensure ecological validity, we included patients with comorbid disorders and patients taking psychotropic medication.

Conclusion

The results of this first whole brain investigation of grey matter volume in patients with a dissociative disorder indentified structural alterations in regions subserving the emergence of conscious perception. It remains unknown if these alterations are best understood as risk factors for or results of the disorder.  相似文献   

16.

Objectives

The gamma-band auditory steady-state response (ASSR) is thought to reflect the function of parvalbumin-positive γ-aminobutyric acid (GABA)-ergic interneurons and may be a candidate biomarker in early psychosis. Although previous cross-sectional studies have shown that gamma-band ASSR is reduced in early psychosis, whether reduced gamma-band ASSR could be a predictor of the long-term prognosis remains unknown.

Methods

In this longitudinal study, we investigated the association between gamma-band ASSR reduction and future global symptomatic or functional outcome in early psychosis. We measured 40-Hz ASSR in 34 patients with recent-onset schizophrenia (ROSZ), 28 ultra-high risk (UHR) individuals, and 30 healthy controls (HCs) at baseline. After 1–2?years, we evaluated the global assessment of functioning (GAF) in the ROSZ (N?=?20) and UHR (N?=?20) groups.

Results

The 40-Hz ASSR was significantly reduced in the ROSZ and UHR groups. The attenuated 40-Hz ASSR was correlated with the future global symptomatic outcome in the ROSZ, but not in the UHR groups.

Conclusions

A reduction in the gamma-band ASSR after the onset of psychosis may predict symptomatic outcomes in early psychosis.

Significance

Gamma-band ASSR may be a potentially useful biomarker of the long-term prognosis in patients with recent-onset schizophrenia.  相似文献   

17.

Objective

The psychobiological model of temperament and character indicates that personality traits are heritable and, during development, constantly influence one’s susceptibility to schizophrenia. Our objective was to evaluate temperament and character in subjects at ultra-high risk (UHR) for psychosis and individuals with first-episode schizophrenia.

Methods

UHR for psychosis subjects (n = 50), first-episode schizophrenia patients (n = 33), and normal controls (n = 120) were compared on temperament and character dimensions, and correlation analysis of each personality dimension with psychopathologies, global and social functioning, and self-esteem. General and social self-efficacy reports were conducted. UHR subjects were followed-up for 24 months and the baseline personality dimensions were compared between the converted and non-converted groups.

Results

Both clinical groups showed abnormal personality traits in terms of temperament (higher harm avoidance, lower reward dependence and persistence) and character (lower self-directedness and cooperativeness). Psychosocial functioning and psychological health components were found to be correlated with some personality dimensions. The conversion rate of overt psychotic disorder was 25.0% at the 24-month follow-up. Baseline cooperativeness dimension was a significant predictive dimension for conversion into overt psychosis in the UHR group during the follow-up period.

Conclusion

Patients with first episode schizophrenia have a pervasively altered personality profile from normal controls. More importantly, this altered personality profile already emerged in putative prodromal, UHR individuals. The present findings indicate that certain personality traits can play a protective or vulnerable role in developing schizophrenia.  相似文献   

18.

Objective

According to the stress-toxicity hypothesis of depression, hippocampal volumes may diminish as the disease progresses. We sought to examine the changes in hippocampal and amygdala volumes at baseline and at 3 years after an acute depressive episode, and the impact of reduced hippocampal volumes on the outcome.

Methods

In a prospective, longitudinal study, we examined the hippocampus and amygdala of 30 inpatients with major depression from the Department of Psychiatry and Psychotherapy and 30 healthy participants from the community (control group) using high-resolution magnetic resonance images at baseline and after 3 years. Psychopathology was assessed at baseline, weekly during the inpatient phase and then after 1, 2 and 3 years.

Results

During the 3-year follow-up period, neither hippocampal nor amygdala volumes changed significantly among patients or participants in the control group. However, in the subgroup of patients who took antidepressants over the full 3 years, the left hippocampal volumes increased significantly. Patients with small hippocampal volumes and previous depressive episodes had a worse clinical outcome compared with patients with large hippocampal volumes and previous depressive episodes.

Conclusion

Overall, our results suggest that a relatively small hippocampal volume may be a vulnerability factor for a bad treatment response in major depression. Subtle changes in hippocampal volumes may be detectable during continuous antidepressant therapy. Such changes may be the result of neuroplastic processes.Medical subject headings: hippocampus, amygdala, magnetic resonance imaging, depressive disorder, major  相似文献   

19.

Objective

Attention-deficit hyperactivity disorder (ADHD) in adulthood is a serious health problem with a prevalence of up to 4%. Limbic structures have been implicated in the genesis of ADHD; it has been suggested that they mediate mood and cognitive disturbances in affected individuals. Recently, a large study involving children and adolescents with ADHD reported bilateral enlargement of the hippocampus and indirect evidence of amygdala volume loss in this patient sample. We sought to test the hypothesis that, like in pediatric patients, there might be hippocampus and amygdala volume abnormalities in adult patients with ADHD.

Methods

We studied 27 adult patients with ADHD and 27 group-matched healthy volunteers using a 1.5 T magnetic resonance imaging scanner. We manually obtained morphometric measurements of the regions mentioned.

Results

In contrast to previous findings in children and adolescents, we found no significant differences in hippocampus and amygdala volumes among adults with and without the disorder.

Conclusion

Findings of hippocampus enlargement and amygdala volume loss are not very stable across different samples of patients with ADHD. Contradictory findings may be related to the different locations of alterations along the complex circuits responsible for the different symptoms of ADHD. Further studies involving larger samples of adult patients with ADHD and using multimodal designs are needed.Medical subject headings: hippocampus, amygdala, attention deficit disorder with hyperactivity  相似文献   

20.

Background

Prepulse inhibition (PPI) of the startle reflex is modulated by a complex neural network. Prepulse inhibition impairments are found at all stages of schizophrenia. Previous magnetic resonance imaging (MRI) studies suggest that brain correlates of PPI differ between patients with schizophrenia and healthy controls; however, these studies included only patients with chronic illness and medicated patients. Our aim was to examine the structural brain correlates of PPI in antipsychotic-naive patients with first-episode schizophrenia.

Methods

We performed acoustic PPI assessment and structural MRI (1.5 and 3 T) in men with first-episode schizophrenia and age-matched controls. Voxel-based morphometry was used to investigate the association between PPI and grey matter volumes.

Results

We included 27 patients and 38 controls in the study. Patients had lower PPI than controls. The brain areas in which PPI and grey matter volume correlated did not differ between the groups. Independent of group, PPI was significantly and positively associated with regional grey matter volume in the right superior parietal cortex. Prepulse inhibition and grey matter volume associations were also observed in the left rostral dorsal premotor cortex, the right presupplementary motor area and the anterior medial superior frontal gyrus bilaterally. Follow-up analyses suggested that the rostral dorsal premotor cortex and presupplementary motor area correlations were driven predominantly by the controls.

Limitations

We used 2 different MRI scanners, which might have limited our ability to find subcortical associations since interscanner consistency is low for subcortical regions.

Conclusion

The superior parietal cortex seems to be involved in the regulation of PPI in controls and antipsychotic-naive men with first-episode schizophrenia. Our observation that PPI deficits in schizophrenia may be related to the rostral dorsal premotor cortex and presupplementary motor area, brain areas involved in maintaining relevant sensory information and voluntary inhibition, warrants further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号