首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholera, caused by Vibrio cholerae, is a noninvasive dehydrating enteric disease with a high mortality rate if untreated. Infection with V. cholerae elicits long-term protection against subsequent disease in countries where the disease is endemic. Although the mechanism of this protective immunity is unknown, it has been hypothesized that a protective mucosal response to V. cholerae infection may be mediated by anamnestic responses of memory B cells in the gut-associated lymphoid tissue. To characterize memory B-cell responses to cholera, we enrolled a cohort of 39 hospitalized patients with culture-confirmed cholera and evaluated their immunologic responses at frequent intervals over the subsequent 1 year. Memory B cells to cholera antigens, including lipopolysaccharide (LPS), and the protein antigens cholera toxin B subunit (CTB) and toxin-coregulated pilus major subunit A (TcpA) were enumerated using a method of polyclonal stimulation of peripheral blood mononuclear cells followed by a standard enzyme-linked immunospot procedure. All patients demonstrated CTB, TcpA, and LPS-specific immunoglobulin G (IgG)and IgA memory responses by day 90. In addition, these memory B-cell responses persisted up to 1 year, substantially longer than other traditional immunologic markers of infection with V. cholerae. While the magnitude of the LPS-specific IgG memory B-cell response waned at 1 year, CTB- and TcpA-specific IgG memory B cells remained significantly elevated at 1 year after infection, suggesting that T-cell help may result in a more durable memory B-cell response to V. cholerae protein antigens. Such memory B cells could mediate anamnestic responses on reexposure to V. cholerae.Vibrio cholerae, the etiologic agent of cholera, causes an estimated 3 to 5 million cases of secretory diarrhea, resulting in over 100,000 deaths annually (24). Strains of V. cholerae can be differentiated serologically by the O side chain of the lipopolysaccharide (LPS) component of the outer membrane. Although more than 200 different serogroups have been isolated from the environment, the vast majority of strains that produce cholera belong to serogroup O1 or O139, both of which consist of noninvasive pathogens that colonize the mucosal surface of the small intestine (19). V. cholerae O1 biotype El Tor is currently the predominant cause of cholera globally and in Bangladesh.The mechanisms of protective immunity to cholera are not known. Volunteer and epidemiologic studies demonstrate that clinically apparent infection with V. cholerae confers long-term protection of at least 3 years against subsequent disease (7, 12, 13). The best-studied marker of protective immunity is the vibriocidal antibody, a complement-dependent bactericidal antibody; however, there is no vibriocidal antibody titer at which complete protection is achieved (20). Furthermore, the vibriocidal response wanes rapidly, and it is hypothesized that the vibriocidal antibody may reflect other longer-lasting, protective immune responses occurring at the mucosal surface (3).Patients with cholera develop additional humoral immune responses to several antigens including cholera toxin subunit B (CTB), toxin-coregulated pilus major subunit A (TcpA), and LPS (1). We have recently shown that serum anti-CTB immunoglobulin A (IgA) antibody levels are also associated with protective immunity independent of the vibriocidal antibody on exposure to cholera, but serum IgA levels also wane rapidly after infection (10). Although levels of serum anti-LPS and anti-CTB IgG antibodies increase considerably after infection, these have not been shown to correlate with protection from V. cholerae infection in humans (8, 10).Cholera patients develop substantial mucosal immune responses after infection. These can be measured by the transient increase of antigen-specific IgA antibody-secreting cells (ASC) in the circulation. The ASC assay quantifies lymphocytes that are activated in the gut-associated lymphoid tissue (GALT) when they transiently circulate in blood before rehoming to mucosal effector sites (6, 16, 17). These predominantly gut-homing ASC peak in the circulation between 5 and 10 days after onset of illness but are no longer detected during late convalescence as they return to populate the GALT (1, 11). Because V. cholerae is a noninvasive pathogen, it is hypothesized that protective immunity is derived from the activity of the secretory IgA system of the GALT (14, 22, 23). Volunteer studies of subjects receiving CTB orally demonstrate local and systemic generation of anti-CTB IgA antibodies that peak at 7 days following ingestion but decline to baseline by 15 months; however, these volunteers mount anamnestic responses with a rapid return to peak mucosal antibody titers in as few as 3 days after subsequent challenge with oral CTB (22, 23). It is thus hypothesized that protection from cholera may be mediated by rapid anamnestic responses of memory B cells in the GALT to V. cholerae antigens.In this study, we examined the memory B-cell immune responses to V. cholerae infection, using a polyclonal stimulation method to enhance the detection of memory B cells in the circulation by inducing their proliferation and differentiation into antibody-secreting plasmablasts (4, 5). A standardized two-color enzyme-linked immunospot (ELISPOT) assay allows for the quantification of small numbers of circulating V. cholerae antigen-specific memory B cells as a proportion of total memory B cells (2, 4, 5, 21). Using this system, we have previously shown that cholera patients develop CTB-specific IgG memory B-cell responses that persist for at least 3 months after infection (11). The present study further characterizes memory B-cell responses to CTB, TcpA, and LPS for both IgA and IgG isotypes for a period of 1 year following acute infection and examines differences between the memory B-cell responses to the T-cell-dependent protein antigens CTB and TcpA and the T-cell-independent antigen LPS.  相似文献   

2.
Vibrio cholerae O1 can cause diarrheal disease that may be life-threatening without treatment. Natural infection results in long-lasting protective immunity, but the role of T cells in this immune response has not been well characterized. In contrast, robust B-cell responses to V. cholerae infection have been observed. In particular, memory B-cell responses to T-cell-dependent antigens persist for at least 1 year, whereas responses to lipopolysaccharide, a T-cell-independent antigen, wane more rapidly after infection. We hypothesize that protective immunity is mediated by anamnestic responses of memory B cells in the gut-associated lymphoid tissue, and T-cell responses may be required to generate and maintain durable memory B-cell responses. In this study, we examined B- and T-cell responses in patients with severe V. cholerae infection. Using the flow cytometric assay of the specific cell-mediated immune response in activated whole blood, we measured antigen-specific T-cell responses using V. cholerae antigens, including the toxin-coregulated pilus (TcpA), a V. cholerae membrane preparation, and the V. cholerae cytolysin/hemolysin (VCC) protein. Our results show that memory T-cell responses develop by day 7 after infection, a time prior to and concurrent with the development of B-cell responses. This suggests that T-cell responses to V. cholerae antigens may be important for the generation and stability of memory B-cell responses. The T-cell proliferative response to VCC was of a higher magnitude than responses observed to other V. cholerae antigens.Vibrio cholerae is a gram-negative bacterium that can cause a severe, acute secretory diarrhea. Serological differentiation of V. cholerae strains is based on the O-side chain of the lipopolysaccharide (LPS) component of the outer membrane. Of the more than 200 serogroups of V. cholerae identified, only the O1 and O139 serogroups can cause epidemic cholera (44). These pathogens are noninvasive and colonize the mucosal surface of the small intestine (44).Natural infection with V. cholerae is known to provide protection against subsequent disease, but the mechanism of this protective immunity is not fully characterized. The vibriocidal antibody is a complement-dependent bactericidal antibody that is associated with protection from infection. However, no known threshold level of the vibriocidal antibody confers complete protection from V. cholerae infection, and some individuals with low serum vibriocidal antibody titers are still protected. This suggests that the vibriocidal titer may be a surrogate marker (16, 45). Elevated serum immunoglobulin A (IgA) antibody levels specific for the B subunit of cholera toxin (CTB), the major structural subunit of a type IV pilus (TcpA), and LPS are also associated with protective immunity in areas where cholera is endemic (19). However, after natural infection, the serum levels of these antibodies wane more rapidly than protective immunity (19). Patients with cholera develop memory B-cell responses of both the IgG and the IgA isotype to at least two V. cholerae protein antigens, CTB and TcpA. These responses are detectable for at least 1 year after infection and persist even after V. cholerae antigen-specific antibody-secreting cells and serum antibody titers have returned to baseline (18). B-cell memory responses also develop for the T-cell independent antigen LPS, but these responses wane more rapidly than memory B-cell responses to protein antigens, suggesting that durable memory B-cell responses to some V. cholerae antigens may be T-cell dependent (18).We have recently demonstrated that cholera patients mount a primed T-cell response in the mucosa after V. cholerae O1 infection (6). We hypothesize that protection from cholera may be mediated by memory B cells capable of an anamnestic response in the gut mucosa and that these memory B cells may depend on stimulation provided by memory T cells for their development and maintenance. T cells may contribute to the activation of B cells during V. cholerae infection by secreting stimulatory cytokines and direct contact with B cells in lymph nodes. Therefore, T cells may have an important role in protective immunity to V. cholerae infection.We characterized the memory T-cell responses to V. cholerae antigens following natural V. cholerae infection and compared these with serological responses to the same antigens. Previously, our group has studied various V. cholerae antigens, including mannose-sensitive hemagglutinin, TcpA, CTB, and LPS (22, 33, 37). We also included in the present study responses to a novel antigen, V. cholerae cytolysin/hemolysin (VCC) (31, 32). The hly gene that encodes the VCC protein is widespread across both pathogenic and environmental strains of V. cholerae, suggesting that VCC may impart an advantage to the organism (42). Although the precise role of VCC in V. cholerae infection is unknown, VCC is the primary virulence factor in V. cholerae infection with non-O1, non-O139 strains that do not produce cholera toxin (12, 46). The immune response to VCC is not well understood; however, recent studies suggest that VCC may promote a Th2 response in V. cholerae infection (2). In addition, the cytolytic activity of VCC may generate epithelial destruction that allows other V. cholerae antigens to penetrate the mucosa and promote the inflammatory response observed in V. cholerae infection (35, 39).  相似文献   

3.
Vibrio cholerae O1 causes cholera, a dehydrating diarrheal disease. We have previously shown that V. cholerae-specific memory B cell responses develop after cholera infection, and we hypothesize that these mediate long-term protective immunity against cholera. We prospectively followed household contacts of cholera patients to determine whether the presence of circulating V. cholerae O1 antigen-specific memory B cells on enrollment was associated with protection against V. cholerae infection over a 30-day period. Two hundred thirty-six household contacts of 122 index patients with cholera were enrolled. The presence of lipopolysaccharide (LPS)-specific IgG memory B cells in peripheral blood on study entry was associated with a 68% decrease in the risk of infection in household contacts (P = 0.032). No protection was associated with cholera toxin B subunit (CtxB)-specific memory B cells or IgA memory B cells specific to LPS. These results suggest that LPS-specific IgG memory B cells may be important in protection against infection with V. cholerae O1.  相似文献   

4.
Infection with Vibrio cholerae and oral cholera vaccines (OCVs) induce transient circulating plasmablast responses that peak within approximately 7 days after infection or vaccination. We previously demonstrated that plasmablast responses strongly correlate with subsequent levels of V. cholerae-specific duodenal antibodies up to 6 months after V. cholerae infection. Hence, plasmablast responses provide an early window into the immunologic memory at the mucosal surface. In this study, we characterized plasmablast responses following V. cholerae infection using a flow cytometrically defined population and compared V. cholerae-specific responses in adult patients with V. cholerae O1 infection and vaccinees who received the OCV Dukoral (Crucell Vaccines Canada). Among flow cytometrically sorted populations of gut-homing plasmablasts, almost 50% of the cells recognized either cholera toxin B subunit (CtxB) or V. cholerae O1 lipopolysaccharide (LPS). Using a traditional enzyme-linked immunosorbent spot assay (ELISPOT), we found that infection with V. cholerae O1 and OCVs induce similar responses to the protein antigen CtxB, but responses to LPS were diminished after OCV compared to those after natural V. cholerae infection. A second dose of OCV on day 14 failed to boost circulating V. cholerae-specific plasmablast responses in Bangladeshi adults. Our results differ from those in studies from areas where cholera is not endemic, in which a second vaccination on day 14 significantly boosts plasmablast responses. Given these results, it is likely that the optimal boosting strategies for OCVs differ significantly between areas where V. cholerae infection is endemic and those where it is not.  相似文献   

5.
We determined the types of cholera toxin (CT) produced by a collection of 185 Vibrio cholerae O1 strains isolated in Bangladesh over the past 45 years. All of the El Tor strains of V. cholerae O1 isolated since 2001 produced CT of the classical biotype, while those isolated before 2001 produced CT of the El Tor biotype.  相似文献   

6.
The avidity of antibodies to specific antigens and the relationship of avidity to memory B cell responses to these antigens have not been studied in patients with cholera or those receiving oral cholera vaccines. We measured the avidity of antibodies to cholera toxin B subunit (CTB) and Vibrio cholerae O1 lipopolysaccharide (LPS) in Bangladeshi adult cholera patients (n = 30), as well as vaccinees (n = 30) after administration of two doses of a killed oral cholera vaccine. We assessed antibody and memory B cell responses at the acute stage in patients or prior to vaccination in vaccinees and then in follow-up over a year. Both patients and vaccinees mounted CTB-specific IgG and IgA antibodies of high avidity. Patients showed longer persistence of these antibodies than vaccinees, with persistence lasting in patients up to day 270 to 360. The avidity of LPS-specific IgG and IgA antibodies in patients remained elevated up to 180 days of follow-up. Vaccinees mounted highly avid LPS-specific antibodies at day 17 (3 days after the second dose of vaccine), but the avidity waned rapidly to baseline by 30 days. We examined the correlation between antigen-specific memory B cell responses and avidity indices for both antigens. We found that numbers of CTB- and LPS-specific memory B cells significantly correlated with the avidity indices of the corresponding antibodies (P < 0.05; Spearman''s ρ = 0.28 to 0.45). These findings suggest that antibody avidity after infection and immunization is a good correlate of the development and maintenance of memory B cell responses to Vibrio cholerae O1 antigens.  相似文献   

7.
Cholera caused by Vibrio cholerae O1 confers at least 3 to 10 years of protection against subsequent disease regardless of age, despite a relatively rapid fall in antibody levels in peripheral blood, suggesting that memory B cell responses may play an important role in protection. The V. cholerae O1-specific polysaccharide (OSP) component of lipopolysaccharide (LPS) is responsible for serogroup specificity, and it is unclear if young children are capable of developing memory B cell responses against OSP, a T cell-independent antigen, following cholera. To address this, we assessed OSP-specific memory B cell responses in young children (2 to 5 years, n = 11), older children (6 to 17 years, n = 21), and adults (18 to 55 years, n = 28) with cholera caused by V. cholerae O1 in Dhaka, Bangladesh. We also assessed memory B cell responses against LPS and vibriocidal responses, and plasma antibody responses against OSP, LPS, and cholera toxin B subunit (CtxB; a T cell-dependent antigen) on days 2 and 7, as well as days 30, 90, and 180 after convalescence. In all age cohorts, vibriocidal responses and plasma OSP, LPS, and CtxB-specific responses peaked on day 7 and fell toward baseline over the follow-up period. In comparison, we were able to detect OSP memory B cell responses in all age cohorts of patients with detectable responses over baseline for 90 to 180 days. Our results suggest that OSP-specific memory B cell responses can occur following cholera, even in the youngest children, and may explain in part the age-independent induction of long-term immunity following naturally acquired disease.  相似文献   

8.
The emergence of Vibrio cholerae O139 Bengal in 1993, its rapid spread in an epidemic form, in which it replaced existing strains of V. cholerae O1 during 1992 and 1993, and the subsequent reemergence of V. cholerae O1 of the El Tor biotype in Bangladesh since 1994 have raised questions regarding the origin of the reemerged El Tor vibrios. We studied 50 El Tor vibrio strains isolated in Bangladesh and four other countries in Asia and Africa before the emergence of V. cholerae O139 and 32 strains isolated in Bangladesh during and after the epidemic caused by V. cholerae O139 and 32 strains isolated in Bangladesh during and after the epidemic caused by V. cholerae O139 to determine whether the reemerged El Tor vibrios were genetically different from the El Tor vibrios which existed before the emergence of V. cholerae O139. Analysis of restriction fragment length polymorphisms in genes for conserved rRNA, cholera toxin (ctxA), and zonula occludens toxin (zot) or in DNA sequences flanking the genes showed that the El Tor strains isolated before the emergence of V. cholerae O139 belonged to four different ribotypes and four different ctx genotypes. Of 32 El Tor strains isolated after the emergence of O139 vibrios, 30 strains (93.7%) including all the clinical isolates belonged to a single new ribotype and a distinctly different ctx genotype. These results provide evidence that the reemerged El Tor strains represent a new clone of El Tor vibrios distinctly different from the earlier clones of El Tor vibrios which were replaced by the O139 vibrios. Further analysis showed that all the strains carried the structural and regulatory genes for toxin-coregulated pilus (tcpA, tcpI, and toxR). All strains of the new clone produced cholera toxin (CT) in vitro, as assayed by the GM1-dependent enzyme-linked immunosorbent assay, and the level of CT production was comparable to that of previous epidemic isolates of El Tor vibrios. Further studies are required to assess the epidemic potential of the newly emerged clone of V. cholerae O1 and to understand the mechanism of emergence of new clones of toxigenic V. cholerae.  相似文献   

9.
Vibrio cholerae O139 Bengal, although closely related to V. cholerae O1 El Tor, produces a polysaccharide capsule and has a distinct O antigen. We have identified a chromosomal region of at least 11 kb, as defined by three TnphoA mutations, that is required for the expression of both polysaccharides. Electron microscopy and sodium dodecyl sulfate-polyacrylamide gel electrophoresis show that these TnphoA mutants have lost the abilities both to express capsule and to produce lipopolysaccharide beyond the core oligosaccharide. Reactivity with O139 typing serum and resistance to serum are also lost in the mutants. DNA probes for this region do not hybridize with O1 V. cholerae but do react with other vibrios, implying that the region was recently acquired.  相似文献   

10.
Protease and soluble hemagglutinating activities produced by a non-O1 Vibrio cholerae strain isolated from a patient with diarrhea were compared with similar activities produced by V. cholerae O1. The soluble protease activities were indistinguishable in heat stability, immunodiffusion, inhibition by antiserum, and electrophoretic analysis. On the other hand, the soluble hemagglutinating activities of both strains were not completely identical. The hemagglutinating activity of the non-O1 V. cholerae strain was not inhibited by Zincov; it was more sensitive to inhibition by normal serum, and it had an unusual pattern of heat stability. Heating at 100 degrees C resulted in some recovery of activity of a sample previously inactivated by heating at 60 degrees C.  相似文献   

11.
Vibrio cholerae O1 strains that are hybrids between the classical and El Tor biotypes were isolated during two consecutive years (2004-2005) from diarrheal patients in Mozambique. Similar variants isolated in Bangladesh and recently isolated El Tor strains were analyzed for genetic diversity. Pulsed-field gel electrophoresis (PFGE) analysis using the restriction enzyme NotI, resulted in 18-21 bands showed five closely related PFGE patterns that were distributed similarly in both years (2004-2005) among the 80 strains tested in Mozambique. Overall based on the PFGE patterns the hybrids indicated an El Tor lineage. The restriction patterns of whole-chromosomal DNA grouped the hybrid strains from Mozambique into a separate cluster from Bangladeshi clinical and environmental hybrid strains. A high molecular weight band of 398kb that contain rstR allele of the classical type was detected from all hybrid strains, which was absent in all conventional classical and El Tor strains. This band could be designated as a marker for the hybrid strains. This study suggests that hybrid strains from Mozambique are closely related to each other, different from Bangladeshi hybrid strains that are diverse in nature and all hybrid strains differed markedly from conventional classical and El Tor strains.  相似文献   

12.
Vibrio cholerae serogroup O139, now considered to be the second organism capable of causing epidemic severe dehydrating cholera, contains a capsular polysaccharide which makes it difficult for it to be used in the conventional vibriocidal antibody assay optimized for V. cholerae O1. After modification of the procedure, which involved the use of specific bacterial strains, a lower bacterial inoculum, and increased amounts of complement, the vibriocidal antibody responses to V. cholerae O139 were measured in acute- and convalescent-phase sera from 33 V. cholerae O139-infected and 18 V. cholerae O1-infected patients and in single serum samples from 20 healthy control subjects. The responses in these individuals to V. cholerae O1 strains were also determined. Significant elevations in the homologous antibody response were found only in the convalescent-phase sera from both groups of patients with cholera. These findings may explain the basis for the lack of heterologous protection between the two serogroups of V. cholerae. Healthy controls had higher background levels of vibriocidal antibody to V. cholerae O1 than to V. cholerae O139.  相似文献   

13.
Plasmid profiles and factors associated with toxigenicity in 51 strains of Vibrio cholerae non-O1 isolated from water samples collected in Bangladesh were analysed. Eleven (21.5%) strains were found to harbour at least one plasmid of 1.7-115 Mda; seven of these strains shared a 115-Mda plasmid. Six of 13 strains tested gave positive cytotoxic and enterotoxic responses. However, two non-cytotoxic strains were enterotoxigenic. Only three of the six cytotoxic and enterotoxic strains caused haemagglutination of human erythrocytes which indicated that toxin production and haemagglutinating activity were unrelated in these V. cholerae non-O1 strains. Conjugal transfer assays demonstrated that the 115-Mda plasmid harboured by some of the toxigenic V. cholerae non-O1 strains carried genes coding for antibiotic resistance and cytotoxin production but not for enterotoxin production. However, this plasmid was also carried by non-toxigenic strains. Some other strains carrying no plasmids or only small-mol.-wt plasmids, were found to be toxigenic. Therefore, toxin production is not plasmid-mediated in all V. cholerae non-O1 strains. Regardless of their pathogenic potential, V. cholerae non-O1 strains possessed the capacity to grow in conditions of iron limitation and, under these conditions, synthesis of at least two new outer-membrane proteins was induced.  相似文献   

14.
strains other than O1 and O139 (non-O1 Vibrio cholerae) are associated with sporadic diarrheal disorders and limited outbreaks of diarrhea and have often been reported in association with extraintestinal infections. The following is a presentation of a fatal case of non-O1 Vibrio cholerae septicemia with disseminated intravascular coagulation and cutaneous bullous lesions that occurred in a patient infected with the acquired immunodeficiency syndrome. In order to prevent Vibrio cholerae infection, patients with underlying diseases should be warned of the risk factors for acquiring such infection, including consumption of raw shellfish and exposure to sea and fresh water where shellfish are found.  相似文献   

15.
Vibrio cholerae O139 Bengal initially appeared in the southern coastal region of Bangladesh and spread northward, causing explosive epidemics during 1992 and 1993. The resurgence of V. cholerae O139 during 1995 after its transient displacement by a new clone of El Tor vibrios demonstrated rapid changes in the epidemiology of cholera in Bangladesh. A recent outbreak of cholera in two north-central districts of Bangladesh caused by V. cholerae O139 led us to analyze strains collected from the outbreak and compare them with V. cholerae O139 strains isolated from other regions of Bangladesh and neighboring India to investigate their origins. Analysis of restriction fragment length polymorphisms in genes for conserved rRNA (ribotype) revealed that the recently isolated V. cholerae O139 strains belonged to a new ribotype which was distinct from previously described ribotypes of toxigenic V. cholerae O139. All strains carried the genes for toxin-coregulated pili (tcpA and tcpI) and accessory colonization factor (acfB), the regulatory gene toxR, and multiple copies of the lysogenic phage genome encoding cholera toxin (CTXPhi) and belonged to a previously described ctxA genotype. Comparative analysis of the rfb gene cluster by PCR revealed the absence of a large region of the O1-specific rfb operon downstream of the rfaD gene and the presence of an O139-specific genomic region in all O139 strains. Southern hybridization analysis of the O139-specific genomic region also produced identical restriction patterns in strains belonging to the new ribotype and those of previously described ribotypes. These results suggested that the new ribotype of Bengal vibrios possibly originated from an existing strain of V. cholerae O139 by genetic changes in the rRNA operons. In contrast to previously isolated O139 strains which mostly had resistance to trimethoprim, sulfamethoxazole, and streptomycin encoded by a transposon (SXT element), 68.6% of the toxigenic strains analyzed in the present study, including all strains belonging to the new ribotype, were susceptible to these antibiotics. Molecular analysis of the SXT element revealed possible deletion of a 3.6-kb region of the SXT element in strains which were susceptible to the antibiotics. Thus, V. cholerae O139 strains in Bangladesh are also undergoing considerable reassortments in genetic elements encoding antimicrobial resistance.  相似文献   

16.
The scenario of cholera that existed previously changed in 1992 and 1993 with the emergence of toxigenic Vibrio cholerae O139 in India. The genesis of the new serogroup formed the impetus to search for O139 phages in and around the country. A total of five newly isolated phages lytic to V. cholerae O139 strains were used for the development of this phage typing scheme. These phages differed from each other and also differed from the existing O1 phages in their lytic patterns, morphologies, restriction endonuclease digestion profiles, and immunological criteria. With this scheme, 500 V. cholerae O139 strains were evaluated for their phage types, and almost all strains were found to be typeable. The strains clustered into 10 different phage types, of which type 1 (38.2%) was the dominant type, followed by type 2 (22.4%) and type 3 (18%). Additionally, a comparative study of phage types in 1993 and 1994 versus those from 1996 to 1998 for O139 strains showed a higher percentage of phage type 1 (40.5%), followed by type 3 (18.8%) during the period between 1993 and 1994, whereas phage type 2 (32. 1%) was the next major type during the period from 1996 to 1998. This scheme comprising five newly isolated phages would be another useful tool in the study of the epidemiology of cholera caused by V. cholerae O139.  相似文献   

17.
Vibrio cholerae O139 has recently emerged as the second etiologic agent of cholera in Asia. A study was carried out to evaluate the induction of specific immune responses to the organism in V. cholerae O139-infected patients. The immune responses to V. cholerae O139 Bengal were studied in patients by measuring antibody-secreting cells (ASC), as well as vibriocidal and antitoxic antibodies in the circulation. These responses were compared with those in patients with V. cholerae O1 disease. Strong immunoglobulin A (IgA) and IgM ASC responses were seen against the homologous lipopolysaccharide or serogroup of V. cholerae. The magnitude and isotype of the responses were similar in O139- and O1-infected patients. Vibriocidal antibody responses were seen against bacteria of the homologous but not heterologous serogroup, and these responses reflect the lack of cross-protection between the infections caused by the two serogroups. The two groups of patients showed comparable cholera toxin-specific ASC responses, with the IgG isotype dominating over the IgA isotype, as well as comparable antitoxic immune responses in plasma. These results suggest that despite having a polysaccharide capsule, V. cholerae O139 induces systemic and intestine-derived ASC responses in peripheral blood comparable to those seen in patients with V. cholerae O1 disease.  相似文献   

18.
The mannose-sensitive hemagglutinin (MSHA) is a type 4 pilus present in Vibrio cholerae O1 strains of the El Tor biotype, as well as in strains of serogroup O139. It has been shown to be a colonization antigen in animal models. The aim of this study was to investigate systemic and local antibody responses to MSHA in adult patients with cholera due to V. cholerae O1 and O139. Twenty-four of 28 (86%) patients with O1 cholera and 11 of 17 (65%) patients with O139 cholera showed significant increases in MSHA-specific immunoglobulin A (IgA) and IgM antibody-secreting cells (ASCs) 7 days after the onset of disease. However, the magnitude of the ASC response in O1 cholera patients was significantly higher than that in the O139 cholera patients in both IgA-producing (P = 0.015) and IgM-producing (P = 0.029) cells. Both groups of patients responded with antibody responses to MSHA in plasma, seroconverting with both IgA (63 to 70% of patients) and IgG (43 to 59% of patients) antibodies. Compared to the MSHA-specific antibody levels determined in healthy controls (n = 10), more than 90% of O1 and O139 cholera patients showed responses to MSHA of both the IgA and the IgG isotypes. About 70% of the patients in both groups also had antibody responses to MSHA in their feces. In summary, we demonstrated that MSHA is immunogenic, giving rise to both systemic and local antibodies in patients with cholera due to both O1 and O139 serogroups.  相似文献   

19.
A protease produced by a clinical isolate of Vibrio cholerae non-O1 was purified to apparent homogeneity by ammonium sulfate fractionation and successive column chromatography on DEAE-Sephadex A25, Sephadex G100, Mono Q, and Phenyl Superose. Like the hemagglutinin-protease of V. cholerae O1, the purified protease had both hemagglutinating and proteolytic activities. The protease was heat labile, and in contrast to crude preparations, no Arrhenius effect was observed with the purified protein. Immunological analyses indicated that the proteases (or hemagglutinins) derived from V. cholerae O1 and non-O1 are identical.  相似文献   

20.
The sixth pandemic of cholera and, presumably, the earlier pandemics were caused by the classical biotype of Vibrio cholerae O1, which was progressively replaced by the El Tor biotype representing the seventh cholera pandemic. Although the classical biotype of V. cholerae O1 is extinct, even in southern Bangladesh, the last of the niches where this biotype prevailed, we have identified new varieties of V. cholerae O1, of the El Tor biotype with attributes of the classical biotype, from hospitalized patients with acute diarrhea in Bangladesh. Twenty-four strains of V. cholerae O1 isolated between 1991 and 1994 from hospitalized patients with acute diarrhea in Matlab, a rural area of Bangladesh, were examined for the phenotypic and genotypic traits that distinguish the two biotypes of V. cholerae O1. Standard reference strains of V. cholerae O1 belonging to the classical and El Tor biotypes were used as controls in all of the tests. The phenotypic traits commonly used to distinguish between the El Tor and classical biotypes, including polymyxin B sensitivity, chicken cell agglutination, type of tcpA and rstR genes, and restriction patterns of conserved rRNA genes (ribotypes), differentiated the 24 strains of toxigenic V. cholerae O1 into three types designated the Matlab types. Although all of the strains belonged to ribotypes that have been previously found among El Tor vibrios, type I strains had more traits of the classical biotype while type II and III strains appeared to be more like the El Tor biotype but had some classical biotype properties. These results suggest that, although the classical and El Tor biotypes have different lineages, there are possible naturally occurring genetic hybrids between the classical and El Tor biotypes that can cause cholera and thus provide new insight into the epidemiology of cholera in Bangladesh. Furthermore, the existence of such novel strains may have implications for the development of a cholera vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号