首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of shape memory polymer composites is growing rapidly in smart structure applications. In this work, an active asymmetric composite called “controlled behavior composite material (CBCM)” is used as shape memory polymer composite. The programming and the corresponding initial fixity of the composite structure is obtained during a bending test, by heating CBCM above thermal glass transition temperature of the used Epoxy polymer. The shape memory properties of these composites are investigated by a bending test. Three types of recoveries are conducted, two classical recovery tests: unconstrained recovery and constrained recovery, and a new test of partial recovery under load. During recovery, high recovery displacement and force are produced that enables the composite to perform strong two-way actuations along with multi-shape memory effect. The recovery force confirms full recovery with two-way actuation even under a high load. This unique property of CBCM is characterized by the recovered mechanical work.  相似文献   

2.
Shape memory polymer (SMP) nanocomposites with a fast electro-actuation speed were prepared by dispersing Cu-decorated carbon nanotubes (CNTs) (Cu-CNTs, 1 wt %, 2 wt %, and 3 wt %) in a polylactic acid (PLA)/epoxidized soybean oil (ESO) blend matrix. The shape memory effect (SME) induced by an electrical current was investigated by a fold-deploy “U”-shape bending test. In addition, the Cu-CNT dispersed PLA/ESO nanocomposite was characterized by atomic force microscopy (AFM), dynamic mechanical analysis (DMA) and tensile and electrical measurements. The results demonstrated that the SME was dependent on the Cu-CNT content in the nanocomposites. When comparing the SMEs of the nanocomposite specimens with different Cu-CNT contents, the 2 wt % Cu-CNT dispersed system exhibited a shape recovery as high as 98% within 35 s due to its higher electrical conductivity that results from uniform Cu-CNT dispersion. However, the nanocomposites that contained 1 wt % and 3 wt % Cu-CNTs required 75 s and 63 s, respectively, to reach a maximum recovery level. In addition, the specimens exhibited better mechanical properties after the addition of Cu-CNTs.  相似文献   

3.
Fiber-reinforced rubber composites with integrated shape memory alloy (SMA) actuator wires present a promising approach for the creation of soft and highly elastic structures with adaptive functionalities for usage in aerospace, robotic, or biomedical applications. In this work, the flat-knitting technology is used to develop glass-fiber-reinforced fabrics with tailored properties designed for active bending deformations. During the knitting process, the SMA wires are integrated into the textile and positioned with respect to their actuation task. Then, the fabrics are infiltrated with liquid silicone, thus creating actively deformable composites. For dimensioning such structures, a comprehensive understanding of the interactions of all components is required. Therefore, a simulation model is developed that captures the properties of the rubber matrix, fiber reinforcement, and the SMA actuators and that is capable of simulating the active bending deformations of the specimens. After model calibration with experimental four-point-bending data, the SMA-driven bending deformation is simulated. The model is validated with activation experiments of the actively deformable specimens. The simulation results show good agreement with the experimental tests, thus enabling further investigations into the deformation mechanisms of actively deformable fiber-reinforced rubbers.  相似文献   

4.
Owing to the world population aging, biomedical materials, such as shape memory alloys (SMAs) have attracted much attention. The biocompatible Ti–Au–Ta SMAs, which also possess high X–ray contrast for the applications like guidewire utilized in surgery, were studied in this work. The alloys were successfully prepared by physical metallurgy techniques and the phase constituents, microstructures, chemical compositions, shape memory effect (SME), and superelasticity (SE) of the Ti–Au–Ta SMAs were also examined. The functionalities, such as SME, were revealed by the introduction of the third element Ta; in addition, obvious improvements of the alloy performances of the ternary Ti–Au–Ta alloys were confirmed while compared with that of the binary Ti–Au alloy. The Ti3Au intermetallic compound was both found crystallographically and metallographically in the Ti–4 at.% Au–30 at.% Ta alloy. The strength of the alloy was promoted by the precipitates of the Ti3Au intermetallic compound. The effects of the Ti3Au precipitates on the mechanical properties, SME, and SE were also investigated in this work. Slight shape recovery was found in the Ti–4 at.% Au–20 at.% Ta alloy during unloading of an externally applied stress.  相似文献   

5.
Smart materials are much discussed in the current research scenario. The shape memory effect is one of the most fascinating occurrences in smart materials, both in terms of the phenomenon and its applications. Many metal alloys and polymers exhibit the shape memory effect (SME). Shape memory properties of elastomers, such as rubbers, polyurethanes, and other elastomers, are discussed in depth in this paper. The theory, factors impacting, and key uses of SME elastomers are all covered in this article. SME has been observed in a variety of elastomers and composites. Shape fixity and recovery rate are normally analysed through thermomechanical cycle studies to understand the effectiveness of SMEs. Polymer properties such as chain length, and the inclusion of fillers, such as clays, nanoparticles, and second phase polymers, will have a direct influence on the shape memory effect. The article discusses these aspects in a simple and concise manner.  相似文献   

6.
Jong Wan Hu 《Materials》2014,7(2):1122-1141
In this paper, the superelastic shape memory alloy (SMA) slit damper system as an alternative design approach for steel structures is intended to be evaluated with respect to inelastic behavior simulated by refined finite element (FE) analyses. Although the steel slit dampers conventionally used for aseismic design are able to dissipate a considerable amount of energy generated by the plastic yielding of the base materials, large permanent deformation may occur in the entire structure. After strong seismic events, extra damage repair costs are required to restore the original configuration and to replace defective devices with new ones. Innovative slit dampers fabricated by superelastic SMAs that automatically recover their initial conditions only by the removal of stresses without heat treatment are introduced with a view toward mitigating the problem of permanent deformation. The cyclically tested FE models are calibrated to experimental results for the purpose of predicting accurate behavior. This study also focuses on the material constitutive model that is able to reproduce the inherent behavior of superelastic SMA materials by taking phase transformation between austenite and martensite into consideration. The responses of SMA slit dampers are compared to those of steel slit dampers. Axial stress and strain components are also investigated on the FE models under cyclic loading in an effort to validate the adequacy of FE modeling and then to compare between two slit damper systems. It can be shown that SMA slit dampers exhibit many structural advantages in terms of ultimate strength, moderate energy dissipation and recentering capability.  相似文献   

7.
An innovative method for prestressing structural elements through the use of shape memory alloys (SMAs) is gaining increasing attention in research as this method does not require the use of mechanical anchorages for tendons. The activation of the memory effect by means of temperature variations (Joule effect) in effect produces high stresses in SMA components attached to concrete components as reported in the literature. This paper presents the work performed for the purpose of prestressing concrete hollow cylinders with the use of nickel–titanium (Ni–Ti) SMA wires. In the tests, a variety of hollow cylinders were made using the same concrete mix and with the same wall thickness (20 mm), but with different external diameters (200 mm, 250 mm, and 300 mm). Their prestressing was achieved by the means of Ni-Ti SMA wires of different diameters (1 mm, 2 mm, and 3 mm) wrapped around the cylinders. Longitudinal and circumferential strain during the thermal activation of the SMA wires by Joule heating was measured using gauges located on the internal surface of the hollow cylinders. The experimental protocol, recorded observations, and discussion of the effectiveness of the prestressing of concrete elements as a function of the test parameters are included in the text in detail. Comments on the conditions for effective prestressing of concrete cylinders with SMA wires are proposed in the conclusions of the paper.  相似文献   

8.
3D printing of a composite structure with shape memory materials requires a special approach to the subject, at the stage of the design and printing process. This paper presents the design steps during the development of a 3D-printed composite structure with shape memory material. The connection points between the SMA fibers and the printer filament are developed in the MATLAB environment. Finite element method is used to simulate the shortening of the shape memory material under the influence of temperature and its effect on the printed polymer material is presented. In the MATLAB environment, evolutionary algorithms were used to determine the shape of the SMA fiber alignment. This work demonstrates the use of shape memory effect in 3D printed smart composite structures, where the component takes a predetermined shape. The structure obtained as a result of such printing changes with the heat generated by the current voltage, making it the desired fourth dimension.  相似文献   

9.
Shape memory alloys (SMAs) have been widely used in civil engineering applications including active and passive control of structures, sensors and actuators and strengthening of reinforced concrete (RC) structures owing to unique features such as the shape memory effect and pseudo-elasticity. Iron-based shape memory alloys (Fe-SMAs) have become popular in recent years. Use of iron-based SMAs for strengthening RC structures has received attention in the recent decade due to the advantages it presents, that is, no ducts or anchor heads are required, friction losses do not occur and no space is needed for a hydraulic device to exert force. Accordingly, Fe-SMAs embedded in a shotcrete layer have been used for pre-stressing RC beams at Empa. The aim of this study is to present an approach to model and analyze the behavior of RC members strengthened and pre-stressed with Fe-SMA rebars embedded in a shotcrete layer. The lack of research on developing finite element models for studying the behavior of concrete structures strengthened by iron-based shape memory alloys is addressed. Three-dimensional finite element models were developed in the commercial finite element code ABAQUS, using the concrete damaged plasticity model to predict the studied beams’ load–displacement response. The results of the finite element analyses show a considerably good agreement with the experimental data in terms of the beams’ cracking load and ultimate load capacity. The effects of different strengthening parameters, including SMA rebar diameter, steel rebar diameter and pre-stressing force level on the beam behavior, were investigated based on the verified finite element models. The results were compared. The load-displacement response of an 18-m concrete girder strengthened and pre-stressed with iron-based SMA bars was examined by the developed finite element model as a case study.  相似文献   

10.
In order to improve the deformation energy consumption and self-centering ability of reinforced concrete (RC) frame beam-column joints for main buildings of conventional islands in nuclear power plants, a new type of self-centering joint equipped with super-elastic shape memory alloy (SMA) bars and a steel plate as kernel components in the core area of the joint is proposed in this study. Four 1/5-scale frame joints were designed and manufactured, including two contrast joints (a normal reinforced concrete joint and a concrete joint that replaces steel bars with SMA bars) and two new model joints with different SMA reinforcement ratios. Subsequently, the residual deformation, energy dissipation capacity, stiffness degradation and self-centering performance of the novel frame joints were studied through a low-frequency cyclic loading test. Finally, based on the OpenSees finite element software platform, an effective numerical model of the new joint was established and verified. On this basis, varying two main parameters, the SMA reinforcement ratio and the axial compression ratio, a simulation was systematically conducted to demonstrate the effectiveness of the proposed joint in seismic performance. The results show that replacing ordinary steel bars in the beam with SMA bars not only greatly reduces the bearing capacity and stiffness of the joint, but also makes the failure mode of the joint brittle. The construction of a new type of joint with consideration of the SMA reinforcement and the steel plate can improve the bearing capacity, delay the stiffness degradation and improve the ductility and self-centering capability of the joints. Within a certain range, increasing the ratio of the SMA bars can further improve the ultimate bearing capacity and energy dissipation capacity of the new joint. Increasing or decreasing the axial compression ratio of column ends has little effect on the overall seismic performance of new joints.  相似文献   

11.
Minimally invasive surgery is increasingly used in many medical operations because of the benefits for the patients. However, for the surgeons, accessing the situs through a small incision or natural orifice comes with a reduction of the degrees of freedom of the instrument. Due to friction of the mechanical coupling, the haptic feedback lacks sensitivity that could lead to damage of the tissue. The approach of this work to overcome these problems is to develop a control concept for position control and force estimation with shape memory alloys (SMA) which could offer haptic feedback in a novel handheld instrument. The concept aims to bridge the gap between manually actuated laparoscopic instruments and surgical robots. Nickel-titanium shape memory alloys are used for actuation because of their high specific energy density. The work includes the manufacturing of a functional model as a proof of concept comprising the development of a suitable forceps mechanism and electronic circuit for position control and gripping force measurement, as well as designing an ergonomic user interface with haptic force feedback.  相似文献   

12.
In order to improve the energy dissipation capacity and to reduce the residual deformation of civil structures simultaneously, this paper puts forwards an innovative self-centering shape memory alloy (SMA) brace that is based on the design concepts of SMA’s superelasticity and low friction slip. Seven self-centering SMA brace specimens were tested under cyclic loading, and the hysteresis curves, bond curves, secant stiffness, energy dissipation coefficient, equivalent damping coefficient, and the self-centering capacity ratio of these specimens were investigated, allowing us to provide an evaluation of the effects of the loading rate and initial strain on the seismic performance. The test results show that the self-centering SMA braces have an excellent energy dissipation capacity, bearing capacity, and self-centering capacity, while the steel plates remain elastic, and the SMA in the specimens that are always under tension are able to return to the initial state. The hysteresis curves of all of the specimens are idealized as a flag shape with low residual deformation, and the self-centering capacity ratio reached 89.38%. In addition, both the loading rate and the initial strain were shown to have a great influence on the seismic performance of the self-centering SMA brace. The improved numerical models combined with the Graesser model and Bouc–Wen model in MATLAB were used to simulate the seismic performance of the proposed braces with different loading rates and initial strains, and the numerical results are consistent with the test results under the same conditions, meaning that they can accurately predict the seismic performance of the self-centering SMA brace proposed here.  相似文献   

13.
For the purpose of improving the ease and reliability of catheter insertion into the cystic duct and gallbladder, we developed a new combination method utilizing an ultrathin fiberscope (miniscope, 0.8 mm), a guidewire (0.25 inches) and a shape memory alloy, bendable, catheter (SMA catheter, 2.6 mm). The main feature of the SMA catheter, which incorporates a micro-actuator, is that its tip can be bent by remote control as desired. The SMA catheter could be inserted successfully into the cystic duct using a guide-wire under direct miniscope vision in two patients with gallbladder lesions. Moreover, after the miniscope had been inserted through the SMA catheter into the gallbladder, its maneuverability enhanced observation of the mucosa. This combination method should afford new diagnostic and therapeutic approaches to gallbladder disease.  相似文献   

14.
Superelastic shape memory alloy (SMA) wires exhibit superb hysteretic energy dissipation and deformation capabilities. Therefore, they are increasingly used for the vibration control of civil engineering structures. The efficient design of SMA-based control devices requires accurate material models. However, the thermodynamically coupled SMA behavior is highly sensitive to strain rate. For an accurate modelling of the material behavior, a wide range of parameters needs to be determined by experiments, where the identification of thermodynamic parameters is particularly challenging due to required technical instruments and expert knowledge. For an efficient identification of thermodynamic parameters, this study proposes a machine-learning-based approach, which was specifically designed considering the dynamic SMA behavior. For this purpose, a feedforward artificial neural network (ANN) architecture was developed. For the generation of training data, a macroscopic constitutive SMA model was adapted considering strain rate effects. After training, the ANN can identify the searched model parameters from cyclic tensile stress–strain tests. The proposed approach is applied on superelastic SMA wires and validated by experiments.  相似文献   

15.
This paper presents an active accelerator pedal system based on an integrated sensor and actuator using shape memory alloy (SMA) for speed control and to create haptics in the accelerator pedal. A device named sensaptics is developed with a pair of bi-functional SMA wires instrumented in a synergistic configuration function as an active sensor for positioning the accelerator pedal (pedal position sensing) to control the vehicle speed through electronic throttle and as a variable impedance actuator to generate active force (haptic) feedback to the driver. The reaction force emanated from the pedal alerts the driver and takes appropriate control action by slowing down the vehicle, in harmony with the road’s condition. The design is developed as a proof-of-concept device and is tested and evaluated in a real-time common rail diesel system for rail pressure regulation and over speeding tests, and the responses and performances are found to be promising.  相似文献   

16.
17.
The demographic change in and the higher incidence of degenerative bone disease have resulted in an increase in the number of patients with osteoporotic bone tissue causing. amongst other issues, implant loosening. Revision surgery to treat and correct the loosenings should be avoided, because of the additional patient stress and high treatment costs. Shape memory alloys (SMA) can help to increase the anchorage stability of implants due to their superelastic behavior. The present study investigates the potential of hybridizing NiTi SMA sheets with additively manufactured Ti6Al4V anchoring structures using laser powder bed fusion (LPBF) technology to functionalize a pedicle screw. Different scanning strategies are evaluated, aiming for minimized warpage of the NiTi SMA sheet. For biomechanical tests, functional samples were manufactured. A good connection between the additively manufactured Ti6Al4V anchoring structures and NiTi SMA substrate could be observed though crack formation occurring at the transition area between the two materials. These cracks do not propagate during biomechanical testing, nor do they lead to flaking structures. In summary, the hybrid manufacturing of a NiTi SMA substrate with additively manufactured Ti6Al4V structures is suitable for medical implants.  相似文献   

18.
19.
In the present study, the shape, memory, and mechanical properties of cold-rolled and annealed Fe-17Mn-5Si-5Cr-4Ni-1Ti-0.3C (wt.%) alloy were investigated. The cold-rolled alloy was annealing heat-treated at different temperatures in the range of 500–900 °C for 30 min. The shape recovery behavior of the alloy was investigated using strip bending test followed by recovery heating. The microstructural evolution and the stress-strain response of the alloy heat-treated at different temperatures revealed that the recovery took place at a heat-treatment temperature higher than 600 °C. Recrystallization occurred when the heat-treatment temperature was higher than 800 °C. Meaningful shape recovery was observed only when the alloy was annealed at temperatures higher than 600 °C. The highest recovery strain of up to 2.56% was achieved with a pre-strain of 5.26% and recovery heating temperature of 400 °C, when the alloy was heat-treated at 700 °C. Conversely, the yield strength reduced significantly with increasing annealing heat-treatment temperature. The experimental observations presented in this paper provide a guideline for post-annealing heat-treatment when a good compromise between mechanical property and shape recovery performance is required.  相似文献   

20.
Shape memory behavior of crystalline shape memory polyurethane (SPU) reinforced with graphene, which utilizes melting temperature as a shape recovery temperature, was examined with various external actuating stimuli such as direct heating, resistive heating, and infrared (IR) heating. Compatibility of graphene with crystalline SPU was adjusted by altering the structure of the hard segment of the SPU, by changing the structure of the graphene, and by changing the preparation method of the graphene/SPU composite. The SPU made of aromatic 4,4′-diphenylmethane diisocyanate (MSPU) exhibited better compatibility with graphene, having an aromatic structure, compared to that made of the aliphatic hexamethylene diisocyanate. The finely dispersed graphene effectively reinforced MSPU, improved shape recovery of MSPU, and served effectively as a filler, triggering shape recovery by resistive or IR heating. Compatibility was enhanced when the graphene was modified with methanol. This improved shape recovery by direct heating, but worsened the conductivity of the composite, and consequently the efficiency of resistive heating for shape recovery also declined. Graphene modified with methanol was more effective than pristine graphene in terms of shape recovery by IR heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号