首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to verify whether the accuracy of left ventricular parameters related to left ventricular function from gated-SPECT improved or not, using multivariate analysis. METHODS: Ninety-six patients with cardiovascular diseases were studied. Gated-SPECT with the QGS software and left ventriculography (LVG) were performed to obtain left ventricular ejection fraction (LVEF), end-diastolic volume (EDV) and end-systolic volume (ESV). Then, multivariate analyses were performed to determine empirical formulas for predicting these parameters. The calculated values of left ventricular parameters were compared with those obtained directly from the QGS software and LVG. RESULTS: Multivariate analyses were able to improve accuracy in estimation of LVEF, EDV and ESV. Statistically significant improvement was seen in LVEF (from r = 0.6965 to r = 0.8093, p < 0.05). Although not statistically significant, improvements in correlation coefficients were seen in EDV (from r = 0.7199 to r = 0.7595, p = 0.2750) and ESV (from r = 0.5694 to r = 0.5871, p = 0.4281). CONCLUSION: The empirical equations with multivariate analysis improved the accuracy in estimating LVEF from gated-SPECT with the QGS software.  相似文献   

2.
PURPOSE: Present study was designed to evaluate the accuracy of the measurement of left ventricular volume by quantitative gated SPECT (QGS) software using 201T1 and the effect of cutoff frequency of Butterworth prereconstruction filter on the calculation of volume. METHODS: The RH-2 type cardiac phantom and 20 patients with ischemic heart disease were studied. Left ventricular end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) were calculated by the QGS software using the various frequency of Butterworth filter. These parameters were evaluated by Simpson's method using left ventriculography (LVG). RESULTS: The volume of the phantom calculated by QGS was under-estimated by 14%. In the clinical study, EDV and ESV measured by QGS were smaller than those obtained from LVG by 10%. When the cutoff frequency of Butterworth filter was 0.43 cycles/cm, the values measured by QGS were best correlated with those by LVG (EDV: r = 0.80, p < 0.001; ESV: r = 0.86, p < 0.001; EF: r = 0.80, p < 0.001). CONCLUSION: These data suggest that 201Tl quantitative gated cardiac SPECT can estimate myocardial ischemia and left ventricular function simultaneously.  相似文献   

3.
We compared the left ventricular (LV) end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (LVEF) as calculated by Cedars automated quantitative gated SPECT (QGS) to those determined by first-pass radionuclide angiography (FPRNA) and contrast left ventriculography (LVG) in a group of 21 patients (mean age 61.4 +/- 9.2 y). METHODS: A total of 740 MBq 99mTc-tetrofosmin was administered rapidly into the right cubital vein at rest, and FPRNA was performed using a multicrystal gamma camera. One hour after injection, QGS was performed with a temporal resolution of 10 frames per R-R interval. LVG was performed within 2 wk. RESULTS: The EDV, ESV and LVEF calculated by QGS were highly reproducible (intraobserver, r = 0.99, r = 0.99 and r = 0.99, respectively; interobserver, r = 0.99, r = 0.99 and r = 0.99, respectively; P < 0.01) and were more consistent than those determined by FPRNA (intraobserver, r = 0.97, r = 0.95 and r = 0.93, respectively; interobserver, r = 0.86, r = 0.96 and r = 0.91, respectively; P < 0.01). There was a good correlation between EDV, ESV and LVEF by FPRNA and those by LVG (r = 0.61, r = 0.72 and r = 0.91, respectively; P < 0.01), and there was an excellent correlation between QGS and LVG (r = 0.73, r = 0.83 and r = 0.87, respectively; P < 0.01). The mean EDV by QGS (100 +/- 11.3 mL) was significantly lower than by FPRNA (132 +/- 16.8 mL) or LVG (130 +/- 8.1 mL), and the mean ESV by QGS (53.8 +/- 9.3 mL) was lower than by FPRNA (73.0 +/- 13.3 mL). Ejection fraction values were highest by LVG (57.1% +/- 3.2%), then QGS (51.8% +/- 3.0%) and FPRNA (48.9% +/- 2.4%). CONCLUSION: QGS gave more reproducible results than FPRNA. LV volumes and LVEF calculated by QGS correlated well to those by LVG.  相似文献   

4.
BACKGROUND: Two different commercially available gated single photon emission computed tomography (GSPECT) methods were compared in a population of patients with a major myocardial infarction. METHODS: Rest thallium GSPECT was performed with a 90-degree dual-detector camera, 4 hours after injection of thallium-201 (Tl-201; 185 MBq) in 43 patients (mean age, 62+/-12 years) with a large myocardial infarction (mean defect size, 33%+/-16%). End-diastolic volume (EDV), end-systolic volume (ESV), and left ventricular ejection fraction (LVEF) were calculated by using QGS (Cedars Sinai) and MultiDim (Sopha Medical Vision International, Buc, France). Images were reconstructed by using a 2.5 zoom and a Butterworth filter (order, 5; cut-off frequency, 0.20). LVEF was calculated in all patients by using equilibrium radionuclide angiocardiography (ERNA). EDV, ESV, and LVEF were also measured by using left ventriculography (LVG). RESULTS: Compared with LVG, QGS underestimated LVEF by means of an underestimation of mean EDV. MultiDim overestimated EDV and ESV. GSPECT EDV and ESV overestimation was demonstrated by means of Bland-Altman analysis to increase with left ventricular volume size (P<.05). The difference between LVG and GSPECT volumes was demonstrated by means of regression analysis to be correlated with infarction size. This effect was particularly important with MultiDim (P<.0001). CONCLUSION: In Tl-201 GSPECT, LVEF and volume measurements will vary according to the type of software used.  相似文献   

5.
The main aim of this study was to validate the accuracy of 4D-MSPECT in the assessment of left ventricular (LV) end-diastolic/end-systolic volumes (EDV, ESV) and ejection fraction (LVEF) from gated technetium-99m methoxyisobutylisonitrile single-photon emission tomography (99mTc-MIBI SPET), using cardiac magnetic resonance imaging (cMRI) as the reference method. By further comparing 4D-MSPECT and QGS with cMRI, the software-specific characteristics were analysed to elucidate clinical applicability. Fifty-four patients with suspected or proven coronary artery disease (CAD) were examined with gated 99mTc-MIBI SPET (8 gates/cardiac cycle) about 60 min after tracer injection at rest. LV EDV, ESV and LVEF were calculated from gated 99mTc-MIBI SPET using 4D-MSPECT and QGS. On the same day, cMRI (20 gates/cardiac cycle) was performed, with LV EDV, ESV and LVEF calculated using Simpsons rule. Both algorithms worked with all data sets. Correlation between the results of gated 99mTc-MIBI SPET and cMRI was high for EDV [R=0.89 (4D-MSPECT), R=0.92 (QGS)], ESV [R=0.96 (4D-MSPECT), R=0.96 (QGS)] and LVEF [R=0.89 (4D-MSPECT), R=0.90 (QGS)]. In contrast to ESV, EDV was significantly underestimated by 4D-MSPECT and QGS compared to cMRI [130±45 ml (4D-MSPECT), 122±41 ml (QGS), 139±36 ml (cMRI)]. For LVEF, 4D-MSPECT and cMRI revealed no significant differences, whereas QGS yielded significantly lower values than cMRI [57.5%±13.7% (4D-MSPECT), 52.2%±12.4% (QGS), 60.0%±15.8% (cMRI)]. In conclusion, agreement between gated 99mTc-MIBI SPET and cMRI is good across a wide range of clinically relevant LV volume and LVEF values assessed by 4D-MSPECT and QGS. However, algorithm-varying underestimation of LVEF should be accounted for in the clinical context and limits interchangeable use of software.  相似文献   

6.
Emory cardiac toolbox (ECTb) and quantitative gated single photon emission tomography - SPET (QGS) software are the two most often used techniques for automatic calculation of left ventricular volumes (LVV) and ejection fraction (LVEF). Few studies have shown that these software are not interchangeable, however the effect of perfusion defects on performance of these software has not been widely studied. The aim of this study was to compare the performance of QGS and ECTb for the calculation of LVEF, end-systolic volume (ESV) and end-diastolic volume (EDV) in patients with normal and abnormal myocardial perfusion. One hundred and forty-four consecutive patients with suspected coronary artery disease underwent a two-day protocol with dipyridamole stress/rest gated technetium-99m-methoxy isobutyl isonitrile ((99m)Tc-sestamibi) myocardial perfusion (GSPET) (8 gates/cardiac cycles). Rest GSPET scintiscan findings were analyzed using QGS and ECTb. Correlation between the results of QGS and ECTb was greater than 90%. In patients with no perfusion defects, EDV and LVEF using ECTb, were significantly higher than using QGS (P<0.001), whereas no significant difference was noticed in ESV (P=0.741). In patients with perfusion defects, also ECTb yielded significantly higher values for EDV, ESV and LVEF than QGS (P<0.001). In tomograms of patients with perfusion defects, mean differences of EDV and ESV between the two software, were significantly higher than in tomograms of patients without defects (P<0.001), while for LVEF this difference was not significant (P= 0.093). Patients were classified into three subgroups based on the summed rest score (SRS); G1: patients with SRS < or = 3 (n=109), G2: patients with 4 < or = SRS < or = 8 (n=13) and G3: patients with SRS > or = 9 (n=22). One-way ANOVA showed that the mean differences of EDV and ESV values between ECTb and QGS between the subgroups were significant (P<0.001 for both parameters), while no significant difference was noticed between the subgroups, as for the mean difference of LVEF, calculated by the two software (P=0.07). By increasing SRS, the EDV and ESV values were overestimated to a higher level by the ECTb as compared to the QGS software. Linear regression analysis showed that the difference in LVV values, between the two software increased, when SRS also increased (P<0.001). In conclusion, correlation between QGS and ECTb, software was very good both in patients with and without perfusion defects. In patients with perfusion defects, calculated LVEF, ESV and EDV values are higher using ECTb compared to the QGS software. However, the more extensive the perfusion defect was, the greater the difference of LVV between these two software. For the follow up of patients, we suggest the use of a single software either QGS or ECTb, for serial measurements of LV function.  相似文献   

7.
The effect of filtering and zooming on 201TI-gated SPECT was evaluated in patients with major myocardial infarction. METHODS: Rest thallium (TI)-gated SPECT was performed with a 90 degrees dual-head camera, 4 h after injection of 185 MBq 201TI in 32 patients (mean age 61 +/- 11 y) with large myocardial infarction (33% +/- 17% defect on bull's eye). End diastolic volume (EDV), end systolic volume (ESV) and left ventricular ejection fraction (LVEF) were calculated using a commercially available semiautomatic validated software. First, images were reconstructed using a 2.5 zoom, a Butterworth filter (order = 5) and six Nyquist cutoff frequencies: 0.13 (B5.13), 0.15 (B5.15), 0.20 (B5.20), 0.25 (B5.25), 0.30 (B5.30) and 0.35 (B5.35). Second, images were reconstructed using a zoom of 1 and a Butterworth filter (order = 5) (cutoff frequency 0.20 [B5.20Z1]) (total = 32 x 7 = 224 reconstructions). LVEF was calculated in all patients using equilibrium radionuclide angiocardiography (ERNA). EDV, ESV and LVEF were measured with contrast left ventriculography (LVG). RESULTS: LVEF was 39% +/- 2% (mean +/- SEM) for ERNA and 40% +/- 13% for LVG (P = 0.51). Gated SPECT with B5.20Z2.5 simultaneously offered a mean LVEF value (39% +/- 2%) similar to ERNA (39% +/- 2%) and LVG (40% +/- 3%), optimal correlations with both ERNA (r = 0.83) and LVG (r = 0.70) and minimal differences with both ERNA (-0.9% +/- 7.5% [mean +/- SD]) and LVG (1.1% +/- 10.5%). As a function of filter and zoom choice, correlation coefficients between ERNA or LVG LVEF, and gated SPECT ranged from 0.26 to 0.88; and correlation coefficients between LVG and gated SPECT volumes ranged from 0.87 to 0.94. There was a significant effect of filtering and zooming on EDV, ESV and LVEF (P < 0.0001). Low cutoff frequency (B5.13) overestimated LVEF (P < 0.0001 versus ERNA and LVG). Gated SPECT with 2.5 zoom and high cutoff frequencies (B5.15, B5.20, B5.25, B5.30 and B5.35) overestimated EDV and ESV (P < 0.04) compared with LVG. This volume overestimation with TI-gated SPECT in patients with large myocardial infarction was correlated to the infarct size. A zoom of 1 underestimated EDV, ESV and LVEF compared with a 2.5 zoom (P < 0.02). CONCLUSION: Accurate LVEF measurement is possible with TI-gated SPECT in patients with major myocardial infarction. However, filtering and zooming greatly influence EDV, ESV and LVEF measurements, and TI-gated SPECT overestimates left ventricular volumes, particularly when the infarct size increases.  相似文献   

8.
All previous validation studies of quantitative gated single-photon emission tomography (QGS) have examined relatively few patients, and the accuracy of QGS thus remains uncertain. We performed a meta-analysis of data from 301 participants in ten studies that compared QGS using technetium-99m-labelled tracers with contrast left ventriculography (LVG), and from 112 participants in six studies that compared QGS with magnetic resonance imaging (MRI). Linear regression and Bland-Altman analyses were used to evaluate pooled data from individuals across the studies. The correlation between QGS and LVG for end-diastolic volume (EDV) (r=0.81, SEE=27 ml), end-systolic volume (ESV) (r=0.83, SEE=18 ml) and ejection fraction (EF) (r=0.79, SEE=8.3%) was good, as was that between QGS and MRI for EDV (r=0.87, SEE=34 ml), ESV (r=0.89, SEE=27 ml) and EF (r=0.88, SEE=7.2%). However, Bland-Altman plots indicated that LVG minus QGS differences for EDV generated a systematic and random error of 32+/-58 ml (mean+/-2SD), and that MRI minus QGS generated an error of 13+/-73 ml. In the subgroup of patients in whom ECG gating was set at eight intervals, QGS significantly underestimated EF by 7.6%+/-17.4% (mean+/-2SD) compared with LVG and by 6.3%+/-14.6% compared with MRI; no such underestimation was observed in the subgroup in whom ECG gating was set at 16 intervals. We conclude that in patients with ECG gating set at eight intervals, QGS systematically underestimates LV volumes and EF compared with both LVG and MRI. Since QGS also shows considerable variations around the systematic deviations, there remains uncertainty over whether an individual value determined with QGS approximates the true LV volumes and EF.  相似文献   

9.
Purpose The segmentation algorithm ESM based on an elastic surface model was validated for the assessment of left ventricular volumes and ejection fraction from ECG-gated myocardial perfusion SPECT. Additionally, it was compared with the commercially available quantification packages 4D-MSPECT and QGS. Cardiac MRI was used as the reference method. Methods SPECT and MRI were performed on 70 consecutive patients with suspected or proven coronary artery disease. End-diastolic (EDV) and end-systolic (ESV) volumes and left ventricular ejection fraction (LVEF) were derived from SPECT studies by using the segmentation algorithms ESM, 4D-MSPECT and QGS and from cardiac MRI. Results ESM-derived values for EDV and ESV correlated well with those from cardiac MRI (correlation coeffients R = 0.90 and R = 0.95, respectively), as did the measurements for LVEF (R = 0.86). Both EDV and ESV were slightly overestimated for larger ventricles but not for smaller ventricles; LVEF was slightly overestimated irrespective of ventricle size. The above correlation coefficients are comparable to those for the 4D-MSPECT and QGS segmentation algorithms. However, results obtained with the three segmentation algorithms are not interchangeable. Conclusion The ESM algorithm can be used to assess EDV, ESV and LVEF from gated perfusion SPECT images. Overall, the performance was similar to that of 4D-MSPECT and QGS when compared with cardiac MRI. Results obtained with the three tested segmentation methods are not interchangeable, so that the same algorithm should be used for follow-up studies and control subjects.  相似文献   

10.
目的比较静息门控心肌显像滤波反投影法(FBP)和OSEM重建图像后用定量门控心肌断层显像(QGS)、四维模型心肌断层显像(4D—MSPECT)、爱莫瑞心脏工具箱(ECToolbox)软件测量的心功能参数。方法临床疑诊或确诊冠心病患者144例,均行^99Tc^m-MIBI静息门控心肌SPECT显像,所有患者均用FBP和OSEM重建图像,用QGS、4D—MSPECT、ECToolbox软件计算心功能参数LVEF,EDV和ESV,采用Bland—Altman法检验2种重建方法的一致性,配对t检验方法检验心功能参数差异,相关性分析用直线回归分析。结果FBP和OSEM重建测量的心功能参数一致性和相关性好(r均〉0.93,P均〈0.001)。QGS软件FBP重建测得的EDV低于OSEM重建测得的EDV,其他2种软件为FBP高于OSEM[QGS:(82.2±39.1)ml和(83.5±40.8)ml,t=-2.53,P〈0.05;4D—MSPECT:(93.5±46.9)ml和(88.8±45.2)ml,t=5.95,P〈0.01;ECToolbox:(106.4±51.1)ml和(100.8±49.0)ml,t=3.99,P〈0.01]。对于ESV,4D-MSPECT软件FBP测量值高于OSEM[(37.5±41.4)ml和(34.8±37.6)ml,t=3.92,P〈0.01]。QGS软件FBP测得的LVEF低于OSEM测得的LVEF[(62.1±16.9)%和(63.1±16.1)%,t=-3.14,P〈0.01]。ECToolbox软件FBP测得的LVEF高于用OSEM测得的LVEF[(74.1±18.8)%和(71.3±17.1)%,t=5.28,P〈0.01]。结论2种重建方法所测量的心功能参数虽然相关性和一致性很好,但某些参数值差异有统计学意义。  相似文献   

11.
The aim of this study was to validate Quantitative Gated SPECT (QGS) and 4D-MSPECT for assessing left ventricular end-diastolic and systolic volumes (EDV and ESV, respectively) and left ventricular ejection fraction (LVEF) from gated (18)F-FDG PET. METHODS: Forty-four patients with severe coronary artery disease were examined with gated (18)F-FDG PET (8 gates per cardiac cycle). EDV, ESV, and LVEF were calculated from gated (18)F-FDG PET using QGS and 4D-MSPECT. Within 2 d (median), cardiovascular cine MRI (cMRI) (20 gates per cardiac cycle) was done as a reference. RESULTS: QGS failed to accurately detect myocardial borders in 1 patient; 4D-MSPECT, in 2 patients. For the remaining 42 patients, correlation between the results of gated (18)F-FDG PET and cMRI was high for EDV (R = 0.94 for QGS and 0.94 for 4D-MSPECT), ESV (R = 0.95 for QGS and 0.95 for 4D-MSPECT), and LVEF (R = 0.94 for QGS and 0.90 for 4D-MSPECT). QGS significantly (P < 0.0001) underestimated LVEF, whereas no other parameter differed significantly between gated (18)F-FDG PET and cMRI for either algorithm. CONCLUSION: Despite small systematic differences that, among other aspects, limit interchangeability, agreement between gated (18)F-FDG PET and cMRI is good across a wide range of clinically relevant volumes and LVEF values assessed by QGS and 4D-MSPECT.  相似文献   

12.
PURPOSE: To investigate whether a newly developed maneuver that reduces the reconstruction area by a half more accurately evaluates left ventricular (LV) volume on quantitative gated SPECT (QGS) analysis. METHODS: The subjects were 38 patients who underwent left ventricular angiography (LVG) followed by G-SPECT within 2 weeks. Acquisition was performed with a general purpose collimator and a 64 x 64 matrix. On QGS analysis, the field magnification was 34 cm in original image (Original: ORI), and furthermore it was changed from 34 cm to 17 cm to enlarge the re-constructed image (Field Change Conversion: FCC). End-diastolic volume (EDV) and end-systolic volume (ESV) of the left ventricle were also obtained using LVG. RESULTS: EDV was 71 +/- 19 ml, 83 +/- 20 ml and 98 +/- 23 ml for ORI, FCC and LVG, respectively (p < 0.001: ORI versus LVG, p < 0.001: ORI versus FCC, p < 0.001: FCC versus LVG). ESV was 28 +/- 12 ml, 34 +/- 13 ml and 41 +/- 14 ml for ORI, FCC and LVG, respectively (p < 0.001: ORI versus LVG, p < 0.001: ORI versus FCC, p < 0.001: FCC versus LVG). CONCLUSION: FCC was better than ORI for calculating LV volume in clinical cases. Furthermore, FCC is a useful method for accurately measuring the LV volume on QGS analysis.  相似文献   

13.
This case describes a 65-year-old male with drug-resistant heart failure. Cardiac resynchronization therapy was performed. We evaluated cardiac function with volume curve differentiation software (VCDiff) from QGS data with Tc-99m sestamibi. Left ventricular parameters during atrial-right ventricular pacing were left ventricular ejection fraction (LVEF) 30%, end-diastolic volume (EDV) 156 ml, end-systolic volume (ESV) 108 ml and peak filling rate 1.12 (EDV/sec). And during dual chamber pacing, those were LVEF 35%, EDV 145 ml and ESV 95 ml and PFR 1.58 (EDV/sec). And during atrial-left ventricular pacing, those were LVEF 36%, EDV 152 ml, ESV 97 ml and peak filling rate (PFR) 1.35 (EDV/sec). Cardiac resynchronization therapy may improve cardiac function as well as dyssynchrony, which could be evaluated non-invasively and accurately by ECG-gated SPECT.  相似文献   

14.
OBJECTIVE: Evaluation of left ventricular function using electrocardiogram (ECG)-gated multidetector row CT (MDCT) by using 3 different volumetric assessment methods in comparison to assessment of the left ventricular function by invasive ventriculography. METHODS: Thirty patients with suspected or known coronary artery disease underwent MDCT coronary angiography with retrospective ECG cardiac gating. Raw data were reconstructed at the end-diastolic and end-systolic periods of the heart cycle. To calculate the volumes of the left ventricle, 3 methods were applied: The 3-dimensional data set (3D), the geometric hemisphere cylinder (HC), and the geometric biplane ellipsoid (BE) methods. End-diastolic volumes (EDV), end-systolic volumes (ESV), the stroke volumes (SV), and ejection fractions (EF) were calculated. The left ventricular volumetric data from the 3 methods were compared with measurements from left ventriculography (LVG). RESULTS: The best results were obtained using the 3D method; EDV (r = 0.73), ESV (r = 0.88), and EF (r = 0.76) correlated well with the LVG data. The EDV volumes did not differ significantly between LVG and the 3D method (P = 0.24); however, ESV, SV, and EF differed significantly. The ESV were significantly overestimated (P < 0.01), leading to an underestimation of the SV (P < 0.01) and the EF (P < 0.01). The HC method resulted in the greatest overestimation of the volumes. The EDV and the ESV were 31.8 +/- 37.6% and 136.4 +/- 92.9% higher than the EDV and ESV volumes obtained by LVG. Bland-Altman analysis showed systematic overestimation of the ESV using the HC method. CONCLUSION: MDCT with retrospective cardiac ECG gating allows the calculation of left ventricular volumes to estimate systolic function. The 3D method had the highest correlation with LVG. However, the overestimation of the ESV is significant, which led to an underestimation of the SV and the EF.  相似文献   

15.
The goal of this study was to validate the accuracy of the Emory Cardiac Tool Box (ECTB) in assessing left ventricular end-diastolic or end-systolic volume (EDV, ESV) and ejection fraction (LVEF) from gated (99m)Tc-methoxyisobutylisonitrile ((99m)Tc-MIBI) SPECT using cardiac MRI (cMRI) as a reference. Furthermore, software-specific characteristics of ECTB were analyzed in comparison with 4D-MSPECT and Quantitative Gated SPECT (QGS) results (all relative to cMRI). METHODS: Seventy patients with suspected or known coronary artery disease were examined using gated (99m)Tc-MIBI SPECT (8 gates/cardiac cycle) 60 min after tracer injection at rest. EDV, ESV, and LVEF were calculated from gated (99m)Tc-MIBI SPECT using ECTB, 4D-MSPECT, and QGS. Directly before or after gated SPECT, cMRI (20 gates/cardiac cycle) was performed as a reference. EDV, ESV, and LVEF were calculated using Simpson's rule. RESULTS: Correlation between results of gated (99m)Tc-MIBI SPECT and cMRI was high for EDV (R = 0.90 [ECTB], R = 0.88 [4D-MSPECT], R = 0.92 [QGS]), ESV (R = 0.94 [ECTB], R = 0.96 [4D-MSPECT], R = 0.96 [QGS]), and LVEF (R = 0.85 [ECTB], R = 0.87 [4D-MSPECT], R = 0.89 [QGS]). EDV (ECTB) did not differ significantly from cMRI, whereas 4D-MSPECT and QGS underestimated EDV significantly compared with cMRI (mean +/- SD: 131 +/- 43 mL [ECTB], 127 +/- 42 mL [4D-MSPECT], 120 +/- 38 mL [QGS], 137 +/- 36 mL [cMRI]). For ESV, only ECTB yielded values that were significantly lower than cMRI. For LVEF, ECTB and 4D-MSPECT values did not differ significantly from cMRI, whereas QGS values were significantly lower than cMRI (mean +/- SD: 62.7% +/- 13.7% [ECTB], 59.0% +/- 12.7% [4DM-SPECT], 53.2% +/- 11.5% [QGS], 60.6% +/- 13.9% [cMRI]). CONCLUSION: EDV, ESV, and LVEF as determined by ECTB, 4D-MSPECT, and QGS from gated (99m)Tc-MIBI SPECT agree over a wide range of clinically relevant values with cMRI. Nevertheless, any algorithm-inherent over- or underestimation of volumes and LVEF should be accounted for and an interchangeable use of different software packages should be avoided.  相似文献   

16.
PURPOSES: ECG-gated myocardial SPECT program (QGS) is coming into wide use. This program permits measurement of end-diastolic volume (EDV), and end-systolic volume (ESV) and ejection fraction (EF) by automatic detection of myocardial edges. We assessed the reproducibility, accuracy, factors that affect the measurement of these indices using a cardiac phantom and clinical data. METHODS: In the phantom study, we evaluated the effects of ventricular volume, location, absorption, acquisition time, enlarged acquisition and pre-filter on the calculated indices. In the clinical study using 99mTc-MIBI, reproducibility between 2 observers, comparison with left ventriculography and effects of pre-filter were assessed. In clinical cases of 201TI and 123I-BMIPP, left ventricular volume and EF were also analyzed by QGS with various pre-filters. RESULTS: Although the true phantom volumes (y) and calculated volumes (x) showed an excellent linear correlation (y = 0.94x - 13.8, r = 0.999), calculated volumes were significantly under-estimated by 14.5-33.8%. An absorbent material around the phantom caused reduction in calculated volumes by 4.1-9.1%. Duration of acquisition times, 3 to 60 seconds per projection, did not influence the calculation of the parameters. With enlarged data collection, calculated volume (37 ml) was larger than that of normal acquisition (33 ml). When the cut-off frequency of Butterworth filter was changed, these indices of volume and EF were almost stable over 0.41 cycle/cm. There was an excellent correlation in intra-observer measurements for EDV (r = 0.998, p < 0.0001), ESV (r = 0.998, p < 0.0001) and EF (r = 0.995, p < 0.0001). In comparison with left ventriculography, correlation of parameters was good in ESV (r = 0.91, p < 0.0001), EF (r = 0.88, p < 0.0001), but was fair in EDV (r = 0.78, p < 0.0001). The QGS program underestimated EDV, ESV and EF. CONCLUSION: QGS program with gated SPECT is useful to calculate relative volume and EF. However, to calculate absolute values, we should understand the various factors that affect the result of QGS.  相似文献   

17.
BACKGROUND AND AIM: The Cedars-Sinai Quantitative Gated Single Photon Emission Computed Tomography (SPECT) (QGS) program, used to quantify left ventricular function parameters from gated myocardial perfusion scintigraphy (MPS), has been extensively validated and compared with other methods of quantification. However, little is known about the reproducibility of QGS on different processing systems. This study compared the findings of QGS running on workstations provided by two different manufacturers. METHODS: Gated rest MPS studies of 50 patients were analysed retrospectively. Filtered back-projection (FBP) was performed using identical parameters on Philips Pegasys and Nuclear Diagnostics Hermes workstations to produce gated short-axis (SA) slices. In addition, the gated SA slices reconstructed on the Pegasys were transferred to the Hermes. QGS was used to calculate the end-diastolic volume (EDV), end-systolic volume (ESV) and left ventricular ejection fraction (LVEF) in each case. RESULTS: The mean+/-standard deviation differences between the Pegasys and Hermes function parameters were -7.06+/-3.91 ml (EDV), -5.54+/-3.21 ml (ESV) and +1.14%+/-1.43% (LVEF) when data were reconstructed on different systems, and -0.16+/-1.58 ml (EDV), -0.10+/-1.02 ml (ESV) and +0.14%+/-0.73% (LVEF) when data were reconstructed on the same system. Bland-Altman plots showed definite trends for EDV and ESV for data reconstructed on different systems, but no trends were seen for data reconstructed on the same system. CONCLUSIONS: When data were reconstructed on two separate systems, the difference between the function parameters obtained from Pegasys and Hermes could be ascribed to differences in the reconstruction process on each system despite the use of identical parameters (filters, etc). However, when the same reconstructed data were analysed on both systems, no significant difference in left ventricular function parameters was observed.  相似文献   

18.
We applied the QGS program for LV function analysis (described by Germano, 1995) to a 201Tl SPECT study at rest, and estimated its accuracy. We performed 201Tl ECG-gated myocardial SPECT in 25 patients with ischemic heart disease under an acquisition time used in the routine 99mTc ECG-gated SPECT study. The quality of the gated images was visually assessed with a 4-point grading system. LVEDV, LVESV, LVEF determined by the QGS program were compared with those by Simpson's method on biplane LVG in 25 patients. Regional wall motion scores in 7 myocardial segments were assessed on the three-dimensional display created by the QGS program and the cine display of biplane LVG with a 5-point grading system. Wall motion scores obtained by the QGS program were compared with those by LVG. Although 72.0% of 201Tl ECG-gated SPECT images were fair or poor in image quality, there were good correlations between the values obtained by the QGS program and LVG (LVEDV: r = 0.82, LVESV: r = 0.88, LVEF: r = 0.89). In addition, wall motion scores by the QGS program were correspondent to those by LVG in 77.1% of all 175 myocardial segments. We conclude that the QGS program provides high accuracy in evaluating left ventricular function even from 201Tl ECG-gated myocardial SPECT data.  相似文献   

19.

Aim  

The aim of this study was to assess interassay reproducibility of myocardial perfusion gated-SPECT for calculation of end-diastolic volume (EDV), end-systolic volume (ESV), and left ventricular ejection fraction (LVEF) in patients with atrial fibrillation (AF).  相似文献   

20.
The aim of this study was to validate the accuracy of left ventricular ejection fraction (LVEF) obtained by quantitative gated single photon emission tomography (QGS) perfusion imaging in comparison with gated blood-pool imaging. Resting gated myocardial perfusion imaging was performed in 269 patients with suspected or known coronary artery disease, and followed by equilibrium nuclear cardiac blood-pool imaging in one week. The later was considered as the reference standard. The LVEF from both methods were analyzed. The LVEF were calculated with QGS using Cedars Cardiac Quantification software. We found that LVEF from QGS and blood-pool (Bp)-LVEF were highly correlated (r=0.819, <0.001). Taken into consideration that QGS-LVEF was significantly different from Bp-LVEF (mean ± SD: 57.77% ± 19.28% vs 54.23% ± 15.41%, P<0.05), data were further analyzed by grouping participants based on end-systolic ventricular volume (ESV). QGS-LVEF was not significantly different from Bp-LVEF in the group where that ESV was larger than 15m, (mean ± SD: 52.71% ± 16.11% vs 51.83% ± 15.33%, P>0.05), whereas when ESV was smaller than 15 mL, QGS-LVEF was significantly higher than Bp-LVEF (mean ± SD: 80.53% ± 7.01%vs 65.06% ± 10.37%, P<0.05). Our findings demonstrate that when ESV values are larger than 15 mL, QGS- LVEF could replace Bp-LVEF. However, when ESV value is smaller than 15 mL, LVEF should be assessed in combination with blood-pool imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号