首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epigenetic mechanisms are not only essential for biological functions requiring stable molecular changes such as the establishment of cell identity and tissue formation, they also constitute dynamic intracellular processes for translating environmental stimuli into modifications in gene expression. Over the past decade it has become increasingly clear that both aspects of epigenetic mechanisms play a pivotal role in complex brain functions. Evidence from patients with neurodegenerative and neurodevelopmental disorders such as Alzheimer's disease and Rett syndrome indicated that epigenetic mechanisms and chromatin remodeling need to be tightly controlled for proper cognitive functions, and their dysregulation can have devastating consequences. However, because they are dynamic, epigenetic mechanisms are also potentially reversible and may provide powerful means for pharmacological intervention. This review outlines major cognitive disorders known to be associated with epigenetic dysregulation, and discusses the potential of 'epigenetic medicine' as a promising cure.  相似文献   

2.
Autophagy is emerging as a central regulator of cellular health and disease and, in the central nervous system (CNS), this homeostatic process appears to influence synaptic growth and plasticity. Herein, we review the evidence that dysregulation of autophagy may contribute to several neurodegenerative diseases of the CNS. Up-regulation of autophagy may prevent, delay or ameliorate at least some of these disorders, and - based on recent findings from our laboratory - we speculate that this goal may be achieved using a safe, simple and inexpensive approach.  相似文献   

3.
Neurodegenerative conditions present a group of complex disease pathologies mostly due to unknown aetiology resulting in neuronal death and permanent neurological disability. Any undesirable stress to the brain, disrupts homeostatic balance, through a remarkable convergence of pathophysiological changes and immune dysregulation. The crosstalk between inflammatory and oxidative mechanisms results in the release of neurotoxic mediators apparently spearheaded by myeloperoxidase derived from activated microglia, astrocytes, neurons as well as peripheral inflammatory cells. These isolated entities combinedly have the potential to flare up and contribute significantly to neuropathology and disease progression. Recent, clinicopathological evidence support the association of myeloperoxidase and its cytotoxic product, hypochlorous acid in a plethora of neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis, Multiple sclerosis, Stroke, Epilepsy etc. But the biochemical and mechanistic insights into myeloperoxidase mediated neuroinflammation and neuronal death is still an uncharted territory. The current review outlines the emerging recognition of myeloperoxidase in neurodegeneration, which may offer novel therapeutic and diagnostic targets for neurodegenerative disorders.  相似文献   

4.
Reciprocal interactions between glia and neurons are essential for many critical functions in brain health and disease. Microglial cells, the brain resident macrophages, and astrocytes, the most prevalent type of cell in brain, are actively involved in the control of neuronal activities both in developing and adult organisms. At the same time, neurons influence glial functions, through direct cell-to-cell interactions as well as the release of soluble mediators. Among signals from neurons that may have an active role in controlling glial activation are two major neurotransmitters: acetylcholine and noradrenaline. Several studies indicate that microglia and astrocytes express adrenergic receptors, whose activation influences the release of pro-inflammatory mediators, controlling the extent of glial reactivity. Acetylcholine receptors are also expressed by glial cells. In particular, microglial cells express the nicotinic receptor alpha7 and its activation attenuates the pro-inflammatory response of microglial cultures, suggesting that acetylcholine may control brain inflammation, in analogy to what demonstrated in peripheral tissues. Deficiencies of noradrenergic and cholinergic systems are linked to important neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD) and it has been suggested that in addition to impairing neuron-to-neuron transmission, noradrenergic and cholinergic hypofunction may contribute to dysregulation of the normal neuron-glia interaction, abnormal glial reaction and, eventually, neurodegeneration. A deeper knowledge of role of cholinergic and noradrenergic systems in controlling neuron-glia interactions may offer new venues for disease treatments.  相似文献   

5.
Alzheimer's disease and other related neurodegenerative diseases are highly debilitating disorders that affect millions of people worldwide. Efforts towards developing effective treatments for these disorders have shown limited efficacy at best, with no true cure to this day being present. Recent work, both clinical and experimental, indicates that many neurodegenerative disorders often display a coexisting metabolic dysfunction which may exacerbate neurological symptoms. It stands to reason therefore that metabolic pathways may themselves contain promising therapeutic targets for major neurodegenerative diseases. In this review, we provide an overview of some of the most recent evidence for metabolic dysregulation in Alzheimer's disease, Huntington's disease, and Parkinson's disease, and discuss several potential mechanisms that may underlie the potential relationships between metabolic dysfunction and etiology of nervous system degeneration. We also highlight some prominent signaling pathways involved in the link between peripheral metabolism and the central nervous system that are potential targets for future therapies, and we will review some of the clinical progress in this field. It is likely that in the near future, therapeutics with combinatorial neuroprotective and 'eumetabolic' activities may possess superior efficacies compared to less pluripotent remedies.  相似文献   

6.
‘Dying back’ axon degeneration is a prominent feature of many age‐related neurodegenerative disorders and is widespread in normal ageing. Although the mechanisms of disease‐ and age‐related losses may differ, both contribute to symptoms. Here, we review recent advances in understanding axon pathology in age‐related neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and glaucoma. In particular, we highlight the importance of axonal transport, autophagy, traumatic brain injury and mitochondrial quality control. We then place these disease mechanisms in the context of changes to axons and dendrites that occur during normal ageing. We discuss what makes ageing such an important risk factor for many neurodegenerative disorders and conclude that the processes of normal ageing and disease combine at the molecular, cellular or systems levels in a range of disorders to produce symptoms. Pathology identical to disease also occurs at the cellular level in most elderly individuals. Thus, normal ageing and age‐related disease are inextricably linked and the term ‘healthy ageing’ downplays the important contributions of cellular pathology. For a full understanding of normal ageing or age‐related disease we must study both processes.  相似文献   

7.
Embryonic neurogenesis is the process of generating neurons, the functional units of the brain. Because of its sensitivity to adverse intrauterine environment such as infection, dysregulation of this process has emerged as a key mechanism underlying many neurodevelopmental disorders such as autism spectrum disorders (ASD). Adult neurogenesis, although is restricted to a few neurogenic niches, plays pivotal roles in brain plasticity and repair. Increasing evidence suggests that impairments in adult neurogenesis are in-volved in major neurodegenerative disorders such as Alzheimer's disease. A hallmark feature of these brain disorders is neuroinflammation, which can either promote or inhibit neurogenesis depending upon the context of brain microenvironment. In this review paper, we present evidence from both experimental and human studies to show a complex picture of relationship between these two events, and discussed potential factors contributing to different or even opposing actions of neuroinflammation on neurogenesis in neuro-developmental and neurological disorders.  相似文献   

8.
9.
The primary function of the renin-angiotensin system (RAS) is to maintain fluid homeostasis and regulate blood pressure. Several components of the RAS, namely angiotensinogen, angiotensin converting enzyme, angiotensin II and their receptors, are found in the CNS suggesting the possibility of a localized RAS in the brain. Cognitively disabling neurodegenerative disorders such as Alzheimer's disease or vascular dementia show vascular lesions, and the brain RAS has been suggested to contribute to the disease process. The aim of this brief review is to summarize the current state of research in this field with emphasis on RAS-related alterations during the course of neurodegenerative disorders.  相似文献   

10.
An age-associated increase in oxidative damage to nucleic acids, predominantly to RNA, has been recently demonstrated in neurons of human and rodent brains, which may play a fundamental role in the development of age-associated neurodegeneration. Indeed, more prominent levels of neuronal RNA oxidation compared to normal aging have been described in neurodegenerative disorders including Alzheimer disease, Parkinson disease, dementia with Lewy bodies, and amyotrophic lateral sclerosis. Moreover, oxidative damage to RNA has been found also in cellular and animal model of neurodegeneration. Oxidative RNA modification can occur not only in protein-coding RNAs but also in non-coding RNAs that are recently revealed to contribute towards the complexity of the mammalian brain. It has been hypothesized that RNA oxidation causes aberrant expression of microRNAs and proteins and subsequently initiates inappropriate cell fate pathways. While less lethal than mutations in the genome and not inheritable, such sublethal damage to cells might be associated with underlying mechanisms of degeneration, especially age-associated neurodegeneration. Of particular interest, the accumulating evidence obtained from studies on either human samples or experimental models coincidentally suggests that RNA oxidation is a feature in neurons of aging brain and more prominently observed in vulnerable neurons at early-stage of age-associated neurodegenerative disorders, indicating that RNA oxidation actively contributes to the background, the onset, and the development of the disorders. Further investigations aimed at understanding of the processing mechanisms related to oxidative RNA damage and its consequences may provide significant insights into the pathogenesis of neurodegenerative disorders and lead to better therapeutic strategies.  相似文献   

11.
Protease-activated receptors (PARs) are G protein-coupled receptors that regulate the cellular response to extracellular serine proteases, like thrombin, trypsin, and tryptase. The PAR family consists of four members: PAR-1, -3, and -4 as thrombin receptors and PAR-2 as the trypsin/tryptase receptor, which are abundantly expressed in the brain throughout development. Recent evidence has supported the direct involvement of PARs in brain development and function. The expression of PARs in the brain is differentially upregulated or downregulated under pathological conditions in neurodegenerative disorders, like Parkinson's disease, Alzheimer's disease, multiple sclerosis, stroke, and human immunodeficiency virus-associated dementia. Activation of PARs mediates cell death or cell survival in the brain, depending on the amplitude and the duration of agonist stimulation. Interference or potentiation of PAR activation is beneficial in animal models of neurodegenerative diseases. Therefore, PARs mediate either neurodegeneration or neuroprotection in neurodegenerative diseases and represent attractive therapeutic targets for treatment of brain injuries. Here, we review the abnormal expression of PARs in the brain under pathological conditions, the functions of PARs in neurodegenerative disorders, and the molecular mechanisms involved.  相似文献   

12.
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative disorders and exact a burden on our society greater than cardiovascular disease and cancer combined. While cognitive and motor symptoms are used to define AD and PD, respectively, patients with both disorders exhibit sleep disturbances including insomnia, hypersomnia and excessive daytime napping. The molecular basis of perturbed sleep in AD and PD may involve damage to hypothalamic and brainstem nuclei that control sleep-wake cycles. Perturbations in neurotransmitter and hormone signaling (e.g., serotonin, norepinephrine and melatonin) and the neurotrophic factor BDNF likely contribute to the disease process. Abnormal accumulations of neurotoxic forms of amyloid β-peptide, tau and α-synuclein occur in brain regions involved in the regulation of sleep in AD and PD patients, and are sufficient to cause sleep disturbances in animal models of these neurodegenerative disorders. Disturbed regulation of sleep often occurs early in the course of AD and PD, and may contribute to the cognitive and motor symptoms. Treatments that target signaling pathways that control sleep have been shown to retard the disease process in animal models of AD and PD, suggesting a potential for such interventions in humans at risk for or in the early stages of these disorders.  相似文献   

13.
Parkinson's disease is a neurodegenerative disorder predominately affecting midbrain dopaminergic neurons that results in a broad range of motor and non-motor symptoms. Sleep complaints are among the most common non-motor symptoms, even in the prodromal period. Sleep alterations in Parkinson's disease patients may be associated with dysregulation of circadian rhythms, intrinsic 24-h cycles that control essential physiological functions, or with side effects from levodopa medication and physical and mental health challenges. The impact of circadian dysregulation on sleep disturbances in Parkinson's disease is not fully understood; as such, we review the systems, cellular and molecular mechanisms that may underlie circadian perturbations in Parkinson's disease. We also discuss the potential benefits of chronobiology-based personalized medicine in the management of Parkinson's disease both in terms of behavioural and pharmacological interventions. We propose that a fuller understanding of circadian clock function may shed important new light on the aetiology and symptomatology of the disease and may allow for improvements in the quality of life for the millions of people with Parkinson's disease.  相似文献   

14.
Synucleinopathies: clinical and pathological implications   总被引:22,自引:0,他引:22  
The synucleinopathies are a diverse group of neurodegenerative disorders that share a common pathologic lesion composed of aggregates of insoluble alpha-synuclein protein in selectively vulnerable populations of neurons and glia. Growing evidence links the formation of abnormal filamentous aggregates to the onset and progression of clinical symptoms and the degeneration of affected brain regions in neurodegenerative disorders. These disorders may share an enigmatic symmetry, i.e., missense mutations in the gene encoding for the disease protein (alpha-synuclein) cause familial variants of Parkinson disease as well as its hallmark brain lesions, but the same brain lesions also form from the corresponding wild-type brain protein in the more common sporadic varieties of Parkinson disease. It is likely that clarification of this enigmatic symmetry in 1 form of synucleinopathy will have a profound impact on understanding the mechanisms underlying all these disorders. Furthermore, these efforts will likely lead to novel diagnostic and therapeutic strategies in regard to the synucleinopathies.  相似文献   

15.
Alzheimer's disease, frontotemporal dementia, dementia with Lewy bodies, and prion diseases are age-related neurodegenerative disorders associated with a progressive decline of cognitive brain functions. Due to the increase in prevalence rates, and the rising costs associated with clinical and social care, treatments designed to prevent or reverse these diseases are urgently needed. The most common major biochemical characteristic of these neurodegenerative diseases is the deposition of abnormal protein aggregates in brain. The decryption of the mechanisms of aggregation and associated neurotoxicity may reveal new therapeutic targets, which will enable treatment for these devastating conditions.  相似文献   

16.
《Trends in neurosciences》2023,46(9):764-779
Systemic inflammation, neurovascular dysfunction, and coagulopathy often occur concurrently in neuropathologies. Neutrophils and platelets have crucial synergistic roles in thromboinflammation and are increasingly suspected as effector cells contributing to the pathogenesis of neuroinflammatory diseases. In this review, we summarize the roles of platelet–neutrophil interactions in triggering complex pathophysiological events affecting the brain that may lead to the disruption of brain barriers, infiltration of toxic factors into the parenchyma, and amplification of neuroinflammation through the formation of neutrophil extracellular traps (NETs). We highlight the clinical significance of thromboinflammation in neurological disorders and examine the contributions of damage-associated molecular patterns (DAMPs) derived from platelets and neutrophils. These DAMPs originate from both infectious and non-infectious risk factors and contribute to the activation of inflammasomes during brain disorders. Finally, we identify knowledge gaps in the molecular mechanisms underlying neurodegenerative disease pathogenesis and emphasize the potential of interventions targeting platelets and neutrophils to treat neuroinflammatory diseases.  相似文献   

17.
Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by repeated episodes of dream enactment behavior and REM sleep without atonia (RSWA) during polysomnography recording. RSWA is characterized by increased phasic or tonic muscle activity seen on polysomnographic electromyogram channels. RSWA is a requisite diagnostic feature of RBD, but may also be seen in patients without clinical symptoms or signs of dream enactment as an incidental finding in neurologically normal individuals, especially in patients receiving antidepressant therapy. RBD may be idiopathic or symptomatic. Patients with idiopathic RBD often later develop other neurological features including parkinsonism, orthostatic hypotension, anosmia, or cognitive impairment. RSWA without clinical symptoms as well as clinically overt RBD also often occurs concomitantly with the α-synucleinopathy family of neurodegenerative disorders, which includes idiopathic Parkinson disease, Lewy body dementia, and multiple system atrophy. This review article considers the epidemiology of RBD, clinical and polysomnographic diagnostic standards for both RBD and RSWA, previously reported associations of RSWA and RBD with neurodegenerative disorders and other potential causes, the pathophysiology of which brain structures and networks mediate dysregulation of REM sleep muscle atonia, and considerations for the effective and safe management of RBD.  相似文献   

18.
19.
Dichgans J  Schulz JB 《Der Nervenarzt》1999,70(12):1072-1081
Neurons of the central nervous system in general do not multiply after birth. Therefore, no replacement or biological renewal of individual cells affected by aging or death is possible. Morphological changes occurring in the aging brain are found substantially more pronounced in neurodegenerative diseases. Systemic degenerations of selective brain areas in these disorders, e.g. in Alzheimer's, Parkinson's, Huntington's disease or in amyotrophic lateral sclerosis, may be considered as models of accelerated aging and may allow to study the genetic and environmental influences of selective aging and cell death in modules of the central nervous system. Although neurodegenerative diseases are disparate disorders on the basis of their symptomatology and the anatomic distribution of pathologic lesions, they actually share key attributes with respect to biochemical and cellular determinants of selective vulnerability. Most strikingly, many show a conversion of disease specific and only recently identified proteins into unsoluble aggregates which form intra- or extracellular deposits. These protein aggregates may, over time, affect neuronal function, eventually leading to neurodegeneration and neurodegenerative pathology. The pathological process is counterbalanced by protective mechanisms that may loose their efficacy during normal aging. This could explain the late onset of even the inherited neurodegenerative disorders. Since the expression of disease-specific proteins is often not restricted to the affected brain areas (as exemplified by the expression of polyglutamine containing proteins in trinucleotide repeat disorders in non-affected brain areas and even outside the brain), the anatomical specificity of the degenerative process may be determined by associated binding proteins. Therapeutic strategies include the reinforcement of physiological defense mechanisms and intervention at early phases of the pathological biochemistry of disease specific proteins.  相似文献   

20.
Neuroinflammation is considered a chronic activation of the immune response in the central nervous system (CNS) in response to different injuries. This brain immune activation results in various events: circulating immune cells infiltrate the CNS; resident cells are activated; and pro-inflammatory mediators produced and released induce neuroinflammatory brain disease. The effect of immune diffusible mediators on synaptic plasticity might result in CNS dysfunction during neuroinflammatory brain diseases. The CNS dysfunction may induce several human pathological conditions associated with both cognitive impairment and a variable degree of neuroinflammation. Furthermore, age has a powerful effect on enhanced susceptibility to neurodegenerative diseases and age-dependent enhanced neuroinflammatory processes may play an important role in toxin generation that causes death or dysfunction of neurons in neurodegenerative diseases This review will address current understanding of the relationship between ageing, neuroinflammation and neurodegenerative disease by focusing on the principal mechanisms by which the immune system influences the brain plastic phenomena. Also, the present review considers the principal human neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis and psychiatric disorders caused by aging and neuroinflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号