首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ideal biomaterial for the repair of bone defects is expected to have good mechanical properties, be fabricated easily into a desired shape, support cell attachment, allow controlled release of bioactive factors to induce bone formation, and biodegrade into nontoxic products to permit natural bone formation and remodeling. The synthetic polymer poly(propylene fumarate) (PPF) holds great promise as such a biomaterial. In previous work we developed poly(DL-lactic-co-glycolic acid) (PLGA) and PPF microspheres for the controlled delivery of bioactive molecules. This study presents an approach to incorporate these microspheres into an injectable, porous PPF scaffold. Model drug Texas red dextran (TRD) was encapsulated into biodegradable PLGA and PPF microspheres at 2 microg/mg microsphere. Five porous composite formulations were fabricated via a gas foaming technique by combining the injectable PPF paste with the PLGA or PPF microspheres at 100 or 250 mg microsphere per composite formulation, or a control aqueous TRD solution (200 microg per composite). All scaffolds had an interconnected pore network with an average porosity of 64.8 +/- 3.6%. The presence of microspheres in the composite scaffolds was confirmed by scanning electron microscopy and confocal microscopy. The composite scaffolds exhibited a sustained release of the model drug for at least 28 days and had minimal burst release during the initial phase of release, as compared to drug release from microspheres alone. The compressive moduli of the scaffolds were between 2.4 and 26.2 MPa after fabrication, and between 14.9 and 62.8 MPa after 28 days in PBS. The scaffolds containing PPF microspheres exhibited a significantly higher initial compressive modulus than those containing PLGA microspheres. Increasing the amount of microspheres in the composites was found to significantly decrease the initial compressive modulus. The novel injectable PPF-based microsphere/scaffold composites developed in this study are promising to serve as vehicles for controlled drug delivery for bone tissue engineering.  相似文献   

2.
DeFail AJ  Chu CR  Izzo N  Marra KG 《Biomaterials》2006,27(8):1579-1585
Transforming growth factor-beta1 (TGF-beta1) is of great relevance to cartilage development and regeneration. A delivery system for controlled release of growth factors such as TGF-beta1 may be therapeutic for cartilage repair. We have encapsulated TGF-beta1 into poly(DL-lactide-co-glycolide) (PLGA) microspheres, and subsequently incorporated the microspheres into biodegradable hydrogels. The hydrogels are poly(ethylene glycol) based, and the degradation rate of the hydrogels is controlled by the non-toxic cross-linking reagent, genipin. Release kinetics of TGF-beta1 were assessed using ELISA and the bioactivity of the released TGF-beta1 was evaluated using a mink lung cell growth inhibition assay. The controlled release of TGF-beta1 encapsulated within microspheres embedded in scaffolds is better controlled when compared to delivery from microspheres alone. ELISA results indicated that TGF-beta1 was released over 21 days from the delivery system, and the burst release was decreased when the microspheres were embedded in the hydrogels. The concentration of TGF-beta1 released from the gels can be controlled by both the mass of microspheres embedded in the gel, and by the concentration of genipin. Additionally, the scaffold permits containment and conformation of the spheres to the defect shape. Based on these in vitro observations, we predict that we can develop a microsphere-loaded hydrogel for controlled release of TGF-beta1 to a cartilage wound site.  相似文献   

3.
采用冷冻干燥制备壳聚糖支架,以牛血清白蛋白(BSA)和碱性成纤维细胞生长因子(bFGF)为模型药物,制备乳酸-乙醇酸共聚物(PLGA)微球,并将其包埋于壳聚糖支架中,考察药物在支架上的体外释放。以MTT法考察了缓慢释放的bFGF对L929细胞的影响。用扫描电镜观察包埋微球支架的形态和生长了细胞的支架。结果表明单用壳聚糖支架,药物释放得比较快,制成PLGA微球后,再包埋于壳聚糖支架中,则药物释放明显缓慢。缓慢释放的bFGF促进了细胞的生长。  相似文献   

4.
Liu J  Meisner D  Kwong E  Wu XY  Johnston MR 《Biomaterials》2007,28(21):3236-3244
A translymphatic drug delivery system which incorporates poly-lactide-co-glycolide-paclitaxel (PLGA-PTX) or PLGA-rhodamine microspheres into gelatin sponge matrix is described. The system combines the sustained release properties of PLGA-PTX with the structural advantages of gelatin matrix that can be implanted directly to the lymphatic site for both therapeutic and prophylactic purposes. The PLGA microspheres were prepared using spray drying technique. The particles were in the size range of 1-8 microm, suitable for intraperitoneal and intrapleural lymphatic targeting delivery. Scanning electron microscopy revealed the homogeneous distribution of PLGA microspheres in the porous sponge network. The release of PTX was mainly controlled by the degradation of the PLGA. Crosslinking gelatin using carbodiimide reduced the biodegradation of the sponge and thereby delayed the release of the PLGA in vitro. In vivo lymphatic delivery was assessed in both healthy rats and rats bearing orthotopic lung cancer. Intraperitoneal and intrapleural implantation of the sponge impregnated with PLGA microspheres resulted in spontaneous absorption of the particles in the lymphatic system. It is concluded that the system provides great potential for targeted delivery of therapeutic agent to the lymphatic system especially for the control of lymphatic metastasis in cancer.  相似文献   

5.
Tissue engineering scaffolds with a micro- or nanoporous structure and able to deliver special drugs have already been confirmed to be effective in bone repair. In this paper, we first evaluated the biomineralization properties and drug release properties of a novel mesoporous silica–hydroxyapatite composite material (HMS–HA) which was used as drug vehicle and filler for polymer matrices. Biomineralization can offer a credible prediction of bioactivity for the synthetic bone regeneration materials. We found HMS–HA exhibited good apatite deposition properties after being soaked in simulated body fluid (SBF) for 7 days. Drug delivery from HMS–HA particle was in line with Fick’s law, and the release process lasted 12 h after an initial burst release with 60% drug release. A novel tissue engineering scaffold with the function of controlled drug delivery was developed, which was based on HMS–HA particles, poly(lactide-co-glycolide) (PLGA) and microspheres sintering techniques. Mechanical testing on compression, degradation behavior, pH-compensation effect and drug delivery behavior of PLGA/HMS–HA microspheres sintered scaffolds were analyzed. Cell toxicity and cell proliferation on the scaffolds was also evaluated. The results indicated that the PLGA/HMS–HA scaffolds could effectively compensate the increased pH values caused by the acidic degradation product of PLGA. The compressive strength and modulus of PLGA/HMS–HA scaffolds were remarkably high compared to pure PLGA scaffold. Drug delivery testing of the PLGA/HMS–HA scaffolds indicated that PLGA slowed gentamycin sulfate (GS) release from HMS–HA particles, and the release lasted for nearly one month. Adding HMS–HA to PLGA scaffolds improved cytocompatibility. The scaffolds demonstrated low cytotoxicity, and supported mesenchymal stem cells growth more effectively than pure PLGA scaffolds. To summarize, the data supports the development of PLGA/HMS–HA scaffolds as potential degradable and drug delivery materials for bone replacement.  相似文献   

6.
Biodegradable scaffolds play an important role in tissue engineering by providing physical and biochemical support for both differentiated and progenitor cells. Here, we describe a novel method for incorporating proteins in 3D biodegradable scaffolds by utilizing protein-loaded microspheres as the building blocks for scaffold formation. Poly(l,d-lactic-co-glycolic acid) (PLGA) microspheres containing bovine serum albumin (BSA) were fused into scaffolds using dichloromethane vapor for various time intervals. Microspheres containing 0, 0.4, 1.5, 4.3% BSA showed that increased protein loading required increased fusion time for scaffold fabrication. Protein release from the scaffolds was quantified in vitro over 20 days and compared to that of loose microspheres. Scaffolds had a slightly lower (up to 20%) release over the first 10 days, however, the cumulative release from both microspheres and scaffolds at the end of the study was not statistically different and the rate of release was the same, indicating that microsphere release can be predictive of scaffold kinetics. Scaffolds fused from larger (113.3 +/- 58.0 microm) rather than smaller (11.15 +/- 11.08 microm) microspheres, generated pores on the order of 200 microm as compared to 20 microm, respectively, showing control over pore size. In addition, four dyes (carbon black, acid green, red 27, and fast green FCF) were encapsulated in PLGA microspheres and fused into homogeneous and partitioned scaffolds, indicating control over spatial distribution within the scaffold. Finally, the scaffolds were seeded with fibroblast cells, which attached and were well spread over the polymer surface after 4h of incubation. These results highlight the versatility of this simple scaffold fusion method for incorporating essentially any combination of loaded microspheres into a 3D structure, making this a powerful tool for tissue engineering and drug delivery applications.  相似文献   

7.
目的探讨骨形态发生蛋白(rhBMP-2)的聚乳酸聚乙醇酸共聚物(PLGA)体外缓释生物支架对人骨髓间充质干细胞(MSCs)细胞的影响。方法采用粒子沥滤-冷冻干燥复合工艺制备了附载rhBMP-2的PLGA生物支架,并检测了在PLGA的降解过程中rhBMP-2的释药规律;同时分离培养人骨髓间充质干细胞,体外培养后分别接种于附载和未附载rhBMP-2的PLGA支架上。扫描电镜观察不同时间段MSC在支架上的生长情况;MTT法测定细胞增殖情况。结果rhBMP-2能被包裹进PLGA支架中,而且可以在PLGA支架降解过程中持续释放出来并诱导骨发生。结论骨形态发生蛋白的PLGA复合载体是一种较为理想的新型生物支架。  相似文献   

8.
This study describes the use of oligo [(polyethylene glycol) fumarate] (OPF) hydrogel scaffolds as vehicles for sustained delivery of dibutyryl cyclic adenosine monophosphate (dbcAMP) to the transected spinal cord. dbcAMP was encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres, which were embedded within the scaffolds architecture. Functionality of the released dbcAMP was assessed using neurite outgrowth assays in PC12 cells and by delivery to the transected spinal cord within OPF seven channel scaffolds, which had been loaded with Schwann cells or mesenchymal stem cells (MSCs). Our results showed that encapsulation of dbcAMP in microspheres lead to prolonged release and continued functionality in vitro. These microspheres were then successfully incorporated into OPF scaffolds and implanted in the transected thoracic spinal cord. Sustained delivery of dbcAMP inhibited axonal regeneration in the presence of Schwann cells but rescued MSC-induced inhibition of axonal regeneration. dbcAMP was also shown to reduce capillary formation in the presence of MSCs, which was coupled with significant functional improvements. Our findings demonstrate the feasibility of incorporating PLGA microsphere technology for spinal cord transection studies. It represents a novel sustained delivery mechanism within the transected spinal cord and provides a platform for potential delivery of other therapeutic agents.  相似文献   

9.
The controlled release of growth factors from porous, polymer scaffolds is being studied for potential use as tissue-engineered scaffolds. Biodegradable polymer microspheres were coated with a biocompatible polymer membrane to permit the incorporation of the microspheres into tissue-engineered scaffolds. Surface studies with poly(D,L-lactic-co-glycolic acid) [PLGA], and poly(vinyl alcohol) [PVA] were conducted. Polymer films were dip-coated onto glass slides and water contact angles were measured. The contact angles revealed an initially hydrophobic PLGA film, which became hydrophilic after PVA coating. After immersion in water, the PVA coating was removed and a hydrophobic PLGA film remained. Following optimization using these 2D contact angle studies, biodegradable PLGA microspheres were prepared, characterized, and coated with PVA. X-ray photoelectron spectroscopy was used to further characterize coated slides and microspheres. The release of the model protein bovine serum albumin from PVA-coated PLGA microspheres was studied over 8 days. The release of BSA from PVA-coated PLGA microspheres embedded in porous PLGA scaffolds over 24 days was also examined. Coating of the PLGA microspheres with PVA permitted their incorporation into tissue-engineered scaffolds and resulted in a controlled release of BSA.  相似文献   

10.
The controlled release of growth factors from porous, polymer scaffolds is being studied for potential use as tissue-engineered scaffolds. Biodegradable polymer microspheres were coated with a biocompatible polymer membrane to permit the incorporation of the microspheres into tissueengineered scaffolds. Surface studies with poly(D,L-lactic-co-glycolic acid) [PLGA], and poly(vinyl alcohol) [PVA] were conducted. Polymer films were dip-coated onto glass slides and water contact angles were measured. The contact angles revealed an initially hydrophobic PLGA film, which became hydrophilic after PVA coating. After immersion in water, the PVA coating was removed and a hydrophobic PLGA film remained. Following optimization using these 2D contact angle studies, biodegradable PLGA microspheres were prepared, characterized, and coated with PVA. X-ray photoelectron spectroscopy was used to further characterize coated slides and microspheres. The release of the model protein bovine serum albumin from PVA-coated PLGA microspheres was studied over 8 days. The release of BSA from PVA-coated PLGA microspheres embedded in porous PLGA scaffolds over 24 days was also examined. Coating of the PLGA microspheres with PVA permitted their incorporation into tissue-engineered scaffolds and resulted in a controlled release of BSA.  相似文献   

11.
Monodisperse PLGA–alginate core–shell microspheres with controlled size and homogeneous shells were first fabricated using capillary microfluidic devices for the purpose of controlling drug release kinetics. Sizes of PLGA cores were readily controlled by the geometries of microfluidic devices and the fluid flow rates. PLGA microspheres with sizes ranging from 15 to 50 μm were fabricated to investigate the influence of the core size on the release kinetics. Rifampicin was loaded into both monodisperse PLGA microspheres and PLGA–alginate core–shell microspheres as a model drug for the release kinetics studies. The in vitro release of rifampicin showed that the PLGA core of all sizes exhibited sigmoid release patterns, although smaller PLGA cores had a higher release rate and a shorter lag phase. The shell could modulate the drug release kinetics as a buffer layer and a near-zero-order release pattern was observed when the drug release rate of the PLGA core was high enough. The biocompatibility of PLGA–alginate core–shell microspheres was assessed by MTT assay on L929 mouse fibroblasts cell line and no obvious cytotoxicity was found. This technique provides a convenient method to control the drug release kinetics of the PLGA microsphere by delicately controlling the microstructures. The obtained monodisperse PLGA–alginate core–shell microspheres with monodisperse size and homogeneous shells could be a promising device for controlled drug release.  相似文献   

12.
The purpose of the study was to design and develop unique drug delivery systems with controllable multiple burst releases of drugs for treating osteoarthritis. Chondroitin sulfate (CS) was encapsulated into four types of PLGA materials, that is, PLGA 50:50, PLGA 65:35, PLGA 75:25, and PLGA 85:15. The effects of microsphere size and various combinations of blend PLGA microspheres on CS release were investigated. The cytotoxicity of the CS-encapsulated microspheres was investigated according to the ISO 10993 guideline. Our study showed that the encapsulation efficiency of CS into PLGA 50:50 microspheres varied with the size of microspheres; however, the encapsulation efficiencies of CS into PLGA microspheres were independent of the types of PLGA materials. The size of PLGA microspheres was shown to affect the rate of CS release. With the increase of microsphere size from 75-150 μm to 300-355 μm, the initial CS release decreased. Further increase in microsphere size led to an increase in the initial CS release. In addition, combination of different types of PLGA microspheres was shown to be capable of achieving multiple burst CS releases. Moreover, the CS encapsulated PLGA microspheres were shown to be non-cytotoxic. This study proved the concept of multiple burst drug releases that were achieved by encapsulating CS into different types of PLGA microspheres and delivering CS from systems consisting of mixed types of PLGA microspheres, which may be applied to treat osteoarthritis by mimicking multiple intra-joint injection of therapeutic agents.  相似文献   

13.
Modulation of protein delivery from modular polymer scaffolds   总被引:2,自引:0,他引:2  
Lee M  Chen TT  Iruela-Arispe ML  Wu BM  Dunn JC 《Biomaterials》2007,28(10):1862-1870
Growth factors are increasingly employed to promote tissue regeneration with various biomaterial scaffolds. In vitro release kinetics of protein growth factors from tissue engineering scaffolds are often investigated in aqueous environment, which is significantly different from in vivo environment. This study investigates the release of model proteins with net-positive (histone) and net-negative charge (bovine serum albumin, BSA) from various scaffolding surfaces and from encapsulated microspheres in the presence of ions, proteins, and cells. The release kinetics of proteins in media with varying concentrations of ions (NaCl) suggests stronger electrostatic interaction between the positively charged histone with the negatively charged substrates. While both proteins released slowly from hydrophobic PCL surfaces, plasma etching resulted in rapid release of BSA, but not histone. Interestingly, although negatively charged BSA released readily from negatively charged collagen (col), BSA released slowly from col-coated PCL scaffolds. Such electrostatic interaction effects were abolished in the presence of serum proteins and cells as evidenced by the rapid release of proteins from col-coated scaffolds. To achieve sustained release in the complex environment of serum proteins and cells, the model proteins were encapsulated into poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres, which were embedded within col-coated PCL scaffolds. Protein release from microspheres was modulated by changing the lactide-to-glycolide ratio of PLGA polymer. BSA adsorbed to col released faster than histone encapsulated in microspheres in the presence of serum and cells. Collectively, the data suggest that growth factor release is highly influenced by scaffold surface and the presence of ions, proteins, and cells in the media. Strategies to deliver multiple growth factors and studies which investigate their release should consider these important variables.  相似文献   

14.
Newman KD  McBurney MW 《Biomaterials》2004,25(26):5763-5771
The pluripotent nature and proliferative capacity of embryonic stem cells makes them an attractive cell source for tissue engineering and regeneration. In our study we investigated the use of poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres as biodegradable microcarriers of pluripotent cells and as delivery systems of bioactive factors, which influence cell differentiation. The pluripotent P19 embryonal carcinoma cell line was used as a model to study cell attachment, growth and differentiation of pluripotent stem cells on PLGA microspheres. Retinoic acid (RA) was encapsulated in the PLGA microcarriers to influence cell differentiation-more specifically, to induce P19 cell differentiation into neurons. The results revealed that P19 cells attach and grow on the surface of the RA loaded PLGA microspheres. Moreover, the RA loaded PLGA microspheres were shown to be as effective as soluble RA at inducing P19 cell differentiation into neurons. Hence, the results of these ex vivo studies clearly demonstrate the capacity of PLGA microspheres to serve a dual role as both delivery systems of bioactive factors and as scaffolds for pluripotent cells. More importantly, our study demonstrates the potential use of PLGA microspheres as transplantation matrices of pluripotent stem cells for tissue engineering and regeneration.  相似文献   

15.
Lactic/glycolic acid polymers (PLGA) are widely used for drug delivery systems. The microsphere formulation is the most interesting dosage form of the PLGA-based controlled release devices. In this study, the previously reported PLGA were used to prepare drug-containing microspheres. Progesterone was used as a model drug. The progesterone microspheres were prepared from PLGA having varied compositions and varied molecular weight. The microscopic characterization shows that the microspheres are spherical, nonaggregated particles. The progesterone-containing PLGA microspheres possess a Gaussian size distribution, having average size from 70-134 microm. A solvent extraction method was employed to prepare the microspheres. The microencapsulation method used in this study has high drug encapsulation efficiency. The progesterone release from the PLGA microspheres and the factors affecting the drug release were studied. The release of progesterone from the PLGA microspheres is affected by the properties of the polymer used. The drug release is more rapid from the microspheres prepared using the PLGA having higher fraction of glycolic acid moiety. The drug release from the microspheres composed of higher molecular weight PLGA is faster. The drug content in microspheres also has an effect on the drug release. Higher progesterone content in microspheres yields a quicker initial burst release of the drug.  相似文献   

16.
Drug-releasing scaffolds fabricated from drug-loaded microspheres.   总被引:1,自引:0,他引:1  
Biodegradable scaffolds serve a central role in many strategies for engineering tissue replacements or in guiding tissue regeneration. Typically, these scaffolds function to create and maintain a space and to provide a support for cell adhesion. However, these scaffolds also can serve as vehicles for the delivery of bioactive factors (e.g., protein or DNA) in order to manipulate cellular processes within the scaffold microenvironment. This study presents a novel approach to fabricate tissue-engineering scaffolds capable of sustained drug delivery whereby drug-loaded microspheres are fabricated into structures with controlled porosity. A double-emulsion process was used to fabricate microspheres with encapsulated DNA that retained its integrity and was released from the microspheres within 24 h. These DNA-loaded microspheres subsequently were formed into a nonporous disk or an interconnected open-pore scaffold (>94% porosity) via a gas-foaming process. The disks and scaffolds exhibited sustained plasmid release for at least 21 days and had minimal burst during the initial phase of release. This approach of assembling drug-loaded microspheres into porous and nonporous structures may find great utility in the fabrication of synthetic matrices that direct tissue formation.  相似文献   

17.
In this study, in-vitro osteogenesis was successfully induced in the highly chondrogenic synovium mesenchymal stem cells (SMSCs) by controlled release of a nitrogenous bisphosphonate additive – alendronate (AL) from a mesoporous silica (MS)–hydroxyapatite (HA) composite that was mediated in poly(lactic-co-glycolic acid) (PLGA) microspheres. This microspherical based controlled release system is constructed with three levels of degradable structures: (1) the AL drug was first hybridized with HA nanoparticles; (2) the HA–AL complexes were filled into the mesopores of MS particles by self-assembly in situ; and (3) the HA–AL-laden MS constructs (MSH–AL) were built in the bulk of PLGA microspheres. In comparison with any mono-component construct, the superiority of this multi-component system comes from two aspects of functionalities: (1) significantly greater loading capacity of the extremely hydrophilic drug-AL; and (2) better controlled profile of AL release. Based on this newly developed PLGA/MSH–AL releasing system, as recipients the SMSCs, which usually exhibit exclusively high chondrogenesis, demonstrated a strong osteogenic commitment. The results were verified by alkaline phosphatase (ALP) activity assay, calcium secretion assay, real time PCR and immunohistochemistry analysis. Considering the renewable source and high proliferative profile of SMSCs, the achievement of engineered SMSC osteogenesis with this PLGA/MSH–AL controlled release system would open a new door to major bony reparation and regeneration.  相似文献   

18.
Localized dual-drug delivery from biodegradable scaffolds is an important strategy in tissue engineering. In this study, porous poly(L-lactide-co-glycolide) (PLGA)/β-tricalcium phosphate scaffolds containing both dexamethasone (Dex) and bovine serum albumin (BSA) were prepared by incorporating Dex-loaded and BSA-loaded microspheres into the scaffolds. PLGA microspheres containing Dex or BSA were prepared by spray-drying and double emulsion/solvent evaporation, respectively. In vitro release studies indicated that microspheres prepared from PLGA in 3:1 molar ratio of L-lactide/glycolide and 89.5 kDa relative molecular mass showed prolonged release profiles compared with those prepared from PLGA in 1:1 L-lactide/glycolide molar ratio and 30.5 kDa relative molecular mass. Additionally, introduction of poly(ethylene glycol) in the PLGA chain could improve the encapsulation efficiency and reduce the release rate. Based on the above results, controllable dual-release of Dex and BSA with relatively higher or lower release rate was achieved by incorporating Dex-loaded and BSA-loaded microspheres with different release profiles into the PLGA/β-tricalcium phosphate scaffolds.  相似文献   

19.
This work evaluated gelatin microparticles and biodegradable composite scaffolds for the controlled release of bone morphogenetic protein-2 (BMP-2) in vitro and in vivo. Gelatin crosslinking (10 and 40mM glutaraldehyde), BMP-2 dose (6 and 60ng BMP-2 per mg dry microparticles), buffer type (phosphate buffered saline (PBS) and collagenase-containing PBS), and gelatin type (acidic and basic) were investigated for their effects on BMP-2 release. Release profiles were also observed using poly(lactic-co-glycolic acid) (PLGA) microparticles with varying molecular weights (8300 and 57,500). In vitro and in vivo studies were conducted using radiolabeled BMP-2; the chloramine-T method was preferred over Bolton-Hunter reagent for radioiodination with this system. BMP-2 release from PLGA microparticles resulted in a moderate burst release followed by minimal cumulative release, while BMP-2 release from gelatin microparticles exhibited minimal burst release followed by linear release kinetics in vitro. Growth factor dose had a small effect on its normalized release kinetics probably because of an equilibrium between gelatin-bound and unbound BMP-2. Differences in release from acidic and basic gelatin microparticles may result from the different pretreatment conditions used for gelatin synthesis. The in vitro release kinetics for both gelatin microparticles alone and within composite scaffolds were dependent largely on the extent of gelatin crosslinking; varying buffer type served to confirm that controlled release relies on enzymatic degradation of the gelatin for controlled release. Finally, in vivo studies with composite scaffolds exhibited minimal burst and linear release up to 28 days. In summary, dose effects on BMP-2 release were found to be minimal while varying gelatin type and release medium can alter release kinetics. These results demonstrate that a systematic control of BMP-2 delivery from gelatin microparticles can be achieved by altering the extent of basic gelatin crosslinking.  相似文献   

20.
Polymer scaffolds which can support cells to grow as well as deliver growth factors to the cells simultaneously have great potential for the successful regeneration of failed tissues. As popularly used vehicles to deliver anti-cancer drugs and growth factors, microspheres also show many advantages as substrates to guide the growth of cells. Therefore, we aimed to examine the feasibility of using microspheres as ideal scaffolds for liver tissue engineering. To determine the capabilities of previously used microsphere scaffold to deliver growth factors simultaneously, this work investigated a long-term (about three months) release of bovine serum albumin (BSA) from microsphere scaffolds fabricated by using two different polymers, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV, 8% PHV), poly(lactide-co-glycolide) acid (PLGA, 5050) and a blend of PLGA and PHBV. BSA served as a model for hepatocyte growth factor (HGF) since both proteins have similar molecular weights and hydrophilicity. Furthermore, HGF was encapsulated into the PLGA/PHBV composite microsphere with a core-shell structure, and sustained delivery of HGF with maintained bioactivity was achieved for at least 40 days. The moderate degradation rate (about 55% loss of the initial mass) and well-preserved structure after three months of incubation indicated that the PLGA/PHBV composite microspheres would therefore be more suitable than the pure PHBV or PLGA microspheres as a scaffold for engineering liver tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号