首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
2.
The membrane protein HPC-1/syntaxin 1A is believed to play a key role in synaptic vesicle exocytosis, and it was recently suggested to be required for synaptic plasticity. Despite evidence for the function of HPC-1/syntaxin 1A in synaptic plasticity, the underlying cellular mechanism is unclear. We found that although fast synaptic transmission and long-term depression were unaffected, HPC-1/syntaxin 1A knock-out (STX1A(-/-)) mice showed impaired long-term potentiation (LTP) in response to theta-burst stimulation in CA1 hippocampal slices. The impairment in LTP was rescued by the application of forskolin, an adenylyl cyclase activator, or more robust stimulation, suggesting that cAMP/protein kinase A signaling was suppressed in these mice. In addition, catecholamine release from the hippocampus was significantly reduced in STX1A(-/-) mice. Because HPC-1/syntaxin 1A regulates exocytosis of dense-core synaptic vesicles, which contain neuromodulatory transmitters such as noradrenaline, dopamine and 5-HT, we examined the effect of neuromodulatory transmitters on LTP induction. Noradrenaline and dopamine enhanced LTP induction in STX1A(-/-) mice, whereas catecholamine depletion reduced LTP induction in wild-type mice. Theses results suggest that HPC-1/syntaxin 1A regulates catecholaminergic systems via exocytosis of dense-core synaptic vesicles, and that deletion of HPC-1/syntaxin 1A causes impairment of LTP induction.  相似文献   

3.
A growing body of evidence suggests that modulation of certain proteins of the exocytotic machinery is, in part, involved in the biochemical changes that underlie long-term synaptic plasticity. We have previously shown that the induction of long-term potentiation (LTP) at perforant path to dentate granule cell synapses in the rat hippocampus induces changes in the mRNA levels of syntaxin 1B and synapsin I, known to be involved in neurotransmitter release. Immunohistochemical staining suggested that concomitant changes in these proteins occurred at mossy fibre synapses, downstream of those synapses at which LTP was induced, leading us to postulate that such a mechanism might underlie a form of transsynaptic plasticity. Here we have used a specific mossy-fibre synaptosome preparation to quantify levels of proteins and measure, using a chemiluminescent glutamate assay, depolarization-induced glutamate release from these synaptosomes after induction of LTP in the dentate gyrus in vivo. We show that 5 h after the induction of LTP, there is an increase in the protein levels of syntaxin 1B and, although to a lesser extent, the synapsins I and II, associated with an increase in depolarization-induced release of glutamate within these terminals. Increases in both the protein levels and glutamate release were not observed when dentate gyrus LTP was blocked by an NMDA receptor antagonist. From these results we propose a molecular mechanism for the propagation of synaptic plasticity through hippocampal circuits.  相似文献   

4.
Memory impairments, which occur regularly across species as a result of ageing, disease (such as diabetes mellitus) and psychological insults, constitute a useful area for investigating the neurobiological basis of learning and memory. Previous studies in rats found that induction of diabetes (with streptozotocin, STZ) impairs long‐term potentiation (LTP) but enhances long‐term depression (LTD) induced by high‐ (HFS) and low‐frequency stimulations (LFS), respectively. Using a pairing protocol under whole‐cell recording conditions to induce synaptic plasticity at Schaffer collateral synapses in hippocampal CA1 slices, we show that LTD and LTP have similar magnitudes in diabetic and age‐matched control rats. But, in diabetic animals, LTD is induced at more polarized and LTP more depolarized membrane potentials (Vms) compared with controls: diabetes produces a 10 mV leftward shift in the threshold for LTD induction and 10 mV rightward shift in the LTD–LTP crossover point of the voltage–response curve for synaptic plasticity. Prior repeated short‐term potentiations or LTP are known to similarly, though reversibly, lower the threshold for LTD induction and raise that for LTP induction. Thus, diabetes‐ and activity‐dependent modulation of synaptic plasticity (referred to as metaplasticity) display similar phenomenologies. In addition, compared with naïve synapses, prior induction of LTP produces a 10 mV leftward shift in Vms for inducing subsequent LTD in control but not in diabetic rats. This could indicate that diabetes acts on synaptic plasticity through mechanisms involved in metaplasticity. Persistent facilitation of LTD and inhibition of LTP may contribute to learning and memory impairments associated with diabetes mellitus.  相似文献   

5.
A major role has been postulated for a maintained increase in the autonomous activity of CaMKII in the expression of long-term potentiation (LTP). However, attempts to inhibit the expression of LTP with CaMKII inhibitors have yielded inconsistent results. Here we compare the changes in CaMKII autonomous activity and phosphorylation at Thr286 of alphaCaMKII in rat hippocampal slices using chemical or tetanic stimulation to produce either LTP or short-term potentiation (STP). Tetanus-induced LTP in area CA1 requires CaMKII activation and Thr286 phosphorylation of alphaCaMKII, but we did not observe an increase in autonomous activity. Next we induced LTP by 10 min exposure to 25 mM tetraethyl-ammonium (TEA) or 5 min exposure to 41 mM potassium (K) after pretreatment with calyculin A. Exposure to K alone produced STP. These protocols allowed us to monitor temporal changes in autonomous activity during and after exposure to the potentiating chemical stimulus. In chemically induced LTP, autonomous activity was maximally increased within 30 s whereas this increase was significantly delayed in STP. However, in both LTP and STP the two-fold increase in autonomous activity measured immediately after stimulation was short-lived, returning to baseline within 2-5 min after re-exposure to normal ACSF. In LTP, but not in STP, the phosphorylation of alphaCaMKII at Thr286 persisted for at least 60 min after stimulation. These results confirm that LTP is associated with a maintained increase in autophosphorylation at Thr286 but indicate that a persistent increase in the autonomous activity of CaMKII is not required for the expression of LTP.  相似文献   

6.
Behavioural experience (e.g. chronic stress, environmental enrichment) can have long-lasting effects on cognitive functions. Because activity-dependent persistent changes in synaptic strength are believed to mediate memory processes in brain areas such as hippocampus, we tested whether behaviour has also long-lasting effects on synaptic plasticity by examining the induction of long-term potentiation (LTP) and long-term depression (LTD) in slices of hippocampal CA1 obtained from rats either 7-9 months after social defeat (behavioural stress) or 3-5 weeks after 5-week exposure to environmental enrichment. Compared with age-matched controls, defeated rats showed markedly reduced LTP. LTP was even completely impaired but LTD was enhanced in defeated and, subsequently, individually housed (during the 7-9-month period after defeat) rats. However, increasing stimulus intensity during 100-Hz stimulation resulted in significant LTP. This suggests that the threshold for LTP induction is still raised and that for LTD lowered several months after a short stressful experience. Both LTD and LTP were enhanced in environmentally enriched rats, 3-5 weeks after enrichment, as compared with age-matched controls. Because enrichment reduced paired-pulse facilitation, an increase in presynaptic release, facilitating both LTD and LTP induction, might contribute to enhanced synaptic changes. Consistently, enrichment reduced the number of 100-Hz stimuli required for inducing LTP. But enrichment may also actually enhance the range of synaptic modification. Repeated LTP and LTD induction produced larger synaptic changes in enriched than in control rats. These data reveal that exposure to very different behavioural experiences can produce long-lasting effects on the susceptibility to synaptic plasticity, involving pre- and postsynaptic processes.  相似文献   

7.
In brain slices from prenatally saline-exposed female rats during proestrus and diestrus, long-term potentiation (LTP) can be induced in the lateral perforant pathway (LPP). Prenatal morphine exposure suppresses LTP induction in the LPP during proestrus. Here we studied synaptic plasticity in the LPP in slices from female rats prenatally exposed to morphine. Two additional factors were investigated: the role of the estrous cycle and role of glucocorticoid receptors. Hippocampal slices were prepared from adult, prenatally saline- or morphine-exposed female rats. One hour prior to decapitation, vaginal smears were obtained and the rats either in proestrus or diestrus were treated with a non-specific glucocorticoid receptor antagonist mifepristone (RU486) or with a vehicle. LPP was stimulated with high-frequency stimulation. Short-tem plasticity (STP) and the induction and maintenance of long-term potentiation (LTP) were assessed. In all groups of prenatally saline-exposed rats, LTP was induced and maintained with the exception of RU486-treated rats during proestrus where the LTP was induced but not maintained. In prenatally morphine-exposed females in diestrus, both STP and LTP were induced after postnatal vehicle treatment. In morphine-exposed, proestrous females, neither STP nor LTP were induced irrespective of the postnatal treatment. Thus, prenatal morphine exposure suppresses the induction of LTP in the LPP, except during diestrus. Data indicate that the induction and maintenance of LTP in the LPP in hippocampal slices from female rats is multifactorial: ovarian steroids and functionality of glucocorticoid receptors cooperation are necessary for induction and maintenance of the LTP, prenatal morphine exposure interferes with this process possibly by its long-term effects on synaptic plasticity.  相似文献   

8.
The growth-associated protein GAP-43 (or neuromodulin or B-50) plays a critical role during development in mechanisms of axonal growth and formation of synaptic networks. At later times, GAP-43 has also been implicated in the regulation of synaptic transmission and properties of plasticity such as long-term potentiation. In a molecular approach, we have analyzed transgenic mice overexpressing different mutated forms of GAP-43 or deficient in GAP-43 to investigate the role of the molecule in short-term and long-term plasticity. We report that overexpression of a mutated form of GAP-43 that mimics constitutively phosphorylated GAP-43 results in an enhancement of long-term potentiation in CA1 hippocampal slices. This effect is specific, because LTP was affected neither in transgenic mice overexpressing mutated forms of non-phosphorylatable GAP-43 nor in GAP-43 deficient mice. The increased LTP observed in transgenic mice expressing a constitutively phosphorylated GAP-43 was associated with an increased paired-pulse facilitation as well as an increased summation of responses during high frequency bursts. These results indicate that, while GAP-43 is not necessary for LTP induction, its phosphorylation may regulate presynaptic properties, thereby affecting synaptic plasticity and the induction of LTP.  相似文献   

9.
Li Z  Zhou Q  Li L  Mao R  Wang M  Peng W  Dong Z  Xu L  Cao J 《Hippocampus》2005,15(6):815-824
Repeated vivid recalls or flashbacks of traumatic memories and memory deficits are the cardinal features of post-traumatic stress disorder (PTSD). The underlying mechanisms are not fully understood yet. Here, we examined the effects of very strong fear conditioning (20 pairings of a light with a 1.5-mA, 0.5-s foot shock) and subsequent reexposure to the conditioning context (chamber A), a similar context (chamber B), and/or to the fear conditioned stimulus (CS) (a light) on synaptic plasticity in the hippocampal CA1 area in anesthetized Sprague-Dawley rats. The conditioning procedure resulted in very strong conditioned fear, as reflected by high levels of persistent freezing, to both the contexts and to the CS, 24 h after fear conditioning. The induction of long-term potentiation (LTP) was blocked immediately after fear conditioning. It was still markedly impaired 24 h after fear conditioning; reexposure to the conditioning chamber A (CA) or to a similar chamber B (CB) did not affect the impairment. However, presentation of the CS in the CA exacerbated the impairment of LTP, whereas the CS presentation in a CB ameliorated the impairment so that LTP induction did not differ from that of control groups. The induction of long-term depression (LTD) was facilitated immediately, but not 24 h, after fear conditioning. Only reexposure to the CS in the CA, but not reexposure to either chamber A or B alone, or the CS in chamber B, 24 h after conditioning, reinstated the facilitation of LTD induction. These data demonstrate that unconditioned and conditioned aversive stimuli in an intense fear conditioning paradigm can have profound effects on hippocampal synaptic plasticity, which may aid to understand the mechanisms underlying impairments of hippocampus-dependent memory by stress or in PTSD.  相似文献   

10.
The mechanisms underlying the induction of synaptic plasticity and the formation of long-term memory involve activation of cell-signalling cascades and protein modifications such as phosphorylation and dephosphorylation. Based on a protein candidate strategy, studies have identified several protein kinases and their substrates, which show an altered phosphorylation state during the early phases of long-term potentiation (LTP), yet only a limited number of synaptic phosphoproteins are known to be implicated in LTP. To identify new phosphoproteins associated with LTP, we have undertaken a proteomic study of phosphoproteins at different time points following the induction of LTP in the dentate gyrus in vivo (0, 15 and 90 min). For each time point, proteins from the dentate gyrus were separated by two-dimensional gel electrophoresis and stained with Pro−Q® Diamond, a fluorescent stain specific for phosphoproteins. Fourteen proteins whose phosphorylation state varied significantly following LTP were identified using matrix-assisted laser desorption ionization/time of flight mass spectrometry and electrospray ionization-Orbitrap tandem mass spectrometry (MS/MS). They are involved in various cellular functions implicated in synaptic plasticity, such as intracellular signalling, axonal growth, exocytosis, protein synthesis and metabolism. Our results highlight new proteins whose phosphorylation or dephosphorylation is associated with LTP induction or maintenance. Further studies focusing on the regulation of specific phosphorylation sites will lead to greater understanding of the individual implications of these proteins in LTP as well as of their molecular interactions.  相似文献   

11.
Erythropoietin has shown wide physiological effects on the central nervous system in animal models of disease, and in healthy animals. We have recently shown that systemic EPO administration 15 min, but not 5 h, after daily training in a water maze is able to induce the recovery of spatial memory in fimbria‐fornix chronic‐lesioned animals, suggesting that acute EPO triggers mechanisms which can modulate the active neural plasticity mechanism involved in spatial memory acquisition in lesioned animals. Additionally, this EPO effect is accompanied by the up‐regulation of plasticity‐related early genes. More remarkably, this time‐dependent effects on learning recovery could signify that EPO in nerve system modulate specific living‐cellular processes. In the present article, we focus on the question if EPO could modulate the induction of long‐term synaptic plasticity like LTP and LTD, which presumably could support our previous published data. Our results show that acute EPO peripheral administration 15 min before the induction of synaptic plasticity is able to increase the magnitude of the LTP (more prominent in PSA than fEPSP‐Slope) to facilitate the induction of LTD, and to protect LTP from depotentiation. These findings showing that EPO modulates in vivo synaptic plasticity sustain the assumption that EPO can act not only as a neuroprotective substance, but is also able to modulate transient neural plasticity mechanisms and therefore to promote the recovery of nerve function after an established chronic brain lesion. According to these results, EPO could be use as a molecular tool for neurorestaurative treatments. Synapse 70:240–252, 2016 . © 2016 Wiley Periodicals, Inc.  相似文献   

12.
Memory consolidation is thought to occur through protein synthesis-dependent synaptic plasticity mechanisms such as long-term potentiation (LTP). Dynamic changes in gene expression and epigenetic modifications underlie the maintenance of LTP. Similar mechanisms may mediate the storage of memory. Key plasticity genes, such as the immediate early gene Arc, are induced by learning and by LTP induction. Mice that lack Arc have severe deficits in memory consolidation, and Arc has been implicated in numerous other forms of synaptic plasticity, including long-term depression and cell-to-cell signaling. Here, we take a comprehensive approach to determine if Arc is necessary for hippocampal LTP in male and female mice. Using a variety of Arc knock-out (KO) lines, we found that germline Arc KO mice show no deficits in CA1 LTP induced by high-frequency stimulation and enhanced LTP induced by theta-burst stimulation. Temporally restricting the removal of Arc to adult animals and spatially restricting it to the CA1 using Arc conditional KO mice did not have an effect on any form of LTP. Similarly, acute application of Arc antisense oligodeoxynucleotides had no effect on hippocampal CA1 LTP. Finally, the maintenance of in vivo LTP in the dentate gyrus of Arc KO mice was normal. We conclude that Arc is not necessary for hippocampal LTP and may mediate memory consolidation through alternative mechanisms.SIGNIFICANCE STATEMENT The immediate early gene Arc is critical for maintenance of long-term memory. How Arc mediates this process remains unclear, but it has been proposed to sustain Hebbian synaptic potentiation, which is a key component of memory encoding. This form of plasticity is modeled experimentally by induction of LTP, which increases Arc mRNA and protein expression. However, mechanistic data implicates Arc in the endocytosis of AMPA-type glutamate receptors and the weakening of synapses. Here, we took a comprehensive approach to determine if Arc is necessary for hippocampal LTP. We find that Arc is not required for LTP maintenance and may regulate memory storage through alternative mechanisms.  相似文献   

13.
CaMK2N1 and CaMK2N2 (also known as CaMKIINα and β) are endogenous inhibitors of calcium/calmodulin-dependent kinase II (CaMKII), an enzyme critical for memory and long-term potentiation (LTP), a form of synaptic plasticity thought to underlie learning. CaMK2N1/2 mRNAs are rapidly and differentially upregulated in the hippocampus and amygdala after acquisition or retrieval of fear memory. Moreover, CaMK2N2 protein levels increase after contextual fear conditioning. Therefore, it was proposed that CaMK2N1/2 genes (Camk2n1/2) could be immediate-early genes transcribed promptly (30–60 min) after training. As a first approach to explore a role in synaptic plasticity, we assessed a possible regulation of Camk2n1/2 during the expression phase of LTP in hippocampal CA3–CA1 connections in rat brain slices. Quantitative PCR revealed that Camk2n1, but not Camk2n2, is upregulated 60 min after LTP induction by Schaffer collaterals high-frequency stimulation. We observed a graded, significant positive correlation between the magnitude of LTP and Camk2n1 change in individual slices, suggesting a coordinated regulation of these properties. If mRNA increment actually resulted in the protein upregulation in plasticity-relevant subcellular locations, CaMK2N1 may be involved in CaMKII fine-tuning during LTP maintenance or in the regulation of subsequent plasticity events (metaplasticity).  相似文献   

14.
Activity-induced protein synthesis is critical for long-lasting synaptic plasticity and subject to tight controls. MicroRNAs (miRNAs) are negative regulators of mRNA translation, but their role during synaptic plasticity is not clear. In this study, we have investigated how induction of long-term potentiation (LTP) and long-term depression (LTD) regulates the expression of miRNAs. Using miRNA arrays, we determined the temporal expression profiles of 62 hippocampal miRNAs following induction of chemical LTP (C-LTP) and metabotropic glutamate receptor-dependent LTD (mGluR-LTD). Several striking features were observed. First, C-LTP or mGluR-LTD induction changed the expression levels of most hippocampal miRNAs. Second, the majority of miRNAs regulated by C-LTP or mGluR-LTD induction followed a similar temporal expression profile. Third, most miRNAs were regulated by both C-LTP and mGluR-LTD induction, but displayed distinct expression dynamics. Fourth, many miRNAs were upregulated at specific time points C-LTP and mGluR-LTD induction, suggesting that C-LTP and mGluR-LTD induction elicits miRNA-mediated suppression of mRNA translation. We propose that the upregulated miRNA expression provides a mechanism to prevent excess protein synthesis during the expression of synaptic plasticity. The extensive regulation of miRNA expression by C-LTP and mGluR-LTD induction suggests a critical role of miRNAs in synaptic plasticity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
A modulatory role for the hippocampal theta rhythm in synaptic plasticity is suggested by the observations that theta occurs during exploratory behaviors, spatial learning is impaired when the theta rhythm is disrupted, and excitation of hippocampal principal cells is phase-coupled to the theta wave. The theta phase affects the nature of the plasticity induced in urethane-anesthetized rats and in the carbachol-treated in vitro slice preparation, but these oscillations are phenomenologically different from natural theta, and the effects of theta phase on plasticity under natural conditions have not been reported. We therefore examined the effects of theta phase on the magnitude of long-term potentiation (LTP) in awake rats running on a linear track for a food reward. Twelve adult and 10 aged F344 male rats were implanted with a stimulating electrode in the perforant path and a recording electrode in the hilus of the fascia dentata. Stimuli were delivered at the peak or trough of the hilar theta rhythm. In both adult and aged, memory-impaired rats, LTP lasting at least 48 h was induced when stimuli were delivered at the positive theta peak, whereas LTP was not induced when stimuli were delivered at the negative troughs. Consistent with the finding that the threshold for LTP induction is increased at this synapse in old rats, the magnitude of LTP induced at the peak of theta rhythm was significantly lower in old animals. These data confirm that LTP can be modulated by locomotion-induced theta, and that this modulation is at least qualitatively preserved across age.  相似文献   

16.
There are multiple types of plasticity at both excitatory glutamatergic and inhibitory GABAergic synapses onto a cerebellar Purkinje neuron (PN). At parallel fiber to PN synapses, long-term depression (LTD) and long-term potentiation (LTP) occur, while at molecular layer interneuron to PN synapses, a type of LTP called rebound potentiation (RP) takes place. LTD, LTP, and RP seem to contribute to motor learning. However, each type of synaptic plasticity might play a different role in various motor learning paradigms. In addition, defects in one type of synaptic plasticity could be compensated by other forms of synaptic plasticity, which might conceal the contribution of a particular type of synaptic plasticity to motor learning. The threshold stimulation for inducing each type of synaptic plasticity and the induction conditions are different for different plasticity mechanisms, and they change depending on the state of an animal. Facilitation and/or saturation of synaptic plasticity occur after certain behavioral experiences or in some transgenic mice. Thus, the regulation and roles of synaptic plasticity are complicated. Toward a comprehensive understanding of the respective roles of each type of synaptic plasticity and their possible interactions during motor learning processes, I summarize induction conditions, modulations, interactions, and saturation of synaptic plasticity and discuss how multiple types of synaptic plasticity in a PN might work together in motor learning processes.  相似文献   

17.
Moga DE  Shapiro ML  Morrison JH 《Hippocampus》2006,16(11):990-1003
Long-term potentiation (LTP) in vitro reveals dynamic regulation of synaptic glutamate receptors. AMPA receptors may be inserted into synapses to increase neurotransmission, whereas NMDA receptors may redistribute within the synapse to alter the probability of subsequent plasticity. To date, the only evidence for these receptor dynamics in the hippocampus is from the studies of dissociated neurons and hippocampal slices taken from young animals. Although synaptic plasticity is induced easily, the extent of AMPA and NMDA receptor mobility after LTP is unknown in the adult, intact hippocampus. To test whether AMPA or NMDAR subunits undergo activity-dependent modifications in adult hippocampal synapses, we induced LTP at perforant path-dentate gyrus (DG) synapses in anesthetized adult rats, using high frequency stimulation (HFS), verified layer-specific Arc induction, and analyzed the distribution of postsynaptic AMPA and NMDAR subunits, using immunogold electron microscopy. The number of synapses with AMPA receptor labeling increased with LTP-inducing HFS in the stimulated region of the dendrite relative to the nonstimulated regions. The opposite trend was noted with low frequency stimulation (LFS). Moreover, HFS increased and LFS decreased the ratio of synaptic to extrasynaptic AMPA receptor labeling in the postsynaptic membrane. In contrast, HFS did not significantly alter NMDAR labeling. Thus, LTP in the adult hippocampus in vivo selectively enhanced AMPA but not NMDAR labeling specifically in synapses undergoing activity-dependent plasticity relative to the remainder of the dendritic tree. The results suggest a mechanism by which rapid adjustments in synaptic strength can occur through localized AMPA receptor mobility and that this process may be competitive across the dendritic tree.  相似文献   

18.
Protein kinase M zeta (PKMζ), a constitutively active, atypical protein kinase C isoform, maintains a high level of expression in the brain after the induction of learning and long-term potentiation (LTP). Further, its overexpression enhances long-term memory and LTP. Thus, multiple lines of evidence suggest a significant role for persistently elevated PKMζ levels in long-term memory. The molecular mechanisms of how synaptic properties are regulated by the increase in PKMζ, however, are still largely unknown. The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR) mediates most of the fast glutamatergic synaptic transmission in the brain and is known to be critical for the expression of synaptic plasticity and memory. Importance of AMPAR trafficking has been implicated in PKMζ-mediated cellular processes, but the detailed mechanisms, particularly in terms of regulation of AMPAR lateral movement, are not well understood. In the current study, using a single-molecule live imaging technique, we report that the overexpression of PKMζ in hippocampal neurons immobilized GluA2-containing AMPARs, highlighting a potential novel mechanism by which PKMζ may regulate memory and synaptic plasticity.  相似文献   

19.
In order to elucidate possible involvement of the serotonergic neuronal system in the stress-induced alteration in synaptic plasticity, the effects of contextual fear conditioning (CFC) on long-term potentiation (LTP) in the hippocampal CA1 field were examined in 5-HT-depleted rats by pretreatment with 5,7-dihydroxytryptamine (5,7-DHT, 200 microg/rat, i.c.v.). LTP induction was suppressed by footshock (FS) stimulation in 5-HT-lesioned rats and vehicle-treated controls. When rats were exposed to CFC, which was received 24 h after FS stimulation, LTP was also blocked in both-treated groups. CFC-induced impairment of LTP, however, significantly attenuated in 5-HT-lesioned rats when compared with that in controls. Fear-related freezing behavior after FS stimulation occurred similarly in both treated groups, whereas the behavior observed during exposure to CFC significantly reduced in 5-HT-lesioned rats. These results suggest that the serotonergic mechanism is involved in the psychological stress-induced alteration in synaptic plasticity, which appears to be associated with fear-related behavior.  相似文献   

20.
Long-term potentiation (LTP) is a well-characterized form of synaptic plasticity that fulfills many of the criteria for the neural correlate of memory. LTP reversal (or depotentiation, DP) is thought to correlate with prevention or elimination of memory storage. LTP during and immediately after induction can be easily reversed by afferent stimulation, when applied within the optimal time window. The aim of the present study was to determine whether later-phase LTP (L-LTP) could be reversed by special patterned stimulation applied at 2 h after LTP induction, as well as to characterize the receptor mechanisms underlying this reversal. Field excitatory postsynaptic potentials evoked by Schaffer collateral stimulation were recorded from the CA1 subfield of adult rat hippocampal slices. Results demonstrated that stable LTP, which was induced by six theta-burst stimulations, was mediated by NR2A-containing N -methyl- d -aspartate receptors (NMDARs). This L-LTP was partially reversed by high-intensity paired-pulse low-frequency stimulation (HI-PP-LFS) and was inhibited by Zn2+ (30 n m ), a voltage-independent NR2A-NMDAR antagonist. However, NR2B-NMDAR antagonists (Ro 25-6981, 1 μ m ) displayed no effect on L-LTP reversal. L-LTP partial reversal was also induced by HI-PP-LFS, when the protein synthesis inhibitors anisomycin (25 μ m ) and cycloheximide (60 μ m ) were applied following LTP induction. These results suggested that NR2A-containing NMDARs are required for L-LTP induction and DP in the hippocampal CA1 area of adult rats. Moreover, HI-PP-LFS was an effective stimulation pattern to induce DP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号