首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PURPOSE: Prior studies in humans measured time constants of biometric accommodative changes as a function of amplitude, and prior studies in monkeys used slit lamp videography to analyze dynamic lenticular accommodative movements. Neither of these studies related biometric changes to refractive changes. We wished to develop and test methodology to begin to test the hypothesis that ocular biometric changes are well correlated with accommodative refractive changes in rhesus monkeys. METHODS: Methodology is described to dynamically measure biometric accommodative changes with A-scan ultrasonography. Lens thickness, anterior chamber depth, and anterior segment length (anterior chamber depth plus lens thickness) were measured dynamically during Edinger-Westphal-stimulated accommodation in two eyes of one rhesus monkey. In addition, dynamic accommodative refractive changes were measured with infrared photorefraction. Functions were fit to the accommodative and disaccommodative responses to obtain time constants. Derivatives of these functions allow peak velocities to be determined for each amplitude. Dynamic changes in lens thickness and anterior chamber depth measured with A-scan biometry were compared with dynamic measures of accommodation using infrared photorefraction. RESULTS: Lens thickness and anterior segment length increase and anterior chamber depth decreases during accommodation. The biometric changes are well correlated with the accommodative optical changes. Peak velocities of accommodative changes in lens thickness and anterior chamber depth increase with amplitude and peak velocities for disaccommodation were higher than those for accommodation. CONCLUSIONS: Dynamic A-scan provides a method for dynamic analysis of the accommodative biometric changes during Edinger-Westphal-stimulated accommodation in monkeys, although the measurement resolution of this approach is limited.  相似文献   

2.
During accommodation, the refractive changes occur when the ciliary muscle contracts, releasing resting zonular tension and allowing the lens capsule to mold the lens into an accommodated form. This results in centripetal movement of the ciliary processes and lens edge. The goal of this study was to understand the relationship between accommodative refractive changes, ciliary process movements and lens edge movements during Edinger-Westphal (EW) and pharmacologically stimulated accommodation in adolescent rhesus monkeys. Experiments were performed on one eye each of three rhesus monkeys with permanent indwelling electrodes in the EW nucleus of the midbrain. EW stimulated accommodative refractive changes were measured with infrared photorefraction, and ciliary process and lens edge movements were measured with slit-lamp goniovideography on the temporal aspect of the eye. Images were recorded on the nasal aspect for one eye during EW stimulation. Image analysis was performed off-line at 30 Hz to determine refractive changes and ciliary body and lens edge movements during EW stimulated accommodation and after carbachol iontophoresis to determine drug induced accommodative movements. Maximum EW stimulated accommodation was 7.36+/-0.49 D and pharmacologically stimulated accommodation was 14.44+/-1.21 D. During EW stimulated accommodation, the ciliary processes and lens edge moved centripetally linearly by 0.030+/-0.001 mm/D and 0.027+/-0.001 mm/D, with a total movement of 0.219+/-0.034 mm and 0.189+/-0.023 mm, respectively. There was no significant nasal/temporal difference in ciliary process or lens edge movements. 30-40 min after pharmacologically stimulated accommodation, the ciliary processes moved centripetally a total of 0.411+/-0.048 mm, or 0.030+/-0.005 mm/D, and the lens edge moved centripetally 0.258+/-0.014 mm, or 0.019+/-0.003 mm/D. The peaks and valleys of the ciliary processes moved by similar amounts during both supramaximal EW and pharmacologically stimulated accommodation. In conclusion, this study shows, for the first time, that the ciliary processes and lens edge move centripetally, linearly with refraction during EW stimulated accommodation. During pharmacological stimulation, the ciliary processes move to a greater extent than the lens edge, confirming that in adolescent monkeys, lens movement limits the accommodative optical change in the eye.  相似文献   

3.
PURPOSE: Accommodation is a dioptric change in power of the crystalline lens resulting from ciliary muscle contraction that leads to an increase in lens surface curvatures and thickness and changes in the position of lens surfaces. Previous studies have used A-scan ultrasound to measure changes in the position of lens surfaces with voluntary accommodation, but have not simultaneously measured the change in refraction. The goal of this study is to simultaneously measure and correlate refractive and biometric changes in the lens during voluntary accommodation in humans. METHODS: Refraction was measured off-axis in the right eye and biometry on-axis in the left eye simultaneously during voluntary accommodation in 22 human subjects between the ages of 21 and 30 years (mean +/- standard deviation: 25.8 +/- 2.3 years). Subjects viewed a distant target and four near targets spanning the full accommodative range available to evaluate refraction and lens surface position at each accommodative state. RESULTS: Maximum objectively measured accommodative amplitude of all subjects was 5.64 +/- 0.21 D (mean +/- standard error of mean). Biometric and refractive changes during accommodation were linearly correlated. The mean +/- standard error of mean decrease in anterior chamber depth was 0.051 +/- 0.008 mm/D, increase in lens thickness was 0.067 +/- 0.008 mm/D, and increase in anterior segment length was 0.017 +/- 0.005 mm/D during accommodation. There was a net anterior movement of the lens center of 0.017 +/- 0.005 mm/D. CONCLUSION: Anterior chamber depth, lens thickness, and anterior segment length change linearly with refraction during accommodation. Per-diopter changes in the lens were greater in the current study compared with previous studies in which only accommodative demand was measured, which overestimates the accommodative response.  相似文献   

4.
Experiments were undertaken to understand the relationship between dynamic accommodative refractive and biometric (lens thickness (LT), anterior chamber depth (ACD) and anterior segment length (ASL=ACD+LT)) changes during Edinger-Westphal stimulated accommodation in rhesus monkeys. Experiments were conducted on three rhesus monkeys (aged 11.5, 4.75 and 4.75 years) which had undergone prior, bilateral, complete iridectomies and implantation of a stimulating electrode in the Edinger-Westphal (EW) nucleus. Accommodative refractive responses were first measured dynamically with video-based infrared photorefraction and then ocular biometric responses were measured dynamically with continuous ultrasound biometry (CUB) during EW stimulation. The same stimulus amplitudes were used for the refractive and biometric measurements to allow them to be compared. Main sequence relationships (ratio of peak velocity to amplitude) were calculated. Dynamic accommodative refractive changes are linearly correlated with the biometric changes and accommodative biometric changes in ACD, ASL and LT show systematic linear correlations with increasing accommodative amplitudes. The relationships are relatively similar for the eyes of the different monkeys. Dynamic analysis showed that main sequence relationships for both biometry and refraction are linear. Although accommodative refractive changes in the eye occur primarily due to changes in lens surface curvature, the refractive changes are well correlated with A-scan measured accommodative biometric changes. Accommodative changes in ACD, LT and ASL are all well correlated over the full extent of the accommodative response.  相似文献   

5.
PURPOSE: Accommodation can be restored to presbyopic human eyes by refilling the capsular bag with a soft polymer. This study was conducted to test whether accommodation, measurable as changes in optical refraction, can be restored with a newly developed refilling polymer in a rhesus monkey model. A specific intra- and postoperative treatment protocol was used to minimize postoperative inflammation and to delay capsular opacification. METHODS: Nine adolescent rhesus monkeys underwent refilling of the lens capsular bag with a polymer. In the first four monkeys (group A) the surgical procedure was followed by two weekly subconjunctival injections of corticosteroids. In a second group of five monkeys (group B) a treatment intended to delay the development of capsular opacification was applied during the surgery, and, in the postoperative period, eye drops and two subconjunctival injections of corticosteroids were applied. Accommodation was stimulated with carbachol iontophoresis or pilocarpine and was measured with a Hartinger refractometer at regular times during a follow-up period of 37 weeks in five monkeys. In one monkey, lens thickness changes were measured with A-scan ultrasound. RESULTS: In group A, refraction measurement was possible in one monkey. In the three other animals in group A, postoperative inflammation and capsular opacification prevented refraction measurements. In group B, the maximum accommodative amplitude of the surgically treated eyes was 6.3 D. In three monkeys the accommodative amplitude decreased to almost 0 D after 37 weeks. In the two other monkeys, the accommodative amplitude remained stable at +/-4 D during the follow-up period. In group B, capsular opacification developed in the postoperative period, but refraction measurements could still be performed during the whole follow-up period of 37 weeks. CONCLUSIONS: A certain level of accommodation can be restored after lens refilling in adolescent rhesus monkeys. During the follow-up period refraction measurements were possible in all five monkeys that underwent the treatment designed to prevent inflammation and capsular opacification.  相似文献   

6.
Uncertainty exists regarding accommodative and age changes in lens diameter and thickness in humans and monkeys. In this study, unaccommodated and accommodated refraction, lens diameter, and lens thickness were measured in rhesus monkeys across a range of ages. Iridectomized eyes were studied in 33 anesthetized monkeys aged 4-23 years. Refraction was measured using a Hartinger coincidence refractometer and lens thickness was measured with A-scan ultrasound. Lens diameters were measured with image analysis from slit-lamp images captured via a video camera while a saline filled, plano perfusion lens was placed on the cornea. Accommodation was pharmacologically stimulated with 2% pilocarpine via the perfusion lens in 21 of the monkeys and lens diameters were measured until a stable minimum was achieved. Refraction and lens thickness were measured again after the eye was accommodated. Unaccommodated lens thickness increased linearly with age by 0.029 mm/year while unaccommodated lens diameter showed no systematic change with age. Accommodative amplitude decreased by 0.462 D/year in response to pilocarpine. The accommodative increase in lens thickness decreased with age by 0.022 mm/year. The accommodative decrease in lens diameter declined linearly with age by 0.021 mm/year. Rhesus monkeys undergo the expected presbyopic changes including increasing lens thickness and a decreasing ability of the lens to undergo changes in thickness and diameter with accommodation, however without an age-related change in unaccommodated lens diameter. As in humans, the age-related decrease in accommodative amplitude in rhesus monkeys cannot be attributed to an age-related increase in lens diameter.  相似文献   

7.
PURPOSE: Accommodation results in increased lens thickness and lens surface curvatures. Previous studies suggest that lens biometric accommodative changes are different with pharmacological and voluntary accommodation. In this study, refractive and biometric changes during Edinger-Westphal (EW) and pharmacologically stimulated accommodation in rhesus monkeys were compared. METHODS: Accommodation was stimulated by an indwelling permanent electrode in the EW nucleus of the midbrain in one eye each of four rhesus monkeys. Dynamic refractive changes were measured with infrared photorefraction, and lens biometric changes were measured with high-resolution, continuous A-scan ultrasonography for increasing stimulus current amplitudes, including supramaximal current amplitudes. Accommodation was then stimulated pharmacologically and biometry was measured continuously for 30 minutes. RESULTS: During EW-stimulated accommodation, lens surfaces move linearly with refraction, with an increase in lens thickness of 0.06 mm/D, an anterior movement of the anterior lens surface of 0.04 mm/D, and a posterior movement of the posterior lens surface of 0.02 mm/D. Peak velocity of accommodation (diopters per second) and lens thickness (in millimeters per second) increased with supramaximal stimulus currents, but without further increase in amplitude or total lens thickness. After carbachol stimulation, there was initially an anterior movement of the anterior lens surface and a posterior movement of the posterior lens surface; but by 30 minutes, there was an overall anterior shift of the lens. CONCLUSIONS: Ocular biometric changes differ with EW and pharmacological stimulation of accommodation. Pharmacological stimulation results in a greater increase in lens thickness, an overall forward movement of the lens and a greater change in dioptric power.  相似文献   

8.
PURPOSE: The underlying causes of presbyopia, and the functional relationship between the ciliary muscle and lens during aging are unclear. In the current study, these relationships were studied in rhesus monkeys, whose accommodative apparatus and age-related loss of accommodation are similar to those in humans. METHODS: Centripetal ciliary body and lens equator movements were measured during accommodation in 28 eyes of 21 rhesus monkeys (ages, 5.7-26 years) by goniovideography. Ultrasound biomicroscopy was performed in 21 eyes of 17 monkeys. Narrowing of the angle between the anterior aspect of the ciliary body and the inner aspect of the cornea was used as a surrogate indicator of forward ciliary body movement during accommodation. RESULTS: Average centripetal ciliary body movement in older eyes (age > or =17 years, n = 16) was approximately 20% (0.09 mm) less than in young eyes (age, 6-10 years, n = 6), but not enough to explain the 60% (0.21 mm) loss in centripetal lens movement nor the 76% (10.2 D) loss in accommodative amplitude. Average forward ciliary body movement was 67% (49 degrees ) less in older (n = 11) versus young (n = 6) eyes. Maximum accommodative amplitude correlated significantly with the amplitude of centripetal lens movement (0.02 +/- 0.003 mm/D; n = 28; P < 0.001) and with forward ciliary body movement (3.34 +/- 0.54 deg/D; n = 21; P = 0.01). CONCLUSIONS: Decreased lens movement with age could be in part secondary to extralenticular age-related changes, such as loss of ciliary body forward movement. Ciliary body centripetal movement may not be the limiting component in accommodation in the older eye.  相似文献   

9.
This study investigated the changes in ocular aberrations that occur over the entire lens equatorial diameter during accommodation in iridectomized rhesus monkey eyes to understand the nature of accommodative lenticular deformation. Accommodation was centrally stimulated to a range of different response amplitudes (0 D to approximately 11 D), and ocular aberrations were measured with a Shack-Hartmann wavefront sensor in both eyes of one previously iridectomized 10-year-old rhesus monkey. At the highest amplitude in the two eyes, aberrations were analyzed over entrance pupil diameters ranging from 3 to 8 mm in steps of 1 mm. Root mean square error of the total measured aberrations, excluding defocus, increased systematically with increasing accommodation from about 1 to 3.5 microns. Spherical aberration became systematically more negative, and vertical coma increased significantly in magnitude with accommodation. There was a strong accommodative change in power near the center of the lens and little change in power at the periphery. At the highest accommodative state, decreasing the analyzed entrance pupil diameter from 8 to 3 mm considerably reduced the wavefront error. The greater increase in optical power near the central region of the lens, combined with an accommodative pupillary miosis, would serve to maximize accommodative refractive change while maintaining acceptable image quality.  相似文献   

10.
The goal was to determine the age-related changes in accommodative movements of the lens and ciliary body in rhesus monkeys. Varying levels of accommodation were stimulated via the Edinger-Westphal (E-W) nucleus in 26 rhesus monkeys, aged 6–27 years, and the refractive changes were measured by coincidence refractometry. Centripetal ciliary process (CP) and lens movements were measured by computerized image analysis of goniovideographic images. Ultrasound biomicroscopy (UBM) at 50 MHz was used to visualize and measure accommodative forward movements of the ciliary body in relation to age, accommodative amplitude, and centripetal CP and lens movements. At ~3 diopters of accommodation, the amount of centripetal lens movement required did not significantly change with age (p = 0.10; n = 18 monkeys); however, the amount of centripetal CP movement required significantly increased with age (p = 0.01; n = 18 monkeys), while the amount of forward ciliary body movement significantly decreased with age (p = 0.007; n = 11 monkeys). In the middle-aged animals (12–16.5 years), a greater amount of centripetal CP movement was required to induce a given level of lens movement and thereby a given level of accommodation (p = 0.01), compared to the young animals (6–10 yrs). Collectively, the data suggests that, with age, the accommodative system may be attempting to compensate for the loss of forward ciliary body movement by increasing the amount of centripetal CP movement. This, in turn, would allow enough zonular relaxation to achieve the magnitude of centripetal lens movement necessary for a given amplitude of accommodation.  相似文献   

11.
The goal was to determine the age-related changes in accommodative movements of the lens and ciliary body in rhesus monkeys. Varying levels of accommodation were stimulated via the Edinger-Westphal (E-W) nucleus in 26 rhesus monkeys, aged 6–27 years, and the refractive changes were measured by coincidence refractometry. Centripetal ciliary process (CP) and lens movements were measured by computerized image analysis of goniovideographic images. Ultrasound biomicroscopy (UBM) at 50 MHz was used to visualize and measure accommodative forward movements of the ciliary body in relation to age, accommodative amplitude, and centripetal CP and lens movements. At ∼3 diopters of accommodation, the amount of centripetal lens movement required did not significantly change with age (p = 0.10; n = 18 monkeys); however, the amount of centripetal CP movement required significantly increased with age (p = 0.01; n = 18 monkeys), while the amount of forward ciliary body movement significantly decreased with age (p = 0.007; n = 11 monkeys). In the middle-aged animals (12–16.5 years), a greater amount of centripetal CP movement was required to induce a given level of lens movement and thereby a given level of accommodation (p = 0.01), compared to the young animals (6–10 yrs). Collectively, the data suggests that, with age, the accommodative system may be attempting to compensate for the loss of forward ciliary body movement by increasing the amount of centripetal CP movement. This, in turn, would allow enough zonular relaxation to achieve the magnitude of centripetal lens movement necessary for a given amplitude of accommodation.  相似文献   

12.
PURPOSE: To document zonular orientation and suspension of the lens during accommodation, and age-related changes of the circumlental space (CLS) at rest and during accommodation, in living iridectomized rhesus monkey eyes. METHODS: The CLS was measured in 34 iridectomized eyes of 24 living rhesus monkeys, age 5.7 to 26 years, in the resting and accommodated state, and the orientation of the zonula and suspension of the lens during accommodation was assessed qualitatively. RESULTS: The nonaccommodated CLS decreased significantly with age in both the nasal and temporal quadrants and tended to do so at a slightly faster rate in the temporal quadrant. The CLS correlated significantly with the accommodative amplitude: the greater the CLS the greater the accommodative amplitude. Multiple regression analysis indicated that age and CLS together are better predictors of accommodative amplitude than is age alone. The zonula appeared taut in the nonaccommodated eye throughout the age range despite the age-related decline in CLS. CONCLUSIONS: Characterization of age-related changes in the accommodative apparatus may help to model the system for hypothesis testing. The CLS may be an indicator of presbyopia-related processes in surrounding tissues. However, these results do not prove that the width of the CLS, in and of itself, has a causal relationship with accommodative amplitude, or that changes in the CLS play a pathophysiological role in presbyopia.  相似文献   

13.
AIM: Aim of this study was to investigate the relationship between refractive changes in the eye and biometric changes of the human crystalline lens during accommodation. Furthermore, differences in these relationships between young, healthy emmetropic and myopic subjects were analyzed. METHODS: Mean relative change in anterior chamber depth (ACD), lens thickness (LT), anterior segment length (ASL = ACD + LT) and in objective refraction were simultaneously assessed during near-point-induced accommodation in 10 emmetropic and 10 myopic subjects. Via a beam splitter, measurements were performed simultaneously using partial coherence interferometry (PCI) and infrared (IR) photorefraction. RESULTS: On average, for each diopter of accommodation LT increased by 0.063 mm in emmetropic and by 0.072 mm in myopic eyes, and ACD decreased by 0.047 mm and 0.057 mm, respectively. Mean ASL, indicating the position of the posterior lens pole, increased by 0.009 mm in emmetropic and by 0.013 mm in myopic eyes. The correlation between refractive and biometric changes was found to be essentially linear in both subgroups. Differences in ACD between emmetropic and myopic eyes were statistically significant at an accommodative stimulus of -1 D (p<0.04) and -2 D (p<0.02). CONCLUSION: The biometric and refractive changes of the human lens are highly correlated and linear in function in both emmetropic and myopic eyes.  相似文献   

14.
目的研究近视儿童在配戴角膜塑形镜前及3个月后,调节反应及调节过程中眼前节形态的变化。方法前瞻性实验研究。本实验共纳入18名进展性近视青少年[(14.4±2.6)岁]作为研究对象。在配戴角膜塑形镜前及持续夜戴3个月后(摘镜后2 h内),在采用Badal光学系统矫正受检者屈光不正的基础上,使用开放视野型红外验光仪分别在0 D、3 D和5 D的调节刺激下测量眼球屈光力,并计算调节反应量。同时使用实验室自行搭建的超长深度光学相干断层扫描仪(OCT)获取不同调节刺激下眼前节形态,每种刺激均重复拍摄2次。眼前节形态参数包括瞳孔直径(PD)、前房深度(ACD)、晶状体厚度(LT)以及晶状体前表面曲率半径(LAC)。分析戴镜前及戴镜3个月后调节反应及眼前节形态变化量的差异,数据采用配对t检验进行比较。结果在配戴角膜塑形镜3个月后,调节反应在3 D[(1.72±0.59)D vs. (2.42±0.84)D]和5 D[(3.09±0.63)D vs. (3.61±0.86)D]刺激下均显著增加,差异有统计学意义(t=2.84、2.12,P<0.05)。戴镜3个月后,2种调节刺激下调节刺激前后的ΔACD、ΔLAC、ΔPD、ΔLT均较戴镜前变化更为显著。ΔACD[3 D:(-0.11±0.04)mm vs. (-0.16±0.06)mm,t=3.88,P<0.01;5 D:(-0.15±0.05)mm vs. (-0.20±0.07)mm,t=2.37,P<0.05]、ΔLAC[3 D:(-2.60±0.79)mm vs. (-3.81±1.08)mm,t=3.96,P<0.01;5 D:(-3.57±1.14)mm vs. (-4.32±1.36)mm,t=2.08,P<0.05]、ΔLT[3 D:(0.22±0.13)mm vs. (0.27±0.06)mm,t=-1.94,P<0.05;5 D:(0.26±0.09)mm vs. (0.30±0.10)mm,t=-1.99,P<0.05]在戴镜前后的差异均有统计学意义,而ΔPD仅在3 D[(-1.55±0.42)mm vs. (-1.71±0.37)mm]调节刺激下变化量具有统计学意义(t=1.76,P<0.05)。结论配戴角膜塑形镜后,调节过程中调节反应及眼前节形态的变化幅度增大,调节滞后减少,调节功能得到改善。  相似文献   

15.
Accommodation and pupil constriction result from parasympathetic stimulation from the Edinger-Westphal (EW) nucleus of the midbrain resulting in release of acetylcholine at the neuromuscular junctions of the ciliary muscle and iris. Cholinergic and adrenergic drugs can be applied topically to evaluate the effects on the pupil and accommodative system without input from the EW nucleus. This study is directed at characterizing how topical low dose echothiophate, an anti-cholinesterase inhibitor (i.e., an indirect cholinergic agonist), epinephrine, an adrenergic agonist, and timolol maleate, a beta adrenergic antagonist, affect pupil diameter, resting refraction and accommodative amplitude and dynamics in rhesus monkeys. The effects of 0.015% echothiophate, 2% epinephrine, 0.5% timolol maleate and saline on pupil diameter and resting refraction were measured in one eye each of four normal rhesus monkeys for 60-90 min following topical instillation. Pupil diameter was measured with infrared videography and refraction was measured with a Hartinger coincidence refractometer. Effects on static and dynamic EW stimulated accommodation were studied in three iridectomized monkeys (ages 5, 6 and 12 years) with permanent indwelling stimulating electrodes in the EW nucleus. Dynamic accommodative responses were measured with infrared photorefraction for increasing current amplitudes before and during the course of action of the pharmacological agents. Echothiophate caused a significant decrease in pupil diameter of 3.07 ± 0.65 mm (mean ± SEM, p < 0.01), and a myopic shift in resting refraction of 1.30 ± 0.39 D (p < 0.05) 90 min after instillation. Epinephrine caused a 2.76 ± 0.38 mm (p < 0.01) increase in pupil diameter with no change in resting refraction 60 min after instillation. Timolol maleate resulted in no significant change in either pupil diameter or resting refraction 60 min after instillation. There was no significant change in maximum EW stimulated accommodative amplitude after any agent tested. The amplitude vs. peak velocity relationship for accommodation was significantly different after echothiophate and timolol maleate, and for disaccommodation after echothiophate, epinephrine and timolol maleate. In conclusion, when tested objectively in anesthetized monkeys, epinephrine and timolol maleate did not alter resting refraction or accommodative amplitude, but did have small, significant affects on accommodative dynamics. This suggests that there is an adrenergic component to the accommodative system. Low dose echothiophate had significant effects on pupil diameter and resting refraction, with only small effects on the dynamics of the accommodative response.  相似文献   

16.
PURPOSE: Lags of accommodation in ametropic children are often evaluated through spectacle lenses (over-refraction). This study investigated the validity of over-refraction when using an autorefractor. METHODS: Using an autorefractor (Shin-Nippon SRW-500/Grand-Seiko WV-500), refractive readings were obtained in 25 cyclopleged eyes (mean +/- S.D. refraction: -3.44 +/- 3.56 D, range: from -10.56 to +0.25 D) while placing spherical lenses of different power (from -5.00 to +5.00 D) in front of the eye at a vertex distance of 12 mm. Based on the refractive readings with and without the lens, and the lens power, measurement errors were estimated. Similarly, the measurement errors were estimated also in model eyes of -10.00, -4.75, 0.00 and +10.00 D. The results were compared with ray-tracing simulations based on the internal specifications of the autorefractor. RESULTS: Measurement errors were found unless the power of the spectacle lens was equal to the refractive error of the eye. When the spectacle lens power was greater (less myopic or more hyperopic) than the refraction of the eye, the measurement error was negative in sign and greater than -0.3 D. It follows that, when an accommodative response is measured in myopic subjects, the refractive reading usually becomes more myopic than the refraction of the eye including the accommodative response; hence, the accommodative response is overestimated, and the lag of accommodation is underestimated. CONCLUSIONS: The autorefraction through spectacle lenses involved systematic measurement errors. The extent of the errors is usually small but needs to be taken into account in a comparative study of accommodative responses among different refractive groups.  相似文献   

17.
PURPOSE: The aim of this study was to determine whether pharmacologically manipulated resting refraction, amplitude, and starting point affect accommodative and disaccommodative dynamics in anesthetized adolescent rhesus monkeys. METHODS: Pilocarpine and atropine were applied topically to manipulate resting refraction, accommodative amplitude, starting point, and end point in two monkeys with permanent electrodes in the Edinger-Westphal nucleus. Accommodation was centrally stimulated with submaximal and maximal current amplitudes. Dynamic accommodative responses were measured with infrared photorefraction before and during the course of action of the drugs. Accommodative and disaccommodative dynamics were analyzed in terms of peak velocity as a function of amplitude, starting point, and end point. RESULTS: Pilocarpine caused a myopic shift in resting refraction of 11.62 +/- 1.17 D. Centrally stimulated accommodative amplitude was 10.08 +/- 1.15 D before pilocarpine and 0.68 +/- 0.29 D after pilocarpine. Changes were found in accommodative dynamics as a function of starting point and in disaccommodative dynamics as a function of amplitude and end point. Accommodative amplitude was 11.25 +/- 0.18 D before atropine administration and 0.52 +/- 0.11 D after atropine administration. Accommodative dynamics as a function of amplitude were not substantially altered during the course of pilocarpine-induced accommodation or atropine-induced cycloplegia. CONCLUSIONS: Accommodative response amplitude is reduced with pilocarpine by shifting the eye to a more myopic state and with atropine by cycloplegia. Pharmacologic manipulations showed that accommodative and disaccommodative dynamics in anesthetized monkeys depend on amplitude, starting point, and end point of the response and on the contributions of neural and receptor activity.  相似文献   

18.
The extent of voluntary accommodation was investigated behaviorally in two young rhesus monkeys and an adult human using a modified minus-lens technique. Specifically, contrast sensitivity for a high spatial frequency grating was determined as a function of spectacle lens power. Accommodative amplitudes derived from contrast sensitivity vs lens power functions indicate that young monkeys have at least 17 to 18 D of voluntary accommodation and that the accommodative amplitudes of monkeys are larger than those of equivalent-aged humans.  相似文献   

19.
Changes in accommodative dynamics with repeated accommodation were studied in three anesthetized rhesus monkeys and two conscious humans. Maximum accommodation was centrally stimulated via the Edinger-Westphal nucleus in monkeys with a 4 s on, 4 s off paradigm (4 x 4) for 17 min, 4 x 1.5 for 27 min and 2 x 1 for 16 min. Humans accommodated repeatedly to visual targets (5 x 5; 5D and 2 x 2; 6D) for 30 min. In all cases, accommodation was sustained throughout. The anesthetized monkeys showed inter-individual variability in the extent of changes in accommodative dynamics over time while no systematic changes were detected in the human accommodative responses. Little accommodative fatigue was found compared to previous studies which have reported a complete loss of accommodation after 5 min of repeated stimulation in monkeys.  相似文献   

20.
PURPOSE: To measure changes in human eye lens dimensions and refractive index with age and state of accommodation. METHODS: MRI methods were used to measure refractive index maps and lens geometry (diameter and thickness) of an axial slice through the lens in 44 volunteers aged 18 to 59 years, with an accommodation stimulus of 0.17 D (unaccommodated state). In a subpopulation of 26 young volunteers aged 18 to 33 years, lens dimensions were also measured in an accommodated (6.67 D stimulus) state. For a subpopulation of six of the young volunteers (22 to 33 years), refractive index maps were also acquired with an accommodation stimulus of 6.67 D. RESULTS: Unaccommodated lens thickness increased significantly with age (T = 3.31 +/- 0.10 mm + 0.0180 +/- 0.0036 mm x Age; p < 0.0001). Lens diameter (D = 9.33 +/- 0.0033 mm) and central refractive index (nc = 1.4198 +/- 0.0067) showed no significant age dependence. Lens thickness increased (DeltaT = 0.050 +/- 0.024 mm/D) and diameter decreased (DeltaD = -0.067 +/- 0.030 mm/D) on accommodation. A slight decrease in central refractive index with accommodation was not statistically significant. CONCLUSIONS: The results are consistent with the Helmholtz theory of accommodation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号