首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Expression of c-fos mRNA was studied in the adult rat brain following cochlear ablations by using in situ hybridization. In normal animals, expression was produced by acoustic stimulation and was found to be tonotopically distributed in many auditory nuclei. Following unilateral cochlear ablation, acoustically driven expression was eliminated or decreased in areas normally activated by the ablated ear, e.g., the ipsilateral dorsal and ventral cochlear nuclei, dorsal periolivary nuclei, and lateral nucleus of the trapezoid body and the contralateral medial and ventral nuclei of the trapezoid body, lateral lemniscal nuclei, and inferior colliculus. These deficits did not recover, even after long survivals up to 6 months. Results also indicated that neurons in the dorsal cochlear nucleus could be activated by contralateral stimulation in the absence of ipsilateral cochlear input and that the influence of the contralateral ear was tonotopically organized. Results also indicated that c-fos expression rose rapidly and persisted for up to 6 months in neurons in the rostral part of the contralateral medial nucleus of the trapezoid body following a cochlear ablation, even in the absence of acoustic stimulation. This response may reflect a release of constitutive excitatory inputs normally suppressed by missing afferent input or changes in homeostatic gene expression related to sensory deprivation. Instances of transient, surgery-dependent increases in c-fos mRNA expression in the absence of acoustic stimulation were observed in the superficial dorsal cochlear nucleus and the cochlear nerve root on the ablated side. J. Comp. Neurol. 404:271–283, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

2.
We investigated functional activation of central auditory brainstem nuclei in response to direct electrical stimulation of the cochlear nerve using c-Fos immunoreactivity as a marker for functional mapping. The cochlear nerve was stimulated in the cerebellopontine angle of Lewis rats applying biphasic electrical pulses (120-250 muA, 5 Hz) for 30 min. In a control group, bilateral cochlectomy was performed in order to assess the basal expression of c-Fos in the auditory brainstem nuclei. The completeness of cochlear ablations and the response of auditory brainstem nuclei to electrical stimulation were electrophysiologically verified. C-Fos immunohistochemistry was performed using the free floating method. In anaesthetized animals with unilateral electrical stimulation of the cochlear nerve, increased expression of c-Fos was detected in the ipsilateral ventral cochlear nucleus (VCN), in the dorsal cochlear nucleus bilaterally (DCN), in the ipsilateral lateral superior olive (LSO) and in the contralateral inferior colliculus (IC). A bilateral slight increase of c-Fos expression in all subdivisions of the lateral lemniscus (LL) did not reach statistical significance. Contralateral inhibition of the nuclei of the trapezoid body (TB) was observed. Our data show that unilateral electrical stimulation of the cochlear nerve leads to increased expression of c-Fos in most auditory brainstem nuclei, similar to monaural auditory stimulation. They also confirm previous studies suggesting inhibitory connections between the cochlear nuclei. C-Fos immunoreactivity mapping is an efficient tool to detect functional changes following direct electrical stimulation of the cochlear nerve on the cellular level. This could be particularly helpful in studies of differential activation of the central auditory system by experimental cochlear and brainstem implants.  相似文献   

3.
Brian D. Beyerl   《Brain research》1978,145(2):209-223
The afferent projections to the inferior colliculus of the rat were studied using the method of retrograde transport of horseradish peroxidase (HRP).Following large injections of HRP into the central nucleus, cells within the cochlear nuclei, superior olivary complex and auditory cortex were stained. Within the contralateral dorsal cochlear nucleus, fusiform cells were heavily labeled. Giant cells were also labeled in deeper layers. In the contralateral ventral cochlear nucleus, virtually all major cell types were labeled, with some types being labeled in greater numbers than others. Octopus cells of posteroventral division of ventral cochlear nucleus (PVCN) were never labeled. HRP-positive cells were found in ipsilateral and contralateral lateral superior olivary nucleus (LSO), ipsilateral medial superior olivary nucleus (MSO), ipsilateral and contralateral lateral nucleus of the trapezoid body (LTB), ipsilateral ventral nucleus of the trapezoid body (VTB), and ipsilateral superior paraolivary nucleus (SPN). Pyramidal cells of layer V of auditory cortex were heavily labeled.Small injections of HRP into the central nucleus resulted in labeled cells within restricted regions of the cochlear nuclei, superior olivary complex and auditory cortex. Injections into dorsal regions of the central nucleus resulted in cells labeled in ventral regions of the dorsal and ventral cochlear nuclei, and in lateral regions of LSO. These regions contain neurons which are considered to have low best frequencies. Injections placed in more ventral regions of the central nucleus led to labeling of cells in more dorsal regions of the cochlear nuclei and more medial regions of LSO in agreement with the tonotopical progressions within these structures.  相似文献   

4.
5.
6.
The goal of the present study was to establish how Fos-like immunoreactivity (FLI) elicited in the rat auditory pathway by unilateral electric stimulation of the cochlea is affected by the following experimental parameters: duration and intensity of stimulation, duration of survival time after offset of stimulation. The dense FLI found in the ipsilateral dorsal cochlear nucleus, as well as the moderate FLI found in the contralateral dorsal cochlear nucleus and in the posteroventral cochlear nucleus on both sides, were consistent after survival times ranging from 0 to 2–3 h, but they significantly decreased after longer survival times (5 and 6 h). In the same nuclei, FLI was increased even by short durations of stimulation (5 and 10 min) as compared to control rats, although FLI progressively increased for longer stimulation (20 and 45 min). In the auditory thalamus, FLI was found mainly in the peripeduncular nucleus, the dorsal and medial divisions of the medial geniculate body, whereas its ventral division was virtually devoid of immunoreactive neurons. This pattern of FLI distribution in the auditory thalamus persisted even after relatively long survival times (5 and 6 h). In both the cochlear nucleus and auditory thalamus, the density of FLI slightly increased in parallel with the intensity of stimulation. In other auditory nuclei, such as the inferior colliculus and the nucleus of the lateral lemniscus, there was no simple relation between the density of FLI and the three tested experimental parameters. Thus, the distribution and density of FLI did not vary in parallel in the various nuclei of the auditory pathway as a function of the tested experimental parameters; different patterns of FLI changes were instead observed in different auditory nuclei.  相似文献   

7.
Activity-dependent transneuronal regulation of neuronal soma size has been studied in the medial nucleus of the trapezoid body and ventral cochlear nucleus of adolescent gerbils. Cochlear ablation or tetrodotoxin has been used to eliminate afferent electrical activity in auditory nerve fibers permanently or for 24 or 48 hours. Previous studies have shown that the cross-sectional area of spherical cell somata in the ipsilateral anteroventral cochlear nucleus decreases within 24 hours of electrical activity blockade with tetrodotoxin, which is fully reversible when activity is restored. The present findings extend this work by directly comparing the results of unilateral blockade of auditory nerve action potentials or unilateral cochlear ablation on the size of spherical and globular cell bodies in the ventral cochlear nucleus with changes produced by the same manipulations in third-order cells, principal neurons in the medial nucleus of the trapezoid body. Soma size in both ventral cochlear nucleus cell types decreases reliably by 24 hours after cochlear removal or eighth nerve activity blockade by tetrodotoxin. Soma size of neurons in the contralateral medial nucleus of the trapezoid body decreases 48 hours, but not 24 hours, after either manipulation. When activity in auditory nerve fibers is allowed to resume for 7 days following a 48-hour activity blockade, soma size fully recovers in the medial nucleus of the trapezoid body as well as in ventral cochlear nucleus neurons. We also report that the cross-sectional area of neuronal soma in the medial nucleus of the trapezoid body is larger in lateral regions of medial nucleus of the trapezoid body (low-frequency representation) than in the medial regions of the nucleus (high-frequency representation). We conclude that cell body size changes in brainstem auditory neurons are reversible and that the signals associated with the loss and subsequent recovery of soma size are activity related. However, the delayed effect of activity deprivation in the medial nucleus of the trapezoid body suggests that trophic substances released by afferent axons may contribute to the maintenance of anatomical characteristics. © 1994 Wiley-Liss, Inc.  相似文献   

8.
The organization of the auditory brainstem in adult, darkly pigmented ferrets was studied by using the retrograde transport of the lectin wheat germ agglutinin-horseradish peroxidase injected into one inferior colliculus. Retrogradely labelled neurons were found bilaterally in every nucleus of the auditory brainstem. The greatest number of labelled neurons was found in the cochlear nuclei contralateral to the injection site, the ipsilateral medial superior olivary nucleus, both lateral superior olivary nuclei, the ipsilateral ventral nucleus of the lateral lemniscus, both dorsal nuclei of the lateral lemniscus, and the contralateral inferior colliculus. Quantitative assessment of the projections from the cochlear nuclei showed that the number of contralaterally projecting neurons exceeded the number of ipsilaterally projecting neurons by about 50 to one. This ratio remained relatively stable over a wide range of volumes of injected lectin, whereas the absolute number of labelled neurons on each side varied by at least twofold for a constant volume of lectin. These results provide basic data on the ferret auditory system and demonstrate quantitatively some properties of the projections between the cochlear nucleus and the inferior colliculus.  相似文献   

9.
10.
Auditory projections were studied, by the Nauta method, from medullary to mesencephalic levels following lesions in nuclei magnocellularis, angularis and laminaris and transection of the dorsal cochlear decussation and trapezoid body in the midline of the medulla. Fragmented axons project bilaterally to nucleus laminaris from the medial part of nucleus magnocellularis. Degenerated fibers from the lateral part of nucleus magnocellularis, medial part of nucleus angularis. and nucleus laminaris projects to the homolateral superior olivary nucleus. cross the raphé in the trapezoid body, ascend in the contralateral lateral lemniscus, distribute to the ventral and lateroventral nuclei of the lateral lemniscus and, at least third order axons from nucleus laminaris. terminate in nucleus mesencephali lateralis pars dorsalis. No ascending auditory neurons project, even following midventral section of the trapezoid body, to nucleus isthmi, nucleus semilunaris nor. with certainty, to the dorsal nucleus of the lateral lemniscus. This study supports the homology of the avian nucleus mesencephali lateralis pars dorsalis and nucleus laminaris with the mammalian central nucleus of the inferior colliculus and medial superior olivary nucleus respectively. Furthermore, on the basis of fiber projections and cellular organization. nucleus magnocellularis of the pigeon appears to correspond to the anterior ventral cochlear of higher mammals and the medial parts of nucleus angularis to the posterior ventral cochlear nucleus.  相似文献   

11.
The parabrachial nucleus (PBN) is located in the rostral dorsolateral pons and has been identified as a critical relay for cardiovascular responses (sympathoexcitation and baroreflex attenuation) evoked by the dorsal periaqueductal gray (PAG). We examined the pattern of c-Fos protein immunoreactivity throughout the rostral-caudal extent of the PBN in four groups of anesthetized male Sprague-Dawley rats to identify the specific PBN regions activated by dorsal PAG stimulation. Both electrical stimulation and chemical (0.3 mM bicuculline methobromide) activation of the dorsal PAG elicited a selective increase in Fos-like immunoreactivity (FLI) in the superior lateral and central lateral subnuclei of the rostral lateral PBN (LPBN) relative to surgery and blood pressure control groups. In the middle LPBN chemical stimulation of the dorsal PAG selectively increased FLI in the central lateral subnucleus while electrical stimulation increased FLI in the Kolliker-Fuse area only. Finally, in the caudal LPBN only electrical stimulation of the dorsal PAG induced significant changes in FLI above control. Significant changes in FLI in the medial PBN were not observed under any experimental conditions. These results confirm neuroanatomical data demonstrating that neurons in superior lateral and central lateral subnuclei of the rostral and middle LPBN are the primary targets of the dorsal PAG. Our results also demonstrate that this descending projection to the central lateral and superior lateral subnuclei of the LPBN is in part excitatory. Finally, our results raise the possibility that neurons in the central lateral subnucleus of the middle and rostral LPBN are integrally involved in descending modulation of sympathetic drive associated with dorsal PAG activation.  相似文献   

12.
13.
The expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunit mRNAs and their flip/flop splice variants was evaluated in the rat auditory brainstem and inferior colliculus employing in situ hybridization with radiolabeled oligonucleotide probes. A differential expression of AMPA receptor subunits in auditory nuclei was observed. In general, neurons in all nuclei of the auditory brainstem express high levels of GluR-C flop and GluR-D flop mRNA, but low to very low levels of GluR-A and GluR-B mRNA. The strongest GluR-C and -D flop expression is found in the ventral and medial part of the anteroventral cochlear nucleus, the posteroventral cochlear nucleus, and the medial and the lateral superior olive. These nuclei are part of the binaural auditory pathway which is important for sound localization in space. In contrast, neurons in the central nucleus of the inferior colliculus express high levels of GluR-B flip but only low levels of the other AMPA receptor subunits. From our data, we conclude that neurons of nuclei involved in binaural processing exhibit a specific "auditory AMPA receptor" which consists primarily of GluR-C flop and -D flop and often lacks GluR-B subunits; this indicates fast kinetics and high Ca(2+) permeability of AMPA receptor currents. In contrast, neurons in the central nucleus of the inferior colliculus contain large amounts of GluR-B flip subunits resulting in Ca(2+) impermeable AMPA receptors with slow kinetics.  相似文献   

14.
This study determined if an asymmetric hearing loss, due to unilateral cochlear ablation, could induce the regulation of intracellular AMPA receptors in brain stem auditory nuclei. In young adult guinea pigs, the high-affinity specific binding of [(3)H]AMPA was measured in the cochlear nucleus (CN), the superior olivary complex (SOC), and the auditory midbrain at 2-147 postlesion days. After correction for tissue shrinkage, changes in specific binding relative to that in age-matched unlesioned controls were interpreted as altered numbers and/or activity of intracellular AMPA receptors. In the CN, transient elevations and/or deficits in binding were evident in most regions, which usually recovered by 147 days. However, persistently deficient binding was evident ipsilaterally in the anterior part of the anteroventral CN (AVCNa). In the SOC, transient elevations in binding were evident at 2 days in the medial limb of the lateral superior olive (LSOmed) and the medial superior olive. Between 7 and 147 days, most SOC nuclei exhibited transient, temporally synchronized postlesion deficits in binding. However, late in the survival period, deficits persisted ipsilaterally in the LSOmed and the lateral (LSOlat) limb of the lateral superior olive. In the midbrain, transient elevations and/or deficits in binding were evident in the dorsal nucleus of the lateral lemniscus as well as in the central and dorsal nucleus of the inferior colliculus. A persistent deficit was evident in the intermediate nucleus of the lateral lemniscus. The findings implied that auditory neurons contain regulatory mechanisms that control the numbers and/or activity of intracellular AMPA receptors. Regulation was induced by cochlear nerve destruction and probably by changes in the excitation of glutamatergic neurons. Many of the regulatory changes were transient, except in the ipsilateral AVCNa and LSO, where postlesion downregulations were persistent. The downregulation in the ipsilateral AVCNa was probably induced directly by the loss of cochlear nerve endings. However, other regulatory changes may have been induced by signals carried on pathways emerging from the ipsilateral CN and on centrifugal auditory pathways.  相似文献   

15.
Groups of pregnant rats were injected with two successive daily doses of 3H-thymidine form gestational days 12 and 13 (E12 + 13) until the day before parturition (E21 + 22). In adult progeny of the injected rats the proportion of neurons generated on specific embryonic days was determined quantitatively in the vestibular and auditory nuclei of the upper medulla. In the vestibular nuclei, neurons are generated between days E11 and E15 in an overlapping sequential order, yielding a lateral-to-medial and a rostral-to-caudal internuclear gradient. In the lateral vestibular nucleus peak production time is day E12; in the superior nucleus, E13; in the inferior nucleus, E13 and E14; and in the medial nucleus, E14. The early generation of neurons of the lateral vestibular nucleus may reflect the early differentiation of the circuit from the gravity receptors (utricle) to neurons of the spinal cord controlling postural balance. The later production of neurons of the superior vestibular nucleus may reflect the subsequent differentiation of the circuit from the rotational receptors (semicircular canals) to the neurons of the brain stem controlling eye movements. The generation time of neurons of the nucleus prepositus hypoglossi overlaps with that of the medial vestibular nucleus. The neurons of the anteroventral and posteroventral cochlear nuclei are produced form days E13 to E17, with no temporal differences between the two nuclei. The neurons of the dorsal cochlear nucleus are generated over a very long time span, beginning on day E12 and extending into the postnatal period. There is a sequence in the production of neurons forming the different layers of the dorsal cochlear nucleus in the following order: pyramidal cells, cells of the inner layer, cells of the outer layer and, finally, cells of the granular layer. There is also a sequential production of neurons in four nuclei of the superior olivary complex. In the lateral trapezoid nucleus peak production time is day E12; in the medial superior olivary nucleus, day E13; in the medial trapezoid nucleus, day E15; and in the lateral superior olivary nucleus, day E16. This order yields a medial-to-lateral gradient in the dorsal aspect of the superior olivary complex, and a lateral-to-medial gradient ventrally. These mirror-image gradients were also seen intranuclearly in the lateral superior olivary nucleus and the medial trapezoid nucleus. The cytogenetic gradients could not be related to tonotopic representation; however, they could be related to the lateral location of ipsilateral cochlear nucleus input to the lateral superior olivary nucleus and the medial location of the contralateral cochlear nucleus input to the medial trapezoid nucleus.  相似文献   

16.
The [14C]2-deoxy-d-glucose (2-DG) autoradiographic technique was used to investigate metabolic activity in the central auditory pathways during silence. Relative 2-DG uptake was assessed in silence for three groups of Mongolian gerbils: control animals; those with unilateral cochlear ablations, and those with unilateral conductive hearing losses. Control subjects showed no differences between the two sides of their central auditory pathways. Subjects with unilateral cochlear ablations showed markedly lower 2-DG uptake in the major afferent projection pathway from the ablated cochlea compared with 2-DG uptake in contralateral structures. That is, relative 2-DG uptake was significantly lower ipsilateral to the ablation in the anteroventral and dorsal cochlear nuclei, and contralateral to the ablation in the ventral nucleus of the lateral lemniscus, the dorsal nucleus of the lateral lemniscus, and the inferior colliculus. No effect of ablation was seen in the superior olivary complex, the medial geniculate nucleus or the auditory cortex. Subjects with a unilateral conductive hearing loss, unexpectedly, showed significantly higher 2-DG incorporation in the major afferent projection from the impaired side. That is, relative 2-DG uptake was higher in the anteroventral cochlear nucleus, the dorsal cochlear nucleus and the lateral superior olivary nucleus ipsilateral to the hearing loss, and in the dorsal nucleus of the lateral lemniscus contralateral to the hearing loss. These increases in 2-DG uptake following conductive hearing loss represent a mechanism which may account for clinical hearing disorders such as tinnitus. It is concluded that, even under conditions of silence, the intact cochlea and middle ear conductive apparatus significantly influence metabolic activity in the central auditory pathway up through the level of the inferior colliculus.  相似文献   

17.
Postnatal changes of preprosomatostatin mRNA expression in the rat auditory system were examined using in situ hybridization histochemical techniques. It was found that during postnatal days 1 and 2 most of the neurons in the dorsal and ventral cochlear nuclei, and large numbers of neurons in the inferior colliculus, paralemniscal nucleus, and lateral lemniscal nucleus, expressed somatostatin mRNA with a strong intensity. During postnatal development a marked decrease in the number and intensity of neurons expressing somatostatin mRNA was seen. These findings suggested that somatostatin was actively produced in the cochlear nuclei at a very early stage but that production later became reduced or ceased during postnatal ontogeny.  相似文献   

18.
Auditory neuronal sizes after a unilateral conductive hearing loss   总被引:1,自引:0,他引:1  
The left external auditory meatus was removed in 4-day-old CBA/J mice; after killing at 45 days, serial sections of the cochleae and brain stem were prepared. From these, the cross-sectional areas of spiral ganglion neurons and of 14 auditory brain stem neuronal types were measured, using a total of 210 neurons of each of the 15 types from both the right and left sides. Nine neuronal types were significantly smaller (P less than 0.01) on the left side: spiral ganglion neurons; globular, small spherical, large spherical, octopus, multipolar, and granule cells of the ventral cochlear nucleus; Purkinje-like cells of the dorsal cochlear nucleus; and spindle cells of the lateral superior olivary nucleus. Two neuronal types were significantly smaller (P less than 0.01) on the right: principal cells of the medial nucleus of the trapezoid body (superior olivary complex), and spindle-shape principal neurons of the central nucleus of the inferior colliculus. The left ventral cochlear nucleus had significantly smaller volume (P less than 0.01) than the right but right and left dorsal cochlear nuclear volumes did not differ significantly (P greater than 0.05). Right and left sides were not significantly different (P greater than 0.05) for the following neuronal types: fusiform cells and coarse- and fine-Nissl deep cells of the dorsal cochlear nucleus, and rostral bipolar cells of the medial superior olivary nucleus. Neurons affected by unilateral conductive loss were not significantly different (P greater than 0.05) from the same cells in mice with bilateral conductive losses; neurons not affected by unilateral conductive loss were not significantly different (P greater than 0.05) from the same cells in normal mice.  相似文献   

19.
The anatomical localization of glutamic acid decarboxylase (GAD), the synthesizing enzyme for GABA, was analyzed in the brainstem auditory nuclei of the adult gerbil. GAD-positive terminals and somata were present in the cochlear nucleus, superior olivary complex, lateral lemniscus, and inferior colliculus in varying concentrations and patterns. One of the highest densities of GAD-positive terminals is found in the superficial layers of the dorsal cochlear nucleus (DCN), whereas the ventral cochlear nucleus (VCN) has somewhat fewer terminals that are arranged in pericellular plexuses. GAD-positive neurons occur mainly in the superficial and fusiform layers of the DCN and are scattered throughout the VCN. Within the superior olivary complex, the highest concentration of immunoreactive terminals and neurons occurs in the ventral and lateral nuclei of the trapezoid body. In contrast, the medial nucleus of the trapezoid body and the medial superior olive contain fewer GAD-positive puncta and probably no immunoreactive somata. The lateral superior olive and superior periolivary nucleus contain a few immunoreactive puncta but a large number of immunoreactive somata. In the midbrain, the nuclei of the lateral lemniscus contain a moderate number of GAD-positive puncta and a large number of different types of GAD-positive neurons. The inferior colliculus also contains a heterogeneous population of labeled somata, most of which are multipolar neurons. In addition, a high concentration of immunoreactive puncta occurs in this region. These data demonstrate a diverse distribution of GAD-positive neurons and puncta throughout the brainstem auditory nuclei and suggest that GABA might be an important neurotransmitter in the processing of auditory information.  相似文献   

20.
The auditory pathway of a 17-year-old deaf patient with Cockayne's syndrome was examined histologically. The cochlea showed marked atrophy of the spiral ganglion and attenuation of the cochlear division of the eighth cranial nerve. By means of the Computer Image Analyzer, the total number of neurons in the ventral cochlear nucleus was found to be reduced from 30,440 to 18,821. The mean diameter of the neurons in the ventral cochlear nucleus, medial dorsal olivary nucleus, and inferior colliculus was smaller than in a control patient, whereas in the medial geniculate nucleus and anterior transverse gyrus of Heschl, the neuronal size approximated the norm. The changes in the first three auditory relay nuclei were considered to represent transsynaptic atrophy caused by degeneration of the spiral ganglion and, possibly, the cochlear neuroepithelium. This histological report verifies that deafness in Cockayne's syndrome is largely sensorineural and that degeneration of spiral ganglion in humans can lead to a chain of trans-synaptic degeneration in the ventral cochlear nucleus, medial dorsal olivary nucleus, and inferior colliculus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号