首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the last years, new disease proteins and genes have been identified in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS), leading to a dramatic shift in our understanding of the molecular mechanisms underlying both conditions. The vast majority of FTLD and ALS are characterized by the abnormal accumulation of TDP-43, including genetic forms associated with mutations in the genes C9ORF72, GRN, TARDBP and VCP. The overlap in pathology and of genetic factors, particularly C9ORF72 as common cause of ALS and FTLD, provides molecular evidence that both conditions represent a spectrum of diseases sharing similar pathomechanisms. Accumulation of the protein FUS defines another subset of FTLD and ALS. However, here some striking differences have been identified. All members of the FET family (FUS, EWS, TAF15) are co-accumulating with their nuclear import receptor Transportin in FTLD-FUS which is usually not associated with FUS mutations, whilst ALS-FUS is almost always associated with FUS mutations and reveals only FUS aggregates. Together with recent data demonstrating differences in the arginine methylation status of FUS in FTLD-FUS and ALS-FUS, these findings strongly imply at least partially distinct underlying disease mechanisms in these molecular subtypes of ALS and FTLD.  相似文献   

2.
S. M. Pickering‐Brown (2010) Neuropathology and Applied Neurobiology 36, 4–16
Recent progress in frontotemporal lobar degeneration Frontotemporal lobar degeneration (FTLD) is a highly familial condition and is increasingly being recognized as an important form of dementia. The literature published on this disease is often difficult to collate due to the wide range in nomenclature used. Thankfully, consensus recommendations have now been published to address this issue and hopefully the community will adopt these as intended. Much progress has been made in our understanding of the clinical, pathological and genetic understanding of FTLD in recent years. Progranulin and TDP‐43 have recently been identified as new important proteins involved in the pathophysiology of FTLD and this latter protein may have potential as a biomarker of this disease. However, much remains before we have a full picture of the genes that cause FTLD and the biological pathways in which they function. The purpose of this review is to summarize the current concepts and recent advances in our knowledge of this disease.  相似文献   

3.
The purpose of this review is to provide a comprehensive update on the genetic causes of frontotemporal lobar degeneration (FTLD). Approximately 40% to 50% of patients diagnosed with FTLD have a family history of a 'related disorder,' whereas 10% to 40% have an autosomal dominant family history for the disease. At this time, mutations occurring in 2 independent genes located on the same chromosome (MAPT and GRN) have been shown to cause the majority of cases of autosomal dominant FTLD. Specific genetic, molecular, pathological, and phenotypic variations associated with each of these gene mutations are discussed, as well as markers that may help differentiate the 2. In addition, 3 relatively rare, additional genes known to cause familial FTLD are examined in brief. Lastly, genetic counseling issues which may be important to the community clinician are discussed.  相似文献   

4.
Frontotemporal lobar degeneration (FTLD) is a clinically, pathologically and genetically highly complex disorder. In the last few years enormous progress has been made in dissecting the genetic etiology of FTLD. Mutations have been identified in the progranulin gene (PGRN), the charged multivesicular body protein 2B gene (CHMP2B) and the valosin-containing protein gene (VCP). Mutations in these genes all lead to FTLD pathology characterized by ubiquitin-immunoreactive neuronal cytoplasmic and intranuclear lentiform inclusions (FTLD-U). The similar pathology suggests that these genes may be connected trough a common disease pathway leading to neurodegeneration and the formation of these pathognomic inclusions. This review focuses on the molecular genetic processes underlying FTLD-U pathology.  相似文献   

5.
After Alzheimer's disease, frontotemporal lobar degeneration (FTLD) is the second leading cause of dementia in persons less than 65 years of age. Up to 40% of FTLD cases have a positive family history. Research on these families has led to the discovery of four disease-causing genes: microtubule-associated protein tau (MAPT), progranulin (PGRN), valosin-containing protein (VCP), and charged multivesicular body protein 2B (CHMP2B). MAPT and PGRN are responsible for the largest number of familial cases. Each of these genes differs by disease mechanism. Moreover mutations in both genes are associated with significant interfamilial and intrafamilial phenotypic variation. Genetic counseling needs to address the differences between the PGRN and MAPT mutations as well as the variation in clinical symptoms. The aims of this article are to describe the genetics of the FTLD spectrum and aid in the genetic counseling of individuals who may carry genetic mutations.  相似文献   

6.
The past year has seen a number of significant advances in our understanding of the neuropathological and molecular genetic basis of frontotemporal lobar degeneration (FTLD). Whereas, in the past, most attention focused on FTLD associated with tau-based pathology and microtubule associated protein tau gene (MAPT) mutations, there has recently been greater attention paid to non-tau FTLD. FTLD with tau-negative, ubiquitinated inclusions (FTLD-U) is now recognized as the most common pathology associated with clinical FTLD. Mutations in the progranulin gene (PGRN) have been identified as the cause of FTLD-U linked to chromosome 17. A rapidly growing number of PGRN mutations have been identified, and to date, all appear to cause FTLD by reducing the amount of functional PGRN protein (haploinsufficiency). The neuropathology associated with each of the known non-MAPT FTLD genes and loci (PGRN, valosin-containing protein gene, CHMP2B and 9p), has been shown to be a specific subtype of FTLD-U. The ubiquitinated pathological protein in FTLD-U has been identified as TAR deoxyribonucleic acid-binding protein with M r 43 kDa (TDP-43). Immunohistochemical and biochemical studies of TDP-43 have helped to clarify the relationship between different sub-types of FTLD-U and related conditions. It is anticipated that these discoveries will facilitate the development of new diagnostic tests and therapeutics.  相似文献   

7.
Mutations in 3 genes, amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2), have been identified as causing a proportion of early-onset Alzheimer disease (eoAD) cases. A few PSEN mutations have also been previously detected in patients with frontotemporal lobar degeneration (FTLD). In order to evaluate the role of these genes in a clinical series of Finnish eoAD and FTLD patients, we sequenced exons 16 and 17 of the APP gene and the coding regions of the PSEN1 and PSEN2 genes in 140 eoAD and 66 FTLD patients. No pathogenic mutations were identified in the cohort. The E318G variant was detected with similar frequencies in the cases with eoAD and FTLD and the healthy controls, therefore, showing no association between E318G and eoAD. Furthermore, the PSEN2 R71W variant seems to be nonpathogenic, because it was present in our healthy controls. Mutations in the PSEN1, PSEN2, and APP genes seem to be rare in this population, as these genes exhibited no pathogenic mutations in our cohort of eoAD and FTLD patients even though about 40% of the cases were familial ones. This suggests the involvement of other, still unknown genetic factors in the pathogenesis of these diseases.  相似文献   

8.
Frontotemporal lobar degeneration (FTLD) is a heterogeneous group of disorders characterized by disturbances of behavior and personality and different types of language impairment with or without concomitant features of motor neuron disease or parkinsonism. FTLD is characterized by atrophy of the frontal and anterior temporal brain lobes. Detailed neuropathological studies have elicited proteinopathies defined by inclusions of hyperphosphorylated microtubule-associated protein tau, TAR DNA-binding protein TDP-43, fused-in-sarcoma or yet unidentified proteins in affected brain regions. Rather than the type of proteinopathy, the site of neurodegeneration correlates relatively well with the clinical presentation of FTLD. Molecular genetic studies identified five disease genes, of which the gene encoding the tau protein (MAPT), the growth factor precursor gene granulin (GRN), and C9orf72 with unknown function are most frequently mutated. Rare mutations were also identified in the genes encoding valosin-containing protein (VCP) and charged multivesicular body protein 2B (CHMP2B). These genes are good markers to distinguish underlying neuropathological phenotypes. Due to the complex landscape of FTLD diseases, combined characterization of clinical, imaging, biological and genetic biomarkers is essential to establish a detailed diagnosis. Although major progress has been made in FTLD research in recent years, further studies are needed to completely map out and correlate the clinical, pathological and genetic entities, and to understand the underlying disease mechanisms. In this review, we summarize the current state of the rapidly progressing field of genetic, neuropathological and clinical research of this intriguing condition.  相似文献   

9.
Frontotemporal dementia (FTD) is the second most common young-onset dementia and is clinically characterised by progressive behavioural change, executive dysfunction and language difficulties. Three clinical syndromes, behavioural variant FTD, semantic dementia and progressive non-fluent aphasia, form part of a clinicopathological spectrum named frontotemporal lobar degeneration (FTLD). The classical neuropsychological phenotype of FTD has been enriched by tests exploring Theory of Mind, social cognition and emotional processing. Imaging studies have detailed the patterns of atrophy associated with different clinical and pathological subtypes. These patterns offer some diagnostic utility, while measures of progression of atrophy may be of use in future trials. 30-50% of FTD is familial, and mutations in two genes, microtubule associated protein tau and Progranulin (GRN), account for about half of these cases. Rare defects in VCP, CHMP2B, TARDP and FUS genes have been found in a small number of families. Linkage to chromosome 9p13.2-21.3 has been established in familial FTD with motor neuron disease, although the causative gene is yet to be identified. Recent developments in the immunohistochemistry of FTLD, and also in amyotrophic lateral sclerosis (ALS), have led to a new pathological nomenclature. The two major groups are those with tau-positive inclusions (FTLD-tau) and those with ubiquitin-positive and TAR DNA-binding protein of 43 kDa (TDP-43) positive inclusions (FTLD-TDP). Recently, a new protein involved in familial ALS, fused in sarcoma (FUS), has been found in FTLD patients with ubiquitin-positive and TDP-43-negative inclusions. In this review, the authors discuss recent clinical, neuropsychological, imaging, genetic and pathological developments that have changed our understanding of FTD, its classification and criteria. The potential to establish an early diagnosis, predict underlying pathology during life and quantify disease progression will all be required for disease-specific therapeutic trials in the future.  相似文献   

10.
A few epidemiologic studies have dealt with the prevalence of frontotemporal lobar degeneration (FTLD), including Pick's disease. The aim of this study was to review the epidemiologic studies of FTLD in western countries and to compare them with those in Japan. A community-based study of early-onset dementia in London revealed that 12% of cases with frontotemporal dementia (FTD) fulfilled the Lund-Manchester criteria in contrast to 34% of cases with Alzheimer's disease (AD) in a sample of 185 cases. The Cambridge Group has recently examined the prevalence of early-onset dementia in a community-based study. Of 108 cases, 15.7% had FTLD and 25% had AD. FTLD included 13 FTD cases, and 2 each with semantic dementia (SD) and nonfluent progressive aphasia (PA). Almost one third of cases with FTLD (29%) had a positive family history. Of our consecutive 330 outpatients with dementia (hospital setting without age limitation), 42 (12.7%) had FTLD and 215 (65.1%) had AD. In our series of patients, 22 FTD, 15 SD and 5 PA cases were identified. There was no family history in all subtypes of FTLD. Epidemiologic studies, both community-based and hospital-based, demonstrate that FTLD is a more common cause of early-onset dementia than previously recognized. Regarding the subtypes of FTLD, in Japan, compared with the data from the UK, FTD is less common, SD may be more common and PA is equally common. The reason for this discrepancy is supposed to be mainly based on the role of heredity.  相似文献   

11.
Mutations in the TARDBP gene are a cause of autosomal dominant amyotrophic lateral sclerosis (ALS) and of frontotemporal lobar degeneration (FTLD), but they have not been found so far in patients with Parkinson’s disease (PD). A founder TARDBP mutation (p.Ala382Thr) was recently identified as the cause of ~30% of ALS cases in Sardinia, a Mediterranean genetic isolate. We studied 327 consecutive Sardinian patients with clinically diagnosed PD (88 familial, 239 sporadic) and 578 Sardinian controls. One family with FTLD and parkinsonism was also included. The p.Ala382Thr heterozygous mutation was detected in eight unrelated PD patients (2.5%). The three patients from the FTLD/parkinsonism family also carried this mutation. Within the control group, there were three heterozygous mutation carriers. During follow-up, one of these individuals developed motoneuron disease and another, a rapidly progressive dementia; the third remains healthy at the age of 79 but two close relatives developed motoneuron disease and dementia. The eight PD patients carrying the p.Ala382Thr mutation had all sporadic disease presentation. Their average onset age was 70.0 years (SD 9.4, range 51–79), which is later but not significantly different from that of the patients who did not carry this mutation. In conclusion, we expand the clinical spectrum associated with TARDBP mutations to FTLD with parkinsonism without motoneuron disease and to clinically definite PD. The TDP-43 protein might be directly involved in a broader neurodegenerative spectrum, including not only motoneuron disease and FTLD but also PD.  相似文献   

12.
Alzheimer disease (AD) and frontotemporal lobar degeneration (FTLD) are two frequent forms of primary neurodegenerative dementias. Despite distinctive clinical diagnostic criteria for both brain disorders, differential diagnosis is often complicated by overlapping symptomatology. As we learn more about brain pathology and genetic makeup underlying these dementia disorders, evidence is accumulating for a clinical, pathologic, and genetic spectrum of neurodegenerative brain diseases in which AD and FTLD occur along one continuum. This has important implications for molecular diagnostic testing and genetic counseling of patients with dementia. In this light, we review the molecular genetics of AD and FTLD assessing how AD genes can be implicated in FTLD and conversely FTLD genes in AD, by modifying disease susceptibility. Herein, we focus on recent exciting findings providing further support for an AD-FTLD spectrum.  相似文献   

13.
There is a clinical and pathological overlap between amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). A number of autosomal-dominant genes have been described that primarily cause ALS or FTLD such as progranulin (GRN), valosin-containing protein (VCP), and TAR DNA-Binding Protein (TARDBP), and for each of these conditions there are a small number of cases with both ALS and FTLD. Two major genes were described in 2011, which cause FTLD and/or ALS within extended kindreds. Ubiquilin2 (UBQLN2) is responsible for X-linked FTLD/ALS. A hexanucleotide repeat expansion in C9ORF72 causes chromosome 9p linked FTLD/ALS and is the most common cause of familial ALS accounting for about 40 % of familial cases. Both UBQLN2 and C9ORF72 mutations lead to TDP-43 positive neuropathology, and C9ORF72-positive cases have p62/ubiquitin-positive pathology, which is not stained by TDP-43 antibodies. Ubiquilin2 is one of a family of proteins thought to be important in targeting abnormal proteins for degradation via lysosomal and proteasomal routes. The pathogenic mechanism of the C9ORF72 expansion is unknown but may involve partial haploinsufficiency of C9ORF72 and/or the formations of toxic RNA inclusions. The identification of mutations in these genes represents an important step forward in our understanding of the clinical, pathological, and genetic spectrum of ALS/FTLD diseases.  相似文献   

14.
Frontotemporal lobar degeneration (FTLD) is one of the most frequent neurodegenerative disorders with a presenile onset. It presents with a spectrum of clinical manifestations, ranging from behavioral and executive impairment to language disorders and motor dysfunction. New diagnostic criteria identified two main cognitive syndromes: behavioral variant frontotemporal dementia (bvFTD) and primary progressive aphasia. Regarding bvFTD, new criteria include the use of biomarkers. According to them, bvFTD can be classified in “possible” (clinical features only), “probable” (inclusion of imaging biomarkers) and “definite” (in the presence of a known causal mutation or at autopsy). Familial aggregation is frequently reported in FTLD, and about 10?% of cases have an autosomal dominant transmission. Microtubule-associated protein tau gene mutations have been the first ones identified, and are generally associated with early onset (40–50?years) and with the bvFTD phenotype. More recently, progranulin gene mutations were recognized in association with the familial form of FTLD and a hexanucleotide repetition in C9ORF72 has been shown to be responsible for familial FTLD and amyotrophic lateral sclerosis. In addition, other genes are linked to rare cases of familiar FTLD. Lastly, a number of genetic risk factors for sporadic forms have also been identified.  相似文献   

15.
Background: Frontotemporal lobar degeneration (FTLD) is a genetically complex disorder. The majority of mutations linked to FTLD families are found in the microtubule‐associated protein tau (MAPT) and progranulin (PGRN) genes. Mutations in the chromatin‐modifying protein 2B gene (CHMP2B) have been identified in a few families. However, CHMP2B has been showed to be a rare cause of FTLD. Our aim was to determine the frequency of CHMP2B mutations in a clinical series of patients with FTLD in Northern Finland. Patients and methods: We examined 72 (36 men) Finnish patients with FTLD. The mean age at onset was 58.9 (range 43–80). Symptoms of motor neuron disease (FTLD‐MND) were present in 12 patients (17%). Positive family history was detected in 28% of the patients. Mutations in MAPT and PGRN were excluded from these patients. All exons and exon–intron boundaries of the CHMP2B gene were sequenced. Results: No pathogenic CHMP2B mutations were found. A rare polymorphism in the non‐coding region of exon 1 (rs36098294) and three other previously reported polymorphisms were detected. Conclusions: Our results confirm that mutations in CHMP2B are not a common cause of FTLD. MAPT and PGRN mutations are also rare in Finnish population, suggesting that other, still unknown genetic factors may play a role in the pathogenesis of FTLD in Finnish population.  相似文献   

16.
The development of our understanding of frontotemporal dementia (FTD) has gathered pace over the last 10 years. After taking a back seat to Alzheimer's disease for many years FTD has emerged as a significant group of heterogeneous diseases often affecting people under the age of 65. FTD has also been brought into the spotlight as the major disease entities of the group have clinical, genetic and pathological links to motor neuron disease/amyotrophic lateral sclerosis, indicating that they form a disease spectrum. In this review, we overview how the pathological concept of frontotemporal lobar degeneration (FTLD) and the clinical concept of FTD evolved and show that FTLD, once thought of as a single disorder, represents a heterogeneous group of diseases with overlapping clinical symptoms, multiple causative genes and varying underlying pathology. We also provide a brief summary of the clinical manifestations, summarize the major genetic aspects and describe the main pathological features seen in the different subtypes of FTLD. We also summarize the correlations that exist between clinical presentations and pathological variants. An overview of the main pathogenic mechanisms is also provided.  相似文献   

17.
Josephs KA 《Neurologic Clinics》2007,25(3):683-96, vi
Frontotemporal lobar degeneration (FTLD) is a syndromic diagnosis that encompasses at least three different variants. Imaging modalities are clinically useful in FTLD, although pathology remains the gold standard for definitive diagnosis. To date, four different genes have been identified that account for FTLD.  相似文献   

18.
Background and purpose:  Mutations in the progranulin ( PGRN ) gene have recently been associated with frontotemporal lobar degeneration (FTLD). The frequency of these mutations varies between populations. The aim of this study was to determine mutations and genetic variations of the PGRN gene in Finnish patients with FTLD and FTLD with associated motor neuron disease (FTLD-MND).
Subjects and methods:  All exons of the PGRN gene were sequenced from 69 Finnish patients with FTLD. The FTLD-MND phenotype was present in 13 of the 69 patients.
Results:  No pathogenic PGRN mutations were identified in the cohort. Eleven sequence variations were detected, of which IVS8 + 15C>T, IVS4-51_-52insAGTC and IVS11 + 25G>A have not been reported previously. At least one single-nucleotide polymorphism (SNP) of PGRN was detected in 83% of patients.
Conclusions:  We conclude that mutations in PGRN are rare among Finnish patients with FTLD and FTLD-MND. However, SNPs were frequent suggesting high genetic variability of the PGRN gene.  相似文献   

19.
Currently, the clinical diagnostic criteria of frontotemporal lobar degeneration (FTLD) and dementia with Lewy bodies (DLB) are well known to neurologists and psychiatrists. However, the accuracy of the clinical diagnosis of these diseases in autopsy series is not always adequate. For example, FTLD is a syndrome rather than a clinicopathological disease entity that is comprised of various pathological substrates, including Pick's disease, FTLD with microtubule-associated protein tau gene mutation, FTLD with tau-negative ubiquitin-positive inclusions (FTLD-U), FTLD-U with progranulin gene mutation, corticobasal degeneration, basophilic inclusion body disease, and neuronal intermediate filament inclusion disease. Whether these underlying pathologies can be identified clinically is one of the greatest interests in neuropathological research. The pathophysiological relationship between Lewy pathology and Alzheimer pathology in DLB is explored with interest because it may be associated with the accuracy of clinical diagnoses. For example, although Lewy pathology may progress from the brain stem nuclei to the cerebral cortex in Parkinson's disease, recent studies have demonstrated that the progression pattern in DLB is not always identical to that in Parkinson's disease. It is also considered that the progression pattern of Lewy pathology correlates with the evolution of clinical symptoms and that the progression pattern of Lewy pathology may be altered when Alzheimer pathology coexists. In the present paper, the clinicopathological features of two demented cases are presented, and some pathological issues associated with the clinical diagnosis of FTLD and DLB are discussed.  相似文献   

20.
The aim of this study was to improve the neuropathologic recognition and provide criteria for the pathological diagnosis in the neurodegenerative diseases grouped as frontotemporal lobar degeneration (FTLD); revised criteria are proposed. Recent advances in molecular genetics, biochemistry, and neuropathology of FTLD prompted the Midwest Consortium for Frontotemporal Lobar Degeneration and experts at other centers to review and revise the existing neuropathologic diagnostic criteria for FTLD. The proposed criteria for FTLD are based on existing criteria, which include the tauopathies [FTLD with Pick bodies, corticobasal degeneration, progressive supranuclear palsy, sporadic multiple system tauopathy with dementia, argyrophilic grain disease, neurofibrillary tangle dementia, and FTD with microtubule-associated tau (MAPT) gene mutation, also called FTD with parkinsonism linked to chromosome 17 (FTDP-17)]. The proposed criteria take into account new disease entities and include the novel molecular pathology, TDP-43 proteinopathy, now recognized to be the most frequent histological finding in FTLD. TDP-43 is a major component of the pathologic inclusions of most sporadic and familial cases of FTLD with ubiquitin-positive, tau-negative inclusions (FTLD-U) with or without motor neuron disease (MND). Molecular genetic studies of familial cases of FTLD-U have shown that mutations in the progranulin (PGRN) gene are a major genetic cause of FTLD-U. Mutations in valosin-containing protein (VCP) gene are present in rare familial forms of FTD, and some families with FTD and/or MND have been linked to chromosome 9p, and both are types of FTLD-U. Thus, familial TDP-43 proteinopathy is associated with defects in multiple genes, and molecular genetics is required in these cases to correctly identify the causative gene defect. In addition to genetic heterogeneity amongst the TDP-43 proteinopathies, there is also neuropathologic heterogeneity and there is a close relationship between genotype and FTLD-U subtype. In addition to these recent significant advances in the neuropathology of FTLD-U, novel FTLD entities have been further characterized, including neuronal intermediate filament inclusion disease. The proposed criteria incorporate up-to-date neuropathology of FTLD in the light of recent immunohistochemical, biochemical, and genetic advances. These criteria will be of value to the practicing neuropathologist and provide a foundation for clinical, clinico-pathologic, mechanistic studies and in vivo models of pathogenesis of FTLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号