首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
BackgroundAvian H7N9 virus emerged in China in February 2013 and has since spread widely among China's poultry, causing numerous human infections.ObjectivesTo compare World Health Organization (WHO) and US commercial influenza assays in detecting avian H7N9 virus in poultry cloacal specimens.Study designBetween April 6 and July 15, 2013, 261 cloacal swabs were collected from commercial poultry in Nanjing and Wuxi City, Jiangsu Province, China. Swabs were screened with the WHO's influenza A and H7N9 real-time RT-PCR (qRT-PCR) assays. A blinded panel of 97 specimens (27 H7N9-positive and 70 influenza A-negative) was then used to compare 3 antigen based commercial assays (Remel Xpect Flu A&B, Quidel Quickvue influenza, and Quidel Sofia Influenza A + B), and 2 molecular commercial assays (Quidel Molecular Influenza A + B assay and Life Technologies VetMAX™-Gold SIV Detection Kit). None of these commercial assays were approved for use with poultry specimens.ResultsConsidering the WHO H7N9 qRT-PCR assay as the gold standard, all assays except the Quidel Quickvue influenza assay had high specificity (ranging from 96 to 99%). Regarding sensitivity, the Life Technologies VetMAX™-Gold SIV Detection Kit (100%; 95% CI 87–100%) and the Quidel Molecular Influenza A + B assay (85%; 95% CI 66–96%) performed the best. The sensitivities of the non-molecular antigen detection assays were either unable to detect small amounts of H7N9 viral RNA or were inhibited by specimen type.ConclusionsThe Life Technologies VetMAX™-Gold SIV Detection Kit and the Quidel Molecular Influenza A + B assay are comparable in performance to the WHO H7N9 qRT-PCR assay in detecting H7N9 from poultry cloacal specimens.  相似文献   

3.
4.
Lee CH  Byun SH  Lee YJ  Mo IP 《Virus genes》2012,45(1):38-47
We performed whole genome sequencing of 22 H9N2 avian influenza viruses (AIV) isolated from domestic laying hens on farms between 2005 and 2008, and compared the sequences with viruses previously reported in Asia. A previous study revealed that two antigenically distinct sublineages were established within the MS96 lineage by antigenic drift since the first H9N2 AIV outbreak in South Korea. We designated them as the 01310-like lineage and the 116/04-like lineage. Since late 2004, most identified isolates in Korea have belonged to the 116/04-like lineage, however, in this study we found that six among twenty-two isolates were belonged to 01310-like lineage, indicating that the genetic divergence is still occurring after 2004. Furthermore, it is noteworthy that five isolates among the defined 01310-like lineage had a 24 amino acid deletion in the neuraminidase stalk region, which were not in any other H9N2 isolates previously reported. The internal genes analysis demonstrated extensive reassortment events among isolates from poultry farms, live bird markets, and wild birds, and multiple new genotypes were identified. We identified several features of gene evolution in H9N2 AIV suggesting that the long-term H9N2 AIV surveillance study should be continued in South Korea.  相似文献   

5.
6.
Evolution of H9N2 influenza viruses from domestic poultry in Mainland China   总被引:36,自引:0,他引:36  
Li C  Yu K  Tian G  Yu D  Liu L  Jing B  Ping J  Chen H 《Virology》2005,340(1):70-83
  相似文献   

7.
The study presents molecular characterization of H9N2 avian influenza (AI) isolates from field outbreaks in turkeys that occurred in Poland in 2013–2014. Sequences of all gene segments of one isolate from 2013 (A/turkey/Poland/14/2013(H9N2)) and two isolates from 2014 (A/turkey/Poland/08/2014(H9N2), A/turkey/Poland/09/2014(H9N2)) were obtained and analyzed in search of the phylogenetic relationship and molecular markers of zoonotic potential or increased pathogenicity. All gene segments were shown to originate from the wild bird reservoir and the close relationship of the analyzed isolates proved the link between the outbreaks in 2013 and 2014. However, remarkable molecular differences between isolates from 2013 to 2014 were identified, including mutation in the HA cleavage site (CS) leading to conversion from the PAASNR*GLF to the PAASKR*GLF motif and truncation of the PB1-F2 protein. Additionally, T97I substitution in the PA protein in A/turkey/Poland/08/2014 was detected which can be responsible for enhanced activity of viral polymerase in mammalian cells. However, experimental infection of mice with both isolates from 2014 showed their low pathogenicity, and no statistically significant differences in virus replication were observed between the viruses. Nevertheless, these findings indicate the dynamic evolution of H9N2 in the field emphasizing the need for monitoring of the situation in terms of H9N2 AI in Europe.  相似文献   

8.
9.
While the previous phylogenetic analyses of AIV H9N2 in Israel had mainly focused on phylogenetics and on describing different virus introductions into the country, for the first time, the H9N2-HA gene evolutionary history has been examined taking into account its origin, evolution and phylodynamics. The present study reveals the Israeli H9N2 molecular evolution rate, the virus molecular clock and skyline plot. The molecular skyline plot showed two major increments in population diversity sizes, the first which had occurred in 2003, the second between the end of 2007 and the first half of 2008. Between 2004 and 2007 the population size had proved to be constant. The two peaks correspond to the appearance of the 3rd and 4th major genetic groups, as well as to the introduction of two H9N2 vaccines. The mean evolution rate was 6.123 E-3 substitutions/site/year, typical of avian influenza viruses. The time interval from the most recent common ancestor was 12.3 years, corresponding to the year 2000, when H9N2 was first isolated in Israel.  相似文献   

10.
Chen F  Yan ZQ  Liu J  Ji J  Chang S  Liu D  Qin JP  Ma JY  Bi YZ  Xie QM 《Virus genes》2012,45(1):69-75
Avian influenza virus (H9N2) infection is a major problem of product performance in poultry worldwide. Vaccination is used to limit spread, but more knowledge is needed on the epidemiology of virus subtypes to improve vaccine design. In this study, 40 H9N2 subtype avian influenza viruses (AIVs) were isolated from vaccinated poultry flocks in China from 2010 to 2011. Hemagglutinin (HA) from different virus strains was sequenced and analyzed. We found that the HA genes of these strains shared nucleotide and deduced amino acid homologies that ranged from 90.1 to 92.9 and 91.4 to 95.0 %, respectively, when compared with vaccine strains. Phylogenetic analysis showed that the strains tested could be divided into two major groups. Group I consisted of 24 strains isolated mainly from Eastern and Central China. Group II consisted of 20 strains isolated from Southern China. The cleavage site within the HA protein contained two basic motifs, PSRSSR↓GLF for group I, and PARSSR↓GLF for group II. Additional potential glycosylation sites were found at amino acid position 295 in the HA1 of the isolates in group I, compared with isolates in group II and the vaccine strains. Furthermore, 38 out of the 40 isolates had a leucine residue at position 216 (aa 226 in H3), which was characteristic of human influenza virus-like receptor specificity. In the present study we found that geographical factors play a significant role in virus evolution, and emphasize the importance of continuing surveillance of H9N2 AIVs in chickens in China.  相似文献   

11.
To understand the evolution and molecular characteristics of Jiangxi H9N2 viruses, we isolated 17 viruses in 2011 and analyzed their characteristics. Phylogenetic analyses revealed that their hemagglutinin genes originate from JS/1/00-like sublineage, neuraminidase genes originate from BJ/94-like sublineage, PB1, PA, NP, and NS genes all come from SH/F/98-like sublineage, PB2 genes originate from ST/163/04-like sublineage, while M genes come from G1-like sublineage. Genotype analysis showed that our isolates were classified as genotype 57. Molecular analyses indicated that our strains contained specific sites characteristic of low-pathogenic viruses. The current study once again highlights the necessity for continued surveillance of novel H9N2 viruses.  相似文献   

12.
H9N2 avian influenza virus (AIV) has become prevalent in the live poultry market (LPM) worldwide, and environmental transmission mode is an important way for AIVs to infect human beings in the LPM. To find evidence of human infection with the influenza A(H9N2) virus via environmental contamination, we evaluated one human isolate and three environmental isolates inside LPMs in Xiamen, China. The phylogeny, transmissibility, and pathogenicity of the four isolates were sorted out systematically. As for the H9N2 virus, which evolved alongside the “Avian-Environment-Human” spreading chain in LPMs from the summer of 2019 to the summer of 2020, its overall efficiency of contact and aerosol transmissibility improved, which might contribute to the increasing probability of human infection. This study indicated that environmental exposure might act as an important source of human infection in LPMs.  相似文献   

13.
In this study, we sought to examine whether evidence existed suggesting that pigs were being infected with the novel H7N9 avian influenza virus. From November 2012 to November 2013, blood was drawn from 1560 pigs from 100 large farms in 4 provinces of eastern China. Many of these pigs were in close proximity to wild birds or poultry. Swine sera were studied using hemagglutinin inhibition (HI) assays and enzyme-linked immunosorbent assays (ELISAs) against the H7 antigen derived from the emergent H7N9 avian influenza virus (AIV). Only 29 of the 1560 samples had HI titers of 1:20 when using the H7N9 AIV antigens, and none of the 29 (H7N9 AIV) HI-positive samples were positive when using ELISA, indicating that no samples were positive for H7N9. The negative results were also verified using a novel competitive HA-ELISA. As pigs have been shown to be infected with other avian influenza viruses and as the prevalence of novel influenza A viruses (e.g., H7N9 AIV) may be increasing among poultry in China, similar seroepidemiological studies of pigs should be periodically conducted in the future.  相似文献   

14.
Avian influenza virus H9N2 has become the dominant subtype of influenza which is endemic in poultry. The hemagglutinin, one of eight protein-coding genes, plays an important role during the early stage of infection. The adaptive evolution and the positively selected sites of the HA (the glycoprotein molecule) of H9N2 subtype viruses were investigated. Investigating 68 hemagglutinin H9N2 avian influenza virus isolates in China and phylogenetic analysis, it was necessary that these isolates were distributed geographically from 1994, and were all derived from the Eurasian lineage. H9N2 avian influenza virus isolates from domestic poultry in China were distinct phylogenetically from those isolated in Hong Kong, including viruses which had infected humans. Seven amino acid substitutions (2T, 3T, 14T, 165D, 197A, 233Q, 380R) were identified in the HA possibly due to positive selection pressure. Apart from the 380R site, the other positively selected sites detected were all located near the receptor-binding site of the HA1 strain. Based on epidemiological and phylogenetics analysis, the H9N2 epidemic in China was divided into three groups: the 1994-1997 group, the 1998-1999 group, and the 2000-2007 group. By investigating these three groups using the maximum likelihood estimation method, there were more positive selective sites in the 1994-1997 and 1998-1999 epidemic group than the 2000-2007 groups. This indicates that those detected selected sites are changed during different epidemic periods and the evolution of H9N2 is currently slow. The antigenic determinant or other key functional amino acid sites should be of concern because their adjacent sites have been under positive selection pressure. The results provide further evidence that the pathogenic changes in the H9N2 subtype are due mainly to re-assortment with other highly pathogenic avian influenza viruses.  相似文献   

15.
Genetic analysis of H9N2 avian influenza viruses isolated from India   总被引:1,自引:0,他引:1  
H9N2 avian influenza viruses are endemic in domestic poultry in Asia and are grouped into three major sublineages represented by their prototype strains A/Duck/Hong Kong/Y280/97 (Y280-like), A/Quail/Hong Kong/G1/97 (G1-like) and A/Chicken/Korea/38349-p96323/96 (Korean-like). To understand the genetic relationship of Indian viruses, we determined the partial nucleotide sequence of five H9N2 avian influenza viruses isolated from chicken in India during 2003-2004 and compared them with H9N2 sequences available in GenBank. Deduced amino acid sequence analysis revealed that four isolates shared an R-S-S-R/G motif at the cleavage site of HA, representing low pathogenicity in chickens, while one virus harbors an R-S-N-R/G motif at the same position. All the viruses maintained the human-like motif 226Lysine (H3 numbering) at the HA receptor binding site. Phylogenetic analysis showed that 50% of the genes (HA, NA, NP and M) were similar to G1-like viruses, whereas the remaining genes of the Indian isolates formed a separate, not yet defined, sublineage in the Eurasian lineage. Our finding provides evidence of a novel reassortant H9N2 genotype of G1-like viruses circulating in India.  相似文献   

16.
Low pathogenic avian influenza subtype H9N8 was diagnosed on a Korean native chicken farm in Gyeonggi province, South Korea, in late April 2004. Clinical signs included moderate respiratory distress, depression, mild diarrhoea, loss of appetite and a slightly elevated mortality (1.4% in 5 days). Pathologically, mucopurulent tracheitis and air sacculitis were prominently found with urate renal deposition. The isolated A/chicken/Kr/164/04 (H9N8) had an Ala-Ser-Gly-Arg (A/S/G/R) motif at the cleavage site of haemagglutinin, which has been commonly found in H9N2 isolated from Korean poultry. Phylogenetic analysis of the haemagglutinin and neuraminidase genes of the H9N8 avian influenza virus (AIV) isolate showed that reassortment had occurred. Its haemagglutinin gene was similar to that of Korean H9N2 AIVs, but its neuraminidase gene was closely related to that of A/WBF/Kr/KCA16/03 (H3N8) isolated from the faeces of wild birds in Korea. The pathogenicity of the isolate was tested on 6-week-old specific pathogen free chickens. The inoculated virus (H9N8) was recovered from most tested organs, including the trachea, lung, kidney, spleen, and caecal tonsil. This is the first report of an outbreak of low pathogenic avian influenza in chickens caused by AIV subtype H9N8.  相似文献   

17.
We report the genetic characterization of low pathogenic avian influenza (LPAI) viruses isolated from domestic ducks in northern Vietnam in 2009. In total, 22 influenza A viruses consisting of 21 H6N1 subtypes and one H9N2 subtype were isolated from 1488 ducks collected in February, March, and April 2009, accounting the overall virus isolation rate for 1.5%. No H5N1 strain was isolated in this study. Phylogenetic analysis indicated that all the eight genes of the H6N1 and H9N2 subtypes analyzed in this study were similar to those isolated in Korea, southeast China and northern Japan, and wild birds which migrate along the coastal East Asian Flyway are estimated to transmit these viruses. There was no evidence that the H6N1 and H9N2 subtypes share the gene segments with H5N1 subtypes. However, it is important to monitor the prevalence and genetical backgrounds of LPAI viruses among poultry in an area where several different influenza A subtypes are in circulation.  相似文献   

18.
Four H7N3 avian influenza viruses (AIVs) were isolated from domestic ducks in live-poultry markets in Zhejiang Province, Eastern China, in 2011. All viruses were characterized by whole-genome sequencing with subsequent phylogenetic analysis and genetic comparison. Phylogenetic analysis of all eight viral genes showed that the viruses clustered in the Eurasian lineage of influenza viruses. The hemagglutinin cleavage site of all viruses indicated that the four strains were low-pathogenic avian influenza viruses.  相似文献   

19.
20.
Wu HB  Guo CT  Lu RF  Xu LH  Wo EK  You JB  Wang YT  Wang QG  Wu NP 《Virus genes》2012,44(3):441-449
Nine avian influenza A viruses (AIVs), H1N2 (n = 2) and H1N3 (n = 7), were isolated from domestic ducks in live poultry markets in Zhejiang Province, Eastern China, in 2011. All viruses were characterized by whole genome sequencing with subsequent phylogenetic analysis and genetic comparison. Phylogenetic analysis of all eight viral genes showed that the viruses clustered in the Eurasian lineage of influenza A viruses. The hemagglutinin cleavage site of all viruses displayed features of a monobasic cleavage site. Although there was no evidence of re-assortment in subtype H1 AIVs among the avian species and mammalian hosts in this study, continued surveillance is needed considering the important role of the domestic duck in the dissemination and re-assortment of AIVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号