首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the phenotypic changes of human umbilical cord blood (CB) CD34+ cells during ex vivo expansion using thrombopoietin (TPO), flt3-ligand (FL), and/or granulocyte-colony stimulating factor (G-CSF). During ex vivo expansion of CD34+ cells isolated from human CB for up to 5 weeks, surface expression of molecules on the cultured cells including CD64 (Fc gammaRI), CD32 (Fc gammaRII), CD16 (Fc gammaRII), CD11b (MAC-1) and CD18 (beta2-integrin) was analysed by flow cytometry along with simultaneous measurement of apoptosis by 7-aminoactinomycin D staining method. CD64, CD32 and/or CD18 expressing cells appeared in the cultures both with and without the addition of G-CSF until the tenth day. However, without G-CSF, CD16+ fractions did not appear and CD11b+ fractions were not maintained. With G-CSF, the CD16+ or CD11b+ fractions appeared only from the second week. These results suggest that G-CSF is necessary for the late stage of myeloid maturation during which CD16 and CD11b are expressed.  相似文献   

2.
Thrombopoietin (TPO), the primary regulator of megakaryocytopoiesis, plays important roles in early haematopoiesis. Previously, we have demonstrated that TPO induces a characteristic pattern of apoptosis during ex vivo expansion of cord blood (CB) CD34+ cells. In this study, we have demonstrated that the TPO-induced apoptotic cells belong to the megakaryocytic (MK) lineage and that initially expanding MK progenitors declined along with the appearance of TPO-induced apoptosis. Human CB CD34+ cells were expanded in serum-free conditions with TPO. Multidimensional flow cytometry using simultaneous measurement of apoptosis and immunophenotyping showed that the TPO-induced apoptotic cells appeared in CD61+ fractions. Immunocytochemical analysis of the fluorescent activated cell-sorted fractions showed that the apoptosis-associated CD44low fraction expressed CD61. Clonogenic assay revealed 7.4 +/- 0.50-fold increase of total megakaryocyte colony-forming units (CFU-MKs) during the initial 9 d. Thereafter, the number of CFU-MKs decreased in parallel with the increase of apoptosis. When the MK colonies were subdivided according to size, the proportion of large colonies progressively decreased, while that of medium and small colonies increased. In particular, from d 6 small colonies became predominant. These results suggested that the MK progenitors matured as they expanded during ex vivo expansion with TPO and then proceeded to apoptosis.  相似文献   

3.
Although cord blood (CB) compares favourably with other haematopoietic stem cell (HSCs) sources, its use in large patients is limited by the low number of cells available. Ex vivo expansion of CB HSCs has been used to overcome this limitation. In this study, we investigated the effect of different cytokine cocktails, including interleukin (IL)-6, IL-11, Flt3-ligand (FL) and thrombopoietin (TPO) combined with serum or serum-free medium on the ex vivo expansion of CD34+ cells from CB. Initial experiments showed that expansion could be slightly improved using serum, but we chose to use serum-free medium in the subsequent investigations to apply good medical practice (GMP) conditions suitable for clinical use. The highest expansion of CD34+ cells was obtained with a cocktail containing FL + TPO + IL-6 + IL-11. The median (range) fold expansions of CD34+ cells at 5 and 10 weeks with serum-free medium were 235.6 (131.3-340) and 5205.6 (4736.6-5674.7) respectively. The absence of IL-11 was associated with a similar fold expansion after 5 weeks (median 215.6, range 149.8-281.5), but after 10 weeks expansion was slightly lower (median 1314.7, range 645-1984.4). Our data support the possibility of maintaining long-term expansion of CB HSCs in a simple stroma- and serum-free system.  相似文献   

4.
Ex vivo expansion of primitive human haematopoietic stem cells (HSC) is clinically relevant for stem cell transplantation and gene therapy. Here, we demonstrate the selective expansion of CD34+CD38- cells from purified CD34+ cells upon stimulation with Flt3-ligand, stem cell factor and thrombopoietin. Over a 100-fold (range 80 to 128-fold) expansion of CD34+CD38- cells was observed with bone marrow and cord blood (CB). The expanded CD34+CD38- cells remained negative for lineage-specific markers and could be induced to differentiate into granulocytes, monocytes, megakaryocytes, erythrocytes, and T and B-lymphocytes in vitro. Lineage differentiation assays with single CD34+CD38- cells showed no loss of multilineage potential of expanded cells after ex vivo culture. We also demonstrated that the increase in frequency of CD34+CD38- cells was not as a result of the downregulation of CD38 expression during the culture. Quantitative analysis showed that the number of 6 week cobblestone area forming cells (CAFCwk6), a measure of proliferating HSC, in cytokine-stimulated CD34+ cells were increased by 20-fold. Expanded CD34+CD38- cells could be transduced efficiently with retroviruses encoding the low affinity nerve growth factor receptor (LNGFR) marker gene (17% to 44%, mean 27%), resulting in long-lasting expression of retroviral-encoded genes in progeny HSC and differentiated progenitors. We conclude that the combination Flt3-ligand (FL), stem cell factor and thrombopoietin (TPO) induced strong ex vivo proliferation of CD34+CD38- cells and that the absolute number of expanded cells with stem cell activity increased substantially in this population.  相似文献   

5.
Various combinations of cytokines have profoundly different effects on inhibition of apoptosis and stimulation of self-renewal division of hematopoietic stem cells (HSC) in short-term, ex vivo culture. Our goal was to quantitate expansion of cells with a primitive CD34+ Thy-1+ phenotype, as well as cell cycling, division history, differentiation, and apoptosis of CD34+ cells enriched from normal donor mobilized peripheral blood (MPB) cells. The balance of these parameters determines the net number of transplantable HSC produced in ex vivo cultures. Comparing several different combinations of cytokines added to 90-hour cultures of MPB CD34 cells, thrombopoietin (TPO), flt3 ligand (FL), and c-kit ligand (KL) gave the best result, with the lowest percentage of apoptotic cells and a mean 1.2-fold increase in the number of CD34+ Thy-1+ cells. A combination of interleukin 3 (IL-3), interleukin 6 (IL-6), and leukemia inhibitory factor (LIF) gave the worst outcome, including a decrease of CD34+ Thy-1+ cell number to a mean of 30% of the starting cell number. Cell division history was tracked using the dye 5-(and 6-) carboxyfluorescein diacetate succinimidyl ester (CFSE). Division of CD34+ Thy-1+ cells was faster and more synchronous in TPO, FL, and KL than in IL-3, IL-6, and LIF, which left a significant proportion of CD34+ cells undivided. Such detailed analyses of short-term, ex vivo cultures generated "replication scores," which allowed prediction of a sixfold improvement of the efficiency of gene transduction of primitive hematopoietic progenitors from MPB, using TPO, FL, and KL to replace IL-3, IL-6, and LIF. Analysis of retroviral transduction efficiency confirmed the increase of transgene expression from MPB primitive hematopoietic progenitors assayed after stromal culture was fivefold, validating the usefulness of multiparameter analysis of short-term cultures for survival and replication of CD34+ Thy-1+ cells.  相似文献   

6.
The characteristics of hematopoietic progenitor and stem cell (HPC/HSC) populations in mammals vary according to their ontogenic stage. In humans, HPC/HSCs from umbilical cord blood (CB) are increasingly used as an alternative to HPC/HSCs from adult bone marrow (BM) for the treatment of various hematologic disorders. How the hematopoietic activity of progenitor and stem cells in CB differs from that in adult BM remains unclear, however. We compared CD34+ cells, a hematopoietic cell population, in CB with those in adult BM using phenotypic subpopulations analyzed by flow cytometry, the colony-forming activity in methylcellulose clonal cultures, and the repopulating ability of these cells in NOD/Shi-scid (NOD/SCID) mice. Although the proportion of CD34+ cells was higher in adult BM than in CB mononuclear cells, the more immature subpopulations, CD34+ CD33- and CD34+ CD38- cells, were present in higher proportions in CD34+ CB cells. Clonal culture assay showed that more multipotential progenitors were present in CD34+ CB cells. When transplanted into NOD/SCID mice. CD34+ adult BM cells could not reconstitute human hematopoiesis in recipient BM, but CD34+ CB cells achieved a high level of engraftment, indicating that CD34+ CB cells possess a greater repopulating ability. These results demonstrated that human hematopoiesis changes with development from fetus to adult. Furthermore, CD34+ CB cells contained a greater number of primitive hematopoietic cells, including HSCs, than did adult BM, suggesting the usefulness of CD34+ CB cells not only as a graft for therapeutic HSC transplantation but also as a target cell population for ex vivo expansion of transplantable HSCs and for gene transfer in gene therapy.  相似文献   

7.
Thymic repopulation by transplanted hematopoietic progenitor cells (HPC) is likely to be important for long-term immune reconstitution and for successful gene therapy of diseases affecting the T-cell lineage. However, the T-cell progenitor potential of HPC, cultured in vitro for cell number expansion and gene transfer remains largely unknown. Here, we cultured highly purified human umbilical cord blood (CB) CD34(+)CD38(-) or CD34(+)CD38(+) cells for up to 5 weeks in stroma-free cultures supplemented with various combinations of the cytokines thrombopoietin (TPO), stem cell factor (SCF), flt3/flk-2 ligand (FL), interleukin-3 (IL-3), and IL-6 and investigated thymus-repopulating ability of expanded cells in vitro and in vivo. After up to 5 weeks of culture in IL-3 + SCF + IL-6 or TPO + FL + SCF supplemented medium, the progeny of CD34(+)CD38(-) CB cells generated T cells and natural killer cells in the thymus. Limiting dilution experiments demonstrated increase in the number of T-cell progenitors during culture. After 3 weeks of culture, gene marked CD34(+)CD38(-) CB cells injected in the human thymus fragment transplanted in severe combined immunodeficient (SCID) mice (SCID-hu) generated thymocytes expressing the retroviral encoded marker gene GFP in vivo. Thus, our results show that the progeny of CD34(+)CD38(-) CB cells cultured for extensive periods, harbor thymus-repopulating cells that retain T-cell progenitor potential after expansion and gene transfer.  相似文献   

8.
In previous studies, we identified a cytokine cocktail including thrombopoietin, Flt-3 ligand, interleukin (IL)-6 and IL-11 in serum-free medium, suitable to induce significant and sustained ex vivo expansion of primitive hematopoietic stem cells (HSCs) from cord blood (CB) for up to 10 weeks. The aim of the present study was to evaluate the effects of cryopreservation on ex vivo expansion of HSCs and their committed progenitors. CD34+ cells were purified from CB units, each of which was processed in part as such and in part as cryopreserved and thawed, then expanded for 5 weeks in serum-free medium with the cytokine cocktail described above. We determined the number of nucleated cells (NC), CD34+, CD34+/38(-)/33(-), CD34+/61+, CD61+ cells and the clonogenic potential. After 2 weeks the median fold expansion of NC, CD34+ and CD34+/38(-)/33(-) cells was around two log both with fresh and cryopreserved CB and the expansion continued similarly until week 5. Our data suggest that this serum free protocol induces similar ex vivo expansion of HSCs and their committed progenitors from both fresh and cryopreserved CB. Our findings can be useful in view of clinical applications, since CB used for transplantation is stored in the cryopreserved state.  相似文献   

9.
We investigated whether basic fibroblast growth factor (bFGF) is effective in inducing ex vivo expansion of CD34+ haematopoietic progenitor cells derived from human placental and umbilical cord blood. bFGF significantly promoted the clonal growth of various haematopoietic progenitor cells, including granulocyte-macrophage colony-forming units (CFU-GM), mixed colony-forming units (CFU-Mix) and megakaryocyte colony-forming units (CFU-Meg) under semisolid culture conditions, with an optimal bFGF concentration of 30 ng/ml. CD34+ cells were then cultured in serum-free liquid medium containing various combinations of early-acting cytokines, including thrombopoietin (TPO), stem cell factor (SCF), interleukin 3 (IL-3) and flt3-ligand (FL), with or without bFGF, for 6 and 12 d. Without bFGF, TPO + IL-3, TPO + SCF + FL and TPO +SCF + IL-3 + FL dramatically increased the total numbers of erythroid progenitors, CFU-GM and CFU-Mix by d 12 of culture respectively. However, the addition of bFGF did not promote further proliferation of these progenitors, except for the erythroid progenitors, by d 6 when stimulated with all four cytokines. In contrast, total CFU-Meg numbers were approximately doubled when these cultures were supplemented with bFGF, producing 100- to 120-fold increases compared with the baseline control cultures. These results suggest that bFGF is effective in supporting the generation of megakaryocytic progenitor cells during ex vivo expansion.  相似文献   

10.
OBJECTIVE: In this study we compared the hematopoietic capacity of CD34+ cell preparations from neonatal cord blood (CB) vs adult mobilized peripheral blood (PBSC) before and after ex vivo culture. METHODS: CD34+ cell preparations purified from CB or PBSC were cultured in serum-free medium containing FKT: FLT-3 ligand (FL), KIT ligand (KL), and thrombopoietin (TPO). RESULTS: After 1-4 weeks ex vivo culture, CB CD34+ cell preparations had greatly increased numbers of total cells, CD34+ cells, and colony-forming cells (CFC). In contrast, ex vivo-cultured PBSC CD34+ cell preparations generated far less in vitro assessed hematopoietic capacity. Nonobese diabetic severe combined immunodeficient mouse (NOD/SCID) engrafting potential (SEP) was maintained in ex vivo-cultured CB CD34+ cell preparations, whereas ex vivo-cultured PBSC lost SEP. CB CD34+ cells continued to proliferate throughout 3 weeks ex vivo, whereas after 1 week, no additional cell divisions were detected in PBSC CD34+ cells. After 3 weeks in culture, the average CB CD34+ cell had divided more than 5 times, as compared to only 2 times for the average PBSC CD34+ cell. CONCLUSION: CB CD34+ cell preparations generated massively increased in vitro assessed hematopoietic capacity and maintained SEP during 1- to 4-week ex vivo cultures. In contrast, ex vivo-cultured PBSC CD34+ cell preparations generated far less in vitro assessed hematopoietic capacity and decreased SEP. The differences in the in vitro proliferative indices of membrane dye-labeled CD34+ cells from CB vs PBSC correlated with these functional differences.  相似文献   

11.
Feng Y  Zhang L  Xiao ZJ  Li B  Liu B  Fan CG  Yuan XF  Han ZC 《Experimental hematology》2005,33(12):1537-1543
Transfusion of ex vivo expanded megakaryocyte (MK) progenitor cells has been suggested to shorten the time of platelet recovery in the thrombocytopenia induced by radiotherapy or chemotherapy. Here, we report an effective and simple expansion system of MK progenitor cells from cord blood (CB) CD34(+) cells using a combination of thrombopoietin (TPO), interleukin (IL)-11, and heparin. When the CB CD34(+) cells were cultured in a liquid expansion system in the presence of TPO + recombination human (rh)IL-11 + heparin for 7 days, the number of CB CD34(+)/CD41a(+) cells was significantly increased compared to control groups (p < 0.05). When the suspension cells collected from 7-day liquid culture were replated in semisolid cultures, increased large MK colonies were observed in the culture with combination of TPO + IL-11 + heparin compared to those of control groups. In vivo, transfusion of CD34(+) cells expanded with TPO + IL-11 + heparin into irradiated nonobese diabetic/severe combined immunodeficient mice significantly accelerated platelet recovery. These data indicate that heparin as effective cofactor for TPO and IL-11 promotes expansion of MK progenitor cells from CB CD34(+) cells. This expansion system is simple and effective and could be used for the treatment of thrombocytopenia after radiotherapy or chemotherapy.  相似文献   

12.
The proliferation and expansion of human hematopoietic stem cells (HSC) in ex vivo culture was examined with the goal of generating a suitable clinical protocol for expanding HSC for patient transplantation.HSC were derived from umbilical cord blood (UCB) and adult patient peripheral blood stem cell collections. HSC were stimulated to proliferate ex vivo by a combination of two growth factors, flt-3 ligand (FL) and thrombopoietin/c-mpl ligand (TPO/ML), and assessed for expansion by flow cytometry.Ex vivo expansion cultures of UCB were maintained for prolonged periods (up to 16 weeks), and sufficient HSC were generated for adult transplantation. In contrast to UCB, FL + TPO/ML did not significantly increase CD34(+) peripheral blood stem cell (PBSC) numbers.UCB-HSC can be expanded in culture to numbers theoretically adequate for safe, rapid engraftment of adult patients. Additional studies are needed to establish the functional activity of expanded UCB-HSC.  相似文献   

13.
OBJECTIVES: Hematopoietic recovery, in particular platelet reconstitution, can be severely delayed after transplantation with cord blood (CB) stem cells (SC). Expansion of CB SC may be one way to improve the recovery, but there is concern that ex vivo expansion compromises the repopulating ability of SC. METHODS: We used a short-term expansion protocol with TPO as single growth factor. The expanded cells were tested in the NOD/SCID mouse model and both platelet recovery and repopulation capacity were examined and compared with unexpanded CD34+ CB cells of the same CB donor. RESULTS: Platelet recovery started 1 week earlier in mice transplanted with TPO-expanded CD34+ cells and at days 5 and 8 after transplantation, 6.2 +/- 2.6 and 13.9 +/- 6.7 plt/microL were observed, respectively. At similar time intervals 0.0 and 1.5 +/- 0.2 plt/microL respectively were detected in mice receiving the unmanipulated CD34+ grafts. This was accompanied by a higher number of CFU-Mk in the bone marrow (BM) 7 days after transplantation. Moreover, the BM engraftment and the lineage differentiation of human cells at 6 weeks after transplantation was similar, suggesting that long-term engraftment was not compromised by the expansion procedure. CONCLUSION: Ex vivo expansion with TPO as single growth factor results in an accelerated platelet recovery in NOD/SCID mice and appears not to affect the long-term repopulation capacity.  相似文献   

14.
Dendritic cells (DCs) are the most potent antigen-presenting cells in terms of initiating primary T-cell-dependent immune responses. We devised a 2-step culture method for obtaining sufficient numbers of functional DCs from umbilical cord blood (CB) CD34+ cells. In the first step, CB CD34+ cells were expanded by stimulation with early-acting cytokines such as stem cell factor (SCF), flt3 ligand (FL), and thrombopoietin (TPO) to amplify the hematopoietic progenitor cells. In the second step, granulocyte-macrophage colony-stimulating factor and interleukin 4 were added, and incubation was continued for another 5 days to induce differentiation of the expanded cells into DCs. During the first step of culturing with TPO, SCF, and FL, the total numbers of nucleated cells gradually increased, peaking at 4 weeks (245.3-fold). During the second step, expression of CD1a, CD83, and CD86 increased. Electron microscopic findings showed that these cells had cytosolic expansion to form dendrites and major histocompatibility complex class II compartments, which are characteristic of DCs. Functional analyses revealed that these cells had phagocytic activity and were capable of stimulating allogeneic T-cells in vitro.  相似文献   

15.
BACKGROUND AND OBJECTIVE: Thrombopoietin (TPO), the ligand for the c-mpl receptor, regulates in vivo platelet production and increases the number of colony-forming unit megakaryocytes (CFU-MK). Other cytokines including interleukin (IL) -3, IL-6, IL-11 and stem cell factor (SCF) can stimulate megakaryopoiesis. The aim of this study was to evaluate the effects of different combinations of cytokines involved in megakaryocytopoiesis on stroma-free liquid cultures of purified human CD34+ cells. DESIGN AND METHODS: Peripheral blood cells were collected after mobilization with granulocyte colony-stimulating factor (G-CSF). Purified CD34+ cells were then cultured with different combinations of TPO, SCF, IL-3, IL-6 and IL-11. RESULTS: The addition of TPO and SCF alone generated a population positive for the antigens CD41 (5.5+/-2.9%) and CD61 (6. 1+/-2.2%) but induced a low amplification of cell number (8.1+/-0.9 fold expansion). The presence of IL-6 or IL-11 was associated with MK progenitor cell expansion, and up to 7-10% of cultured cells were found to be CD41 and CD61 positive by flow cytometry. Conversely, the addition of IL-3 to this cytokine combination was associated with a prominent expansion of the myeloid lineage (70+/-10% of CD33+ cells) but only 0.9% and 2% of cultured cells were positive for CD61 and CD41 respectively. INTERPRETATION AND CONCLUSIONS: Our study supports the idea that IL-6 and IL-11 play crucial roles in the proliferation of MK progenitors and the use of SCF, TPO, IL-6 and IL-11 for ex vivo expansion of this cell population.  相似文献   

16.
BACKGROUND AND OBJECTIVES: Megakaryocyte (Mk) engraftment is often poor and delayed after cord blood (CB) transplantation. Ex vivo manipulations of the cells that will be infused may be a way to achieve better Mk engraftment. In this study we investigated the ability of different hematopoietic growth factor combinations to generate large numbers of Mk cells ex vivo. DESIGN AND METHODS: To find the best cytokine combination capable of generating large numbers of Mks, baseline CB CD34+ (bCD34+) cells and CD34+ and CD34- cells, immunoselected after 4 weeks of expansion with thrombopoietin (TPO), stem cell factor (SCF) and Flt-3 ligand (FL) (eCD34+, eCD34-), were further cultured in the presence of different cytokine combinations (containing interleukin(IL)-3, SCF, TPO and IL-6). To evaluate Mk reconstitution in vivo, Mk-committed cells, generated during 10 days of in vitro culture, were injected into NOD/SCID mice and the kinetics of human platelet production was evaluated. RESULTS: TPO and SCF together were found to be sufficient to generate large numbers of Mk cells (3 +/- 0.40 x 10(6)/1 x 10(5) input bCD34+ cells) from bCD34+ cells; the addition of IL-3 and IL-6 did not further increase Mk production (3.5 +/- 0.63 x 10(6)/1 x 10(5) input bCD34+ cells). In contrast only one cytokine combination (IL-3+SCF+IL-6+TPO) induced a large Mk production from eCD34+ and eCD34- cells (0.16 +/- 0.04 x 10(6)/1 x 10(5) input eCD34+ cells and 0.035 x 10(6) +/- 0.012 x 106/1 x 10(5) input eCD34- cells, respectively). In mice injected with Mk-committed cells derived from bCD34+ or eCD34+ cells, human platelets were first detected on day 3 and disappeared after 4 weeks; in mice injected with MK-committed cells derived from eCD34- cells, human platelets peaked at day 3, but disappeared quickly. INTERPRETATION AND CONCLUSIONS: Fast Mk-engraftment can be obtained by in vitro selective lineage-commitment of baseline and ex vivo expanded CB cells.  相似文献   

17.
In-vitro expansion of human cord blood (CB) cells could enhance peripheral blood recovery and ensure long-term engraftment of larger recipients in the clinical transplant setting. Enrichment of CD34+ cells using the MiniMACS column has been evaluated for the preparation of CB CD34+ cells before and after expansion culture. Repurification of CD34+ cells after culture would assist accurate phenotypic and functional analysis. When fresh CB mononuclear cells (MNC) were separated, the MACS positive (CD34+) fraction (90.1% pure) contained a mean (+/- SD, n = 5) of 93.0 +/- 8.0% of the eluted CD34+ cells, 99.6 +/- 0.7% of the CFU-GM and all of the eluted long-term culture-initiating cells (LTC-IC). Cord blood CD34+ cells were then cultured for 14 d with IL-3, IL-6, SCF, G-CSF and GM-CSF, each at 10 ng/ml. The total cell expansion was 2490 +/- 200-fold and the CD34+ cell expansion was 49 +/- 17-fold. The percentage of CD34+ cells present after expansion culture was 1.2 +/- 0.85%. When these cells were repurified on the MiniMACS column, the MACS positive fraction only contained 40.3 +/- 13.4% of the eluted CD34+ cells which was enriched for the mature CD34+ CD38+ subset, 24.4 +/- 8.8% of the eluted CFU-GM and 79.5 +/- 11.0% of the LTC-IC. The remaining cells were eluted in the MACS negative fraction. In conclusion, repurification of cultured CD34+ cells does not yield a representative population and many progenitors are lost in the MACS negative fraction. This can give misleading phenotypic and functional data. Cell losses may be important in the clinical setting if cultured cells were repurified for purging.  相似文献   

18.
Retroviral transduction of human hematopoietic stem cells is still limited by lack of information about conditions that will maximize stem cell self-renewal divisions in vitro. To address this, we first compared the kinetics of entry into division of single human CD34+CD38- cord blood (CB) cells exposed in vitro to three different flt3-ligand (FL)-containing cytokine combinations. Of the three combinations tested, FL + hyperinterleukin 6 (HIL-6) yielded the least clones and these developed at a slow rate. With either FL + Steel factor (SF) + HIL-6 + thrombopoietin (TPO) or FL + SF + interleukin 3 (IL-3) + IL-6 + granulocyte-colony-stimulating factor (G-CSF), >90% of the cells that formed clones within 6 days undertook their first division within 4 days, although not until after 24 hours. These latter two, more stimulatory, cytokine combinations then were used to assess the effect of duration of cytokine exposure on the efficiency of transducing primitive CB cells with a gibbon ape leukemia virus-pseudotyped murine retroviral vector containing the enhanced green fluorescent protein (GFP) cDNA and the neomycin resistance gene. Fresh lin- CB cells exposed once to medium containing this virus plus cytokines on fibronectin-coated dishes yielded 23% GFP+ CD34+ cells and 52-57% G418-resistant CFC when assessed after 2 days. Prestimulation of the target cells (before exposing them to virus) with either the four or five cytokine combination increased their susceptibility. In both cases, the effect of prestimulation assessed using the same infection protocol was maximal with 2 days of prestimulation and resulted in 47-54% GFP+ CD34+ cells and 67-69% G418-resistant CFC. Repeated daily addition of new virus (up to three times), with assessment of the cells 2 days after the last addition of fresh virus, gave only a marginal improvement in the proportion of transduced CD34+ cells and CFC, but greatly increased the proportion of transduced LTC-IC (from 40% to >99%). Transplantation of lin- CB cells transduced using this latter 6-day protocol into NOD/SCID mice yielded readily detectable GFP+ cells in 10 of 11 mice that were engrafted with human cells. The proportion of the regenerated human cells that were GFP+ ranged from 0.2-72% in individual mice and included both human lymphoid and myeloid cells in all cases. High-level reconstitution with transduced human cells was confirmed by Southern blot analysis. These findings demonstrate that transplantable hematopoietic stem cells in human CB can be reproducibly transduced at high efficiency using a 6-day period of culture in a retrovirus-containing medium with either FL + SF + HIL-6 + TPO or FL + SF + IL-3 + IL-6 + G-CSF in which virus is added on the third, fourth, and fifth day.  相似文献   

19.
Rosler ES  Brandt JE  Chute J  Hoffman R 《Blood》2000,96(10):3414-3421
The marrow repopulating potential (MRP) of different sources of human hematopoietic stem cells (HSCs) was directly compared using an in vivo assay in which severe combined immunodeficient disease (SCID) mice were implanted with human fetal bones. HSCs from 2 human lymphocyte antigen (HLA)-mismatched donors were injected individually or simultaneously into the fetal bones of a 3rd distinct HLA type and donor and recipient myeloid and lymphoid cells were identified after 8 to 10 weeks. The study compared the MRP of umbilical cord blood (CB) and adult bone marrow (ABM) CD34(+) cells as well as grafts of each type expanded ex vivo. Equal numbers of CB and ABM CD34(+) cells injected individually demonstrated similar abilities to establish multilineage hematopoiesis. However, when CB and ABM cells were transplanted simultaneously, the engraftment of CB cells was markedly superior to ABM. CB and ABM CD34(+) cells were expanded ex vivo using either a porcine microvascular endothelial cell (PMVEC)-based coculture system or a stroma-free expansion system. Primary CB CD34(+) cells or CD34(+) cells expanded in either culture system demonstrated a similar ability to engraft. However, the MRP of expanded grafts simultaneously injected with primary CB cells was uniformly inferior to primary CB cells. CD34(+) cell grafts expanded in the stroma-free system, furthermore, outcompeted CD34(+) cells expanded using the PMVEC coculture system. The triple HLA-mismatched SCID-hu model represents a novel in vivo stem cell assay system that permits the direct demonstration of the functional consequences of ex vivo HSC expansion and ontogeny-related differences in HSCs.  相似文献   

20.
OBJECTIVE: Several requirements need to be fulfilled for clinical use of expanded hematopoietic stem cells (HSCs). Because most cord blood (CB) samples are frozen in single bags and only an aliquot ( approximately 25%) of the blood can be expanded, the thawing and refreezing of samples must be validated in the current European and Italian Good Manufacturing Practice (eIGMP) conditions. Here, we describe in vitro and in vivo validation of the phase I/II protocol for CD34+ expansion of thawed CB units according to the current Cell Therapy Products (CTPs) Guidelines. MATERIALS AND METHODS: CB units were thawed and 25% of the total volume was processed for CD34+ selection by CliniMACS. The 75% of the unit was immediately refrozen. CD34+ cells were expanded for 3 weeks with stem cell factor, Flt-3/Flk-2 ligand, thrombopoietin, and interleukin-6. RESULTS: In vitro results demonstrated that this culture system induces expansion of thawed CD34+ (median value = 8.3). In vivo data demonstrated that after culture, the final CTPs maintain their repopulating ability in nonobese diabetic severe combined immunodeficient (SCID) mice. Limiting dilution assays performed by injecting decreasing doses of expanded CD34+ cells revealed that the frequency of SCID repopulating cells after ex vivo expansion is 1:8,034. Analyses for sterility, viability, cell senescence, and cytogenetic assessment demonstrated that expansion procedures in eIGMP conditions are safe for clinical protocols. CONCLUSIONS: This offers promising new options for expansion of allogenic HSCs and also for autologous usage in transplantation and other cell therapy protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号