首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Allergic asthma is a complex disorder characterized by local and systemic T helper type 2 -cell responses such as the production of IL-13, a cytokine associated with the induction of airway hyper-responsiveness (AHR), chronic pulmonary eosinophilia, airway mucus overproduction and eosinophilic oesophagitis. OBJECTIVE: Our study aimed to address the therapeutic potential of a human anti-human IL-13 IgG4 monoclonal antibody (CAT-354) in a murine model of respiratory and oesophageal inflammation induced by intratracheal human IL-13. METHODS: BALB/c mice were treated on days 1 and 3 with CAT-354 (intraperitoneal injection), and human IL-13 was injected intratracheally on days 2 and 4. AHR to methacholine, airway eosinophilia in bronchoalveolar lavage fluid, histologic analysis of goblet cell metaplasia and oesophageal eosinophilia were evaluated. RESULTS: Human IL-13 induced airway eosinophilia and goblet cell metaplasia in mice in a dose-dependent manner. Moreover, intratracheal dosing with 25 microg of human IL-13 was sufficient to induce AHR, goblet cell metaplasia and oesophageal eosinophilia. Pretreatment with CAT-354 significantly reduced AHR, airway eosinophilia and oesophageal eosinophilia. CONCLUSION: These results demonstrate that anti-human IL-13 (CAT-354) is a potential therapeutic treatment for allergic airway and oesophageal diseases.  相似文献   

2.
BACKGROUND: T-helper type 2 (Th2)-derived cytokines such as IL-4, IL-5, IL-9 and IL-13 play an important role in the synthesis of IgE and in the promotion of allergic eosinophilic inflammation and airway wall remodelling. OBJECTIVE: We determined the importance of IL-13 alone, and of the four Th2 cytokines together, by studying mice in which either IL-13 alone or the Th2 cytokine cluster was genetically disrupted. METHODS: The knock-out mice and their BALB/c wild-type (wt) counterparts were sensitized and repeatedly exposed to ovalbumin (OVA) aerosol. RESULTS: Bronchial responsiveness measured as the concentration of acetylcholine aerosol needed to increase baseline lung resistance by 100% (PC100) was decreased in IL-13-/-, but increased in IL-4/5/9/13-/- mice. Chronic allergen exposure resulted in airway hyperresponsiveness (AHR) in wt mice but not in both genetically modified mice. After allergen exposure, eosinophil counts in bronchoalveolar lavage fluid and in airways mucosa, and goblet cell numbers were not increased in IL-4/5/9/13-/- mice, and were only attenuated in IL-13-/- mice. Airway smooth muscle (ASM) hyperplasia after allergen exposure was prevented in both IL-13-/- and IL-4/5/9/13-/- mice to an equal extent. Similarly, the rise in total or OVA-specific serum IgE levels was totally inhibited. CONCLUSION: IL-13 is mainly responsible for AHR, ASM hyperplasia and increases in IgE, while IL-4, -5 and -9 may contribute to goblet cell hyperplasia and eosinophilic inflammation induced by chronic allergen exposure in a murine model. Both redundancy or complementariness of Th2 cytokines can occur in vivo, according to specific aspects of the allergic response.  相似文献   

3.
Airway inflammation and airway hyperresponsiveness (AHR) are hallmarks of asthma. Cytokines produced by T helper type 2 (Th2) lymphocytes have been implicated in both processes. There is strong support for the idea that Th2 cytokines can produce AHR indirectly by promoting the recruitment of inflammatory cells. Less attention has been given to the possibility that Th2 cytokines might induce AHR by acting directly on resident airway cells. To investigate this, we polarized and activated CD4(+) T cells in vitro and analyzed airway function after administration of lymphocyte-conditioned media to the airways of naive mice. Th2-lymphocyte-conditioned medium induced AHR within 6 h. This finding was reproduced in mast-cell-deficient and in T- and B-lymphocyte-deficient mice. AHR did not occur when Th2-lymphocyte-conditioned medium was administered to mice lacking the IL-4 receptor alpha subunit or Stat6, suggesting a critical role for interleukin (IL)-4 and/or IL-13. This was confirmed by the finding that recombinant IL-4 and IL-13 both induced AHR within 6 h. The induction of AHR occurred in the absence of inflammatory cell recruitment or mucus production. These results strongly suggest that products of activated Th2 lymphocytes can rapidly perturb airway function through direct effects on resident airway cells.  相似文献   

4.
《Mucosal immunology》2020,13(2):283-292
Airway hyperresponsiveness (AHR) often defines asthma. Murine allergic airway disease (AAD), like human eosinophilic asthma, is characterized by AHR, eosinophilia, goblet cell metaplasia (GCM), smooth muscle hypercontractility, and increased production of IL-4 and IL-13—cytokines that induce these characteristics by binding to the IL-4Rα chain. We evaluated the epithelial and smooth muscle IL-4Rα-dependent contributions to AHR of BALB/c mice that possessed 0–2 functional IL-4Rα alleles and had airway disease induced by house dust mite extract (HDM) or exogenous IL-13. Two functional IL-4Rα alleles were required for maximal AHR, while only one functional allele was required for maximal GCM and systemic IL-4/IL-13 levels. Deletion of IL-4Rα from both smooth muscle and epithelial cells inhibited AHR >83% in mice with two functional IL-4Rα alleles. In mice with one functional IL-4Rα allele, selective epithelial cell IL-4Rα deletion maximally inhibited AHR, while selective smooth muscle IL-4Rα deletion decreased IL-13-induced, but not HDM-induced, AHR. Less IL-4Rα signaling is required to maximize the epithelial cell contribution to AHR compared to the smooth muscle contribution to AHR. In addition, epithelial cell responses to IL-4/IL-13 can increase the IL-4Rα-dependent smooth muscle contribution to AHR. These findings carry increasing relevance as IL-4Rα-targeted therapy is administered to human asthmatics.  相似文献   

5.
Increased production of interleukin (IL)-4 and IL-5 by T-helper cells may be pivotal for the induction and regulation of allergic diseases. We have studied the role of IL-4 and IL-5 in the development of eosinophilic airway inflammation (AI) and airway hyperresponsiveness (AHR) in a mouse model of allergen-induced bronchial asthma. Utilizing different modes of sensitization, we delineated the importance of IL-5-mediated eosinophilic airway infiltration for the development of in vitro and in vivo AHR and demonstrated the inhibition of airway inflammation and AHR by anti-IL-5 antibody treatment. Studies in IL-4- and IL-5 deficient mice revealed the importance of both cytokines for the induction of AI and AHR independently from the production of allergen-specific IgE, and indicated these cytokines as potential targets in novel approaches in the treatment of asthma.  相似文献   

6.
The Th2 cytokines IL-4 and IL-13 mediate allergic pulmonary inflammation and airways hyperreactivity (AHR) in asthma models through signaling dependent upon the IL-4 receptor-alpha chain (IL-4Ralpha). IL-13 has been further implicated in the overproduction of mucus by the airway epithelium and in lung remodeling that commonly accompanies chronic inflammation. IL-4Ralpha-deficient mice are resistant to allergen-induced asthma, highlighting the therapeutic promise of selective molecular inhibitors of IL-4Ralpha. We designed a chemically modified IL-4Ralpha antisense oligonucleotide (IL-4Ralpha ASO) that specifically inhibits IL-4Ralpha protein expression in lung eosinophils, macrophages, dendritic cells, and airway epithelium after inhalation in allergen-challenged mice. Inhalation of IL-4Ralpha ASO attenuated allergen-induced AHR, suppressed airway eosinophilia and neutrophilia, and inhibited production of airway Th2 cytokines and chemokines in previously allergen-primed and -challenged mice. Histologic analysis of lungs from these animals demonstrated reduced goblet cell metaplasia and mucus staining that correlated with inhibition of Muc5AC gene expression in lung tissue. Therapeutic administration of inhaled IL-4Ralpha ASO in chronically allergen-challenged mice produced a spectrum of anti-inflammatory activity similar to that of systemically administered Dexamethasone with the added benefit of reduced airway neutrophilia. These data support the potential utility of a dual IL-4 and IL-13 oligonucleotide inhibitor in allergy/asthma, and suggest that local inhibition of IL-4Ralpha in the lung is sufficient to suppress allergen-induced pulmonary inflammation and AHR.  相似文献   

7.
Natural killer T (NK T) cells have been shown to play an essential role in the development of allergen-induced airway hyperresponsiveness (AHR) and/or airway inflammation in mouse models of acute asthma. Recently, NK T cells have been reported to be required for the development of AHR in a virus induced chronic asthma model. We investigated whether NK T cells were required for the development of allergen-induced AHR, airway inflammation and airway remodelling in a mouse model of chronic asthma. CD1d−/− mice that lack NK T cells were used for the experiments. In the chronic model, AHR, eosinophilic inflammation, remodelling characteristics including mucus metaplasia, subepithelial fibrosis and increased mass of the airway smooth muscle, T helper type 2 (Th2) immune response and immunoglobulin (Ig)E production were equally increased in both CD1d−/− mice and wild-type mice. However, in the acute model, AHR, eosinophilic inflammation, Th2 immune response and IgE production were significantly decreased in the CD1d−/− mice compared to wild-type. CD1d-dependent NK T cells may not be required for the development of allergen-induced AHR, eosinophilic airway inflammation and airway remodelling in chronic asthma model, although they play a role in the development of AHR and eosinophilic inflammation in acute asthma model.  相似文献   

8.
Hoshino M  Fujita Y  Saji J  Inoue T  Nakagawa T  Miyazawa T 《Allergy》2005,60(11):1394-1400
BACKGROUND: Goblet cell metaplasia is a pathologic characteristic of asthma, associated with excess mucus secretion. Interleukin (IL)-4 and IL-13 plays an important role in mucus hypersecretion. Suplatast tosilate (suplatast), an antiallergic agent, is a Th2 cytokine inhibitor that suppresses the synthesis of IL-4, IL-5, IL-13, and eosinophilic airway inflammation. OBJECTIVE: We examined the effects of suplatast on mucus production in bronchial biopsy specimens taken from asthmatic subjects. METHODS: Oral suplatast 300 mg daily, or placebo was administered for 3 months in a double-blind, parallel-group study in 25 patients with asthma. Biopsy specimens were evaluated at before and after treatment for alcian blue/period acid-Schiff (AB/PAS), MUC5AC staining in bronchial epithelium and IL-4+, IL-13+ cells as well as inflammatory cells in lamina propria. RESULTS: There were significant decreases in the percentage of AB/PAS (P < 0.01) and MUC5AC (P < 0.01) stained area in the suplatast group. These changes were accompanied by significant decreases in IL-4+ and IL-13+ cells in suplatast-treated subjects. Additionally, we have observed that the number of infiltrating eosinophils and CD4+ T cells significantly decreased. CONCLUSIONS: These findings suggest that suplatast prevents goblet cell metaplasia through modulation of Th2 cytokine production and the recruitment of eosinophils and CD4+ T cells in the asthmatic airways.  相似文献   

9.
BACKGROUND: Airway smooth muscle infiltration by mast cells is a feature of asthma and not eosinophilic bronchitis. In asthma, Th2 cytokines have been implicated as playing a critical role in the development of airway inflammation and hyper-responsiveness. Whether inflammatory cells within the airway smooth muscle release these cytokines is unknown. METHODS: We have undertaken a comparative immunohistochemical study in bronchial biopsies from 14 subjects with asthma, 10 with eosinophilic bronchitis and eight normal controls recruited from two centres. RESULTS: The median number of IL-4+ cells/mm2 smooth muscle was significantly higher in subjects with asthma than eosinophilic bronchitis and normal controls for both the anti-IL-4 mAb 3H4 (2.4, 0, 0, respectively; P=0.001) and anti-IL-4 mAb 4D9 (1.6, 0, 0, respectively; P=0.02). There were no group differences in the number of IL-5+ cells (P=0.31). In six subjects with asthma, IL-13 expression by cells within the airway smooth muscle was studied. The median (range) of IL-13+cells was 2 (0.9-2.7). Ninety-four percent of the cells expressing IL-4 (3H4), 92% of those expressing IL-4 (4D9) and 100% expressing IL-13 in the airway smooth muscle were mast cells. Fifty-five percent of the mast cells within the airway smooth muscle co-localized to IL-4 (3H4), 29% to IL-4 (4D9) and 17% to IL-13. CONCLUSIONS: In asthma, IL-4+ and IL-13+ cells were present within the airway smooth muscle and were expressed predominantly by mast cells, suggesting that IL-4 and IL-13 may play an important role in mast cell-airway smooth muscle interactions.  相似文献   

10.
BACKGROUND: In naive rodents, repeated exposure to aerosolized antigen induces suppression of the Th2 response to the antigen. We hypothesized that more prolonged exposure of established asthma model to antigen aerosols may downregulate asthmatic phenotype. METHODS: After establishing an ovalbumin (OVA)-induced asthma model, mice were further exposed to OVA (prolonged exposure group) or phosphate-buffered saline (positive controls) 3 days per week for 6 weeks. During week 7, the mice of both groups were finally challenged with OVA. RESULTS: Prolonged OVA exposure resulted in marked suppression of serum OVA-specific immunoglobulin E (IgE) antibody levels, eosinophilia of the airway, and airway hyperresponsiveness (AHR). However, airway remodeling characterized by goblet cell hyperplasia and airway fibrosis was observed to the same degree in both groups. These effects were accompanied by diminished production of Th2 cytokines such as interleukin-4 (IL-4), IL-5 and IL-13 in bronchoalveolar lavage fluid (BALF) and cultured supernatant of splenocytes. Furthermore, prolonged exposure markedly increased IL-12 levels in BALF. CONCLUSIONS: Prolonged antigen exposure has inhibitory effects on eosinophilic inflammation, AHR and IgE response to antigen, but not on airway remodeling, presumably via inhibition of Th2 cytokines and increased IL-12 production in the lungs.  相似文献   

11.
Summary: Bronchial asthma is a chronic inflammatory airway disease defined by reversible airway obstruction and non-specific airway hyper-responsiveness (AHR). Although profound insights have been made into the pathophysiology of asthma, the exact mechanisms inducing and regulating the disease are still not fully understood. Yet, it is generally accepted that the pathological changes in asthma are induced by a chronic inflammatory process which is characterized by infiltration of the bronchial mucosa with lymphocytes and eosinophils, increased mucus production and submucosal edema. There is increasing evidence that an imbalance in the T-helper (Th) cell response of genetically predisposed individuals to common environmental antigens plays a pivotal role in the pathogenesis of allergic bronchial asthma and other atopic disorders. Following allergic sensitization, T cells from atopic patients tend to produce elevated levels of Th2-type cytokines, especially interleukin (IL)-4, IL-13, IL-5 and IL-6, which induce and regulate IgE production and eosinophil airway infiltration. In this review, the role of Th2-type cytokines, IgE and airway eosinophils in the induction of airway inflammation and AHR is discussed, and animal studies of asthma and AHR, mainly in rodents will be considered. A better understanding of the underlying mechanisms leading to asthma pathology may yield more specific immunological strategies for the treatment of this disease which is increasing worldwide.
I thank the many colleagues in the laboratory of Dr. E. W. Gelfand, National Jewish Research Center, Denver CO, USA, for continuous support and encouragement. E.H. is a fellow of the Deutsche Forschungsgemeinschaft (DFG Ha 2162/1-1 and 2-1).  相似文献   

12.

Purpose

Cockroach (CR) is an important inhalant allergen and can induce allergic asthma. However, the mechanism by which CR induces airway allergic inflammation and the role of endotoxin in CR extract are not clearly understood in regards to the development of airway inflammation. In this study, we evaluated whether endotoxin is essential to the development of CR induced airway allergic inflammation in mice.

Materials and Methods

Airway allergic inflammation was induced by intranasal administration of either CR extract, CR with additional endotoxin, or endotoxin depleted CR extract, respectively, in BALB/c wild type mice. CR induced inflammation was also evaluated with toll like receptor-4 (TLR-4) mutant (C3H/HeJ) and wild type (C3H/HeN) mice.

Results

Intranasal administration of CR extracts significantly induced airway hyperresponsiveness (AHR), eosinophilic and neutrophilic airway inflammation, as well as goblet cell hyperplasia in a dose-dependent manner. The addition of endotoxin along with CR allergen attenuated eosinophilic inflammation, interleukin (IL)-13 level, and goblet cell hyperplasia of respiratory epithelium; however, it did not affect the development of AHR. Endotoxin depletion in CR extract did not attenuate eosinophilic inflammation and lymphocytosis in BAL fluid, AHR and IL-13 expression in the lungs compared to CR alone. The attenuation of AHR, eosinophilic inflammation, and goblet cell hyperplasia induced by CR extract alone was not different between TLR-4 mutant and the wild type mice. In addition, heat inactivated CR extract administration induced attenuated AHR and eosinophilic inflammation.

Conclusion

Endotoxin in CR extracts may not be essential to the development of airway inflammation.  相似文献   

13.
Eosinophilic inflammation of the airways is believed to play a central role in the pathogenesis of bronchial asthma. Inoculation of mice with the nematode Nippostrongylus brasiliensis induces pulmonary inflammation, characterized by a marked infiltration of eosinophils, subsequent to the migration of parasites through the lungs. Infection is associated with polarized Th2 responses in different strains of mice tested. Thus, this model may be useful to determine the relationship between established pulmonary eosinophilic inflammation, Th2 immune responses and airway changes in a nonallergic background. In the present study, we have used IL-5-deficient mice to evaluate the role of IL-5 in eosinophilic lung inflammation and airway hyperresponsiveness (AHR). In wild-type C57BL/6 mice, infection with N. brasiliensis resulted in eosinophil accumulation, associated with extensive lung damage characterized by hemorrhage and alveolar wall destruction, and a strong AHR following methacholine treatment. In IL-5-deficient mice, eosinophil infiltration and the associated lung damage was abrogated. Nonetheless, AHR was unimpaired. Our results suggest that eosinophil accumulation plays a central role in lung damage but is not responsible for the induction of airway constriction following N. brasiliensis infection.  相似文献   

14.
15.
T cells expressing a type-2 T helper profile of cytokines (Th2 cells) have been demonstrated to play an important role in the initiation and progression of allergic asthma, and it is well known that Fas ligand (FasL) induces apoptosis when bound to its receptor, Fas. In the present study, we examined the possibility of modulating asthma manifestations by dendritic cells (DCs) genetically engineered to express FasL (DC-FasL), which could deliver a death signal to T cells in an antigen-specific manner. The delivery of DC-FasL into ovalbumin (OVA)-immunized allergic mice decreased the airway hyper-responsiveness (AHR). Moreover, we established a mouse model of airway inflammation by using an adoptive transfer of Th2 cells derived from ovalbumin T cell receptor transgenic mice to study the effect of DC-FasL on airway reactivity. The administration of DC-FasL in Th2-cell-induced allergic mice had significantly decreased AHR, airway inflammation, and IL-4, IL-5 and IL-13 production. Furthermore, the numbers of OVA-specific T cells were decreased in the lung of mice receiving DC-FasL. These results demonstrate that FasL-expressing dendritic cells might be applied for the modulation of allergic responses.  相似文献   

16.
BACKGROUND: The effect of ageing on several pathologic features of allergic asthma (pulmonary inflammation, eosinophilia, mucus hypersecretion), and their relationship with airway hyperresponsiveness (AHR) is not well characterized. OBJECTIVE: To evaluate lung inflammation, mucus metaplasia and AHR in relationship with age in murine models of allergic asthma comparing young and older mice. METHODS: Young (6 weeks) and older (6, 12, 18 months) BALB/c mice were sensitized and challenged with ovalbumin (OVA). AHR and bronchoalveolar fluid (BALF), total inflammatory cell count and differential were measured. To evaluate mucus metaplasia, quantitative PCR for the major airway mucin-associated gene, MUC-5AC, from lung tissue was measured, and lung tissue sections stained with periodic acid-Schiff (PAS) for goblet-cell enumeration. Lung tissue cytokine gene expression was determined by quantitative PCR, and systemic cytokine protein levels by ELISA from spleen-cell cultures. Antigen-specific serum IgE was determined by ELISA. RESULTS: AHR developed in both aged and young OVA-sensitized/challenged mice (OVA mice), and was more significantly increased in young OVA mice than in aged OVA mice. However, BALF eosinophil numbers were significantly higher, and lung histology showed greater inflammation in aged OVA mice than in young OVA mice. MUC-5AC expression and numbers of PAS+ staining bronchial epithelial cells were significantly increased in the aged OVA mice. All aged OVA mice had increased IL-5 and IFN-gamma mRNA expression in the lung and IL-5 and IFN-gamma protein levels from spleen cell cultures compared with young OVA mice. OVA-IgE was elevated to a greater extent in aged OVA mice. CONCLUSIONS: Although pulmonary inflammation and mucus metaplasia after antigen sensitization/challenge occurred to a greater degree in older mice, the increase in AHR was significantly less compared with younger OVA mice. Antigen treatment produced a unique cytokine profile in older mice (elevated IFN-gamma and IL-5) compared with young mice (elevated IL-4 and IL-13). Thus, the airway response to inflammation is lessened in ageing animals, and may represent age-associated events leading to different phenotypes in response to antigen provocation.  相似文献   

17.
The role of CD8(+) T cells in the development of allergic airway disease is controversial. On the one hand, CD8(+) T cells are known to inhibit the development of airway hyperreactivity (AHR) in murine models of asthma. In humans, IL-10-producing CD8(+) T cells were shown to act as regulatory cells, inhibiting both proliferation and cytokine secretion of T cells. On the other hand, CD8(+) T cells can promote IL-5-mediated eosinophilic airway inflammation and the development of AHR in animal models. To examine this, we investigated the role of CD8(+) T cells during the induction of allergen-induced AHR and demonstrated a protective effect of CD8(+) T cells. Depletion of CD8(+) T cells prior to the immunization led to increased Th2 responses and increased allergic airway disease. However, after development of AHR, CD8(+) T cells that infiltrated the lungs secreted high levels of IL-4, IL-5 and IL-10, but little IFN-gamma, whereas CD8(+) T cells in the peribronchial lymph nodes or spleen produced high levels of IFN-gamma, but little or no Th2 cytokines. These data demonstrate protective effects of CD8(+)T cells against the induction of immune responses and show a functional diversity of CD8(+) T cells in different compartments of sensitized mice.  相似文献   

18.
Glutathione is the major intracellular redox buffer. We have shown that glutathione redox status, which is the balance between intracellular reduced (GSH) and oxidized (GSSG) glutathione, in antigen-presenting cells (APC) regulates the helper T cell type 1 (Th1)/Th2 balance due to the production of IL-12. Bronchial asthma is a typical Th2 disease. Th2 cells and Th2 cytokines are characteristic of asthma and trigger off an inflammation. Accordingly, we studied the effects of the intracellular glutathione redox status on airway hyperresponsiveness (AHR) and allergen-induced airway inflammation in a mouse model of asthma. We used gamma-Glutamylcysteinylethyl ester (gamma-GCE), which is a membrane-permeating GSH precursor, to elevate the intracellular GSH level and GSH/GSSG ratio of mice. In vitro, gamma-GCE pretreatment of human monocytic THP-1 cells elevated the GSH/GSSG ratio and enhanced IL-12(p70) production induced by LPS. In the mouse asthma model, intraperitoneal injection of gamma-GCE elevated the GSH/GSSG ratio of lung tissue and reduced AHR. gamma-GCE reduced levels of IL-4, IL-5, IL-10, and the chemokines eotaxin and RANTES (regulated on activation, normal T cell expressed and secreted) in bronchoalveolar lavage fluid, whereas it enhanced the production of IL-12 and IFN-gamma. Histologically, gamma-GCE suppressed eosinophils infiltration. Interestingly, we also found that gamma-GCE directly inhibited chemokine-induced eosinophil chemotaxis without affecting eotaxin receptor chemokine receptor 3 (CCR3) expressions. Taken together, these findings suggest that changing glutathione redox balance, increase in GSH level, and the GSH/GSSG ratio by gamma-GCE, ameliorate bronchial asthma by altering the Th1/Th2 imbalance through IL-12 production from APC and suppressing chemokine production and eosinophil migration itself.  相似文献   

19.
Schnurri (Shn)-2 is a large zinc finger-containing protein, which plays a critical role in cell growth, signal transduction and lymphocyte development. In Shn-2-deficient (Shn-2(-/-)) CD4 T cells, the activation of nuclear factor-kappaB is up-regulated and their ability to differentiate into Th2 is enhanced. Here, we extend our investigation and demonstrate that Shn-2 regulates Th2 responses in vivo using an ovalbumin-induced allergic asthma model. Eosinophilic inflammation, mucus hyperproduction and airway hyperresponsiveness (AHR) were all enhanced in Shn-2(-/-) mice. Moreover, eosinophilic infiltration and AHR were enhanced in mice given a transfer of Shn-2(-/-) effector Th2. Shn-2 in Th2 is thus considered to play an important role as a negative regulator in allergic airway inflammation.  相似文献   

20.
In experimental models of bronchial asthma with mice, airway inflammation and increase in airway hyperreactivity (AHR) are induced by a combination of systemic sensitization and airway challenge with allergens. In this report, we present another possibility: that systemic antigen-specific sensitization alone can induce AHR before the development of inflammation in the airway. Male BALB/c mice were sensitized with ovalbumin (OVA) by a combination of intraperitoneal injection and aerosol inhalation, and various parameters for airway inflammation and hyperreactivity were sequentially analyzed. Bronchial response measured by a noninvasive method (enhanced pause) and the eosinophil count and interleukin (IL)-5 concentration in bronchoalveolar lavage fluid (BALF) gradually increased following the sensitization, and significant increase was achieved after repeated OVA aerosol inhalation along with development of histologic changes of the airway. In contrast, AHR was already significantly increased by systemic sensitization alone, although airway inflammation hardly developed at that time point. BALF IL-4 concentration and the expression of IL-4 mRNA in the lung reached maximal values after the systemic sensitization, then subsequently decreased. Treatment of mice with anti-IL-4 neutralizing antibody during systemic sensitization significantly suppressed this early increase in AHR. In addition, IL-4 gene-targeted mice did not reveal this early increase in AHR by systemic sensitization. These results suggest that an immune response in the lung in an early stage of sensitization can induce airway hyperreactivity before development of an eosinophilic airway inflammation in BALB/c mice and that IL-4 plays an essential role in this process. If this early increase in AHR does occur in sensitized human infants, it could be another therapeutic target for early prevention of the future onset of asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号