首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
We previously reported that incubation of cultured astrocytes in Ca2 + -containing medium after exposure to Ca2 + -free medium caused Ca2 + influx followed by delayed cell death. Here, we studied the mechanisms underlying the Ca2 + -mediated injury of cultured astrocytes. Our results show that Ca2 + reperfusion injury of astrocytes appears to be mediated by apoptosis, as demonstrated by DNA fragmentation and prevention of death by caspase-3 inhibitors. Paradoxical Ca2 + challenge stimulated rapidly reactive oxygen species (ROS) production. Ca2 + reperfusion injury of astrocytes was influenced by several reagents which modified ROS production. When astrocytes were exposed to hydrogen peroxide (H2O2) for 30 min and then incubated without H2O2 for 1-5 days, cell toxicity including apoptosis was observed. Ca2 + reperfusion injury induced by Ca2 + depletion or H2O2 exposure was blocked by the iron chelator 1, 10-phenanthroline, the NF-kappaB inhibitor pyrrolidinedithiocarbamate and the calcineurin inhibitor FK506. Incubation in normal medium after H2O2 exposure rapidly increased the level of nuclear NF-kappaB p65 subunit, and the effect was blocked by 1,10-phenanthroline, pyrrolidinedithiocarbamate and FK506. These findings indicate that Ca2 + reperfusion-induced apoptosis is mediated at least partly by ROS production and ROS cause NF-kappaB activation in cultured astrocytes.  相似文献   

2.
The levels of the antioxidants, glutathione and ascorbate were measured in primary cultures of murine astrocytes and neurons. The concentration of glutathione (reduced, GSH + oxidized, GSSG) was high in cultured, differentiated (i.e. treated with dBcAMP) and undifferentiated (i.e. untreated) astrocytes: approximately 25 (n = 2) and 16.0 +/- 5.0 (n = 7) nmol/mg protein, respectively. In contrast, glutathione levels in neurons were low: less than or equal to 1.0 (n = 7) nmol/mg protein. Ascorbate could not be detected (less than 2 nmol/mg protein) in either cell type. The apparent lack of defense mechanisms against oxidative stress may in part account for the 'fragility' of neurons in culture. The physiological implications of glutathione compartmentation in brain are discussed.  相似文献   

3.
Neuronal damage associated with in vivo hypoglycemia has been suggested to be excitotoxic due to the release of excitatory amino acids and the protective effect of glutamate receptor antagonists. The production of reactive oxygen species (ROS) has been also implicated in hypoglycemic damage. Excitotoxicity involves oxidative stress, insofar as the influx of calcium through N-methyl-D-aspartate (NMDA) receptors stimulates ROS production. We have studied the participation of NMDA receptors and intracellular calcium in ROS production and cell death triggered during moderate and severe glycolysis inhibition in cultured hippocampal neurons. Iodoacetate (IOA), an inhibitor of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), dose dependently reduces ATP levels and cell survival and increases the intracellular concentration of calcium. During mild glycolysis inhibition, the increases in intracellular calcium, ROS production, and cell death are dependent on NMDA receptor activation. In contrast, during severe glycolysis impairment, these processes are not inhibited by NMDA receptor blockade. BAPTA-AM and vitamin E efficiently reduce ROS generation and cell death under both conditions. Results suggest that calcium influx through NMDA receptors is involved in ROS production and neuronal damage resulting from moderate energy depletion, whereas intracellular calcium increase and ROS generation during severe glycolysis inhibition are more related to energy depletion.  相似文献   

4.
The excitatory neurotransmitter glutamate has been shown to mediate such bidirectional communication between neurons and astrocytes. In the present study, we determined the role of N-methyl-D-aspartate (NMDA) receptors on glutamate-evoked Ca(2+) influx into neurons and astrocytes. Either a nonselective NMDA receptor antagonist (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) or selective NR2B subunit-containing NMDA receptor antagonists ifenprodil and (R,S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperid inepropanol (Ro25-6981) significantly inhibited the glutamate-evoked Ca(2+) influx into neurons, but not into astrocytes. Furthermore, we investigated whether NR2B subunit-containing NMDA receptor antagonists could suppress the astrocytic activation, as detected by glial fibrillary acidic protein (GFAP; as a specific marker of astrocyte)-like immunoreactivities in mouse cortical astrocytes. Here, we demonstrated that the increases in the level of GFAP-like immunoreactivities induced by glutamate were markedly suppressed by cotreatment with ifenprodil in cortical neuron/glia cocultures, but not in purified astrocytes. These results suggest that NR2B subunit-containing NMDA receptor plays a critical role in not only glutamate-evoked Ca(2+) influx into neurons, but also glutamate-induced astrocytic activation. Thus, glutamate-mediated pathway via NR2B subunit-containing NMDA receptor may, at least in part, contribute to neuron-to-astrocyte signaling.  相似文献   

5.
The current study sought to investigate the potential protective action of curcumin against interleukin-6-induced injury in rat hippocampal neurons.The results revealed that interleukin-6 induced typical cellular injury,such as the swelling of cell bodies and increased Ca2+ concentration.After administration of curcumin,interleukin-6-induced neurons recovered to a normal state,and the fluorescence intensity of Ca2+ gradually returned to normal.These findings suggest that curcumin exerts a protective effect on hippocampal neurons of rats.In addition,our results suggest that the protective effect of curcumin involves prevention of the rapid Ca2+ influx induced by interleukin-6,which maintains Ca2+ homeostasis.  相似文献   

6.
The specific objectives of this study were the following: (1) to characterize the types of calcium currents in cultured PCs using whole-cell voltage-clamp techniques; (2) using fura-2 imaging techniques, to monitor intracellular Ca2+ levels during application of high potassium, glutamate, or glutamate analogs; and (3) to evaluate the types of calcium channels contributing to the calcium fluxes using pharmacological blocking agents. Voltage-clamp analysis of calcium currents proved to be difficult due to space-clamping problems. The latter was presumably due to the unfavorable geometry of cultured PCs. Nevertheless, we found no evidence for inward currents in cells bathed in TTX-TEA-BaCl2 saline. On the other hand, fura-2 measurements demonstrated that free Ca2+ levels were elevated in PCs following local application of either high-potassium saline or glutamate. When individual cells were injected with fura-2 and analyzed in TTX-containing saline, the Ca2+ elevation was usually greater in the dendrites. Since Ca2+ levels were not elevated in all dendrites of the same cell, the smaller responses in the soma wre not simply due to volumetric differences. Together with the voltage-clamp results, the fura-2 data indicate that calcium channels were localized to certain dendrites. Using selective calcium channel blockers, we found evidence for 2 types of calcium conductances in the dendrites of cultured PCs. The Ca conductance induced by high potassium was reduced in a dose-dependent manner by nifedipine (ED50 = 5 X 10(-7) M), indicating that a high-threshold voltage-dependent calcium channel was present. The Ca response to glutamate (or NMDA) was reduced by 2-amino-5-phosphonovaleric acid (ED50 = 10(-4) M), as well as by nifedipine or 10(-4) M LaCl3, indicating that both voltage-dependent and glutamate-coupled channels were opened by glutamate application.  相似文献   

7.
The maintenance of adequate intracellular glutathione (GSH) concentrations is dependent on the availability and transport of the rate-limiting substrate, cysteine. A suggested mechanism of methylmercury (MeHg) neurotoxicity in brain involves the formation of oxygen radicals, and a decrease in intracellular levels of GSH. Recently, we have characterized various cysteine transport systems (both Na(+)-dependent and -independent) in cerebrocortical astrocytes and hippocampal neurons. The present study was carried out to investigate the effect of MeHg on cysteine uptake in both astrocytes and neurons, and to determine whether cysteine transport is differentially affected in the two cell types by MeHg treatment. Sixty-minute pretreatment with MeHg caused significant concentration-dependent inhibition in cysteine uptake in astrocytes, but not in neurons. As most of the cysteine transport is Na(+)-dependent (80-90% of total), additional studies focused on MeHg's effect on the Na(+)-dependent cysteine transporters X(AG(-)) and ASC. An additive inhibitory effect on cysteine uptake was observed in astrocytes treated with MeHg (5 microM) plus sub-maximal inhibitory concentrations (0.1 and 0.5 mM) of threo-beta-hydroxy-aspartate (THA), a specific inhibitor of the Na(+)-dependent transporter, X(AG(-)), compared to astrocytes treated with MeHg (P<0.001) or THA alone (P<0.05). There was no additive effect of MeHg and maximal inhibitory concentrations of THA (1.0 and 5.0 mM) on astrocytic cysteine uptake inhibition. Additional studies examined the sensitivity of the Na(+)-dependent ASC transport system to MeHg treatment. Maximal inhibitory concentration of L-serine (10 mM) alone had a rather modest inhibitory effect on cysteine uptake, and when applied in the presence of MeHg there was no additive effect. These results suggest that the inhibition of cysteine uptake by MeHg in astrocytes occurs through specific inhibition of both the X(AG(-)) as well as the ASC transport system.  相似文献   

8.
Summary Ca2+-ATPase activity on the astrocyte plasma membrane was investigated ultracytochemically, using the lead salt technique. Normal astrocytes showed a weak cytochemical reaction for Ca2+-ATPase activity, deposits of the reaction product being small. At 7 and 15 days after cold lesioning, reactive astrocytes apparently in the process of repair of the edematous lesion were observed; these demonstrated an intense cytochemical reaction for Ca2+-ATPase activity in their plasma membranes facing the extracellular fluid, with reaction product accumulation. At 2 months, the lesion had progressed to glial scars containing sporadic microcysts. The reactive astrocytes surrounding the microcysts demonstrated a moderate cytochemical reaction for Ca2+-ATPase activity in their free plasma membranes, whereas those arranged in a cell-to-cell pattern showed little reaction product in their plasma membranes. In conclusion, a more intense cytochemical reaction was always observed in the free plasma membrane of reactive astrocytes.  相似文献   

9.
Melittin, a potent activator of phospholipase A2, enhanced both spontaneous and depolarization-induced release of D-[3H]aspartate in primary cultures of cerebellar granule cells. The action of melittin was concentration-dependent (EC50 value = 300 ng/ml) and did not require the presence of extracellular Ca2+. Melittin also stimulated the release of glutamate and aspartate, in addition to other endogenous amino acids (taurine, alanine and gamma-aminobutyric acid). These effects were accompanied by an enhanced influx of 45Ca2+, which was in part mediated by the activation of excitatory amino acid receptors by endogenous agonists. Low concentrations of melittin (50 ng/ml) potentiated the efficacy of AMPA in stimulating 45Ca2+ influx without affecting stimulation by kainate or by glutamate added in the absence of extracellular Mg2+ (a condition that favors the activation of NMDA receptors). These results indicate that activation of phospholipase A2 evokes both an enhanced glutamate release and an increased sensitivity of AMPA receptors, two events that may support synaptic facilitation and LTP formation.  相似文献   

10.
Smith IF  Boyle JP  Kang P  Rome S  Pearson HA  Peers C 《Glia》2005,49(1):153-157
Acute hypoxia modulates various cell processes, such as cell excitability, through the regulation of ion channel activity. Given the central role of Ca2+ signaling in the physiological functioning of astrocytes, we have investigated how acute hypoxia regulates such signaling, and compared results with those evoked by bradykinin (BK), an agonist whose ability to liberate Ca2+ from intracellular stores is well documented. In Ca2+-free perfusate, BK evoked rises of [Ca2+]i in all cells examined. Hypoxia produced smaller rises of [Ca2+]i in most cells, but always suppressed subsequent rises of [Ca2+]i induced by BK. Thapsigargin pre-treatment of cells prevented any rise of [Ca2+]i evoked by either BK or hypoxia. Restoration of Ca2+ to the perfusate following a period of acute hypoxia always evoked capacitative Ca2+ entry. During mitochondrial inhibition (due to exposure to carbonyl cyanide p-trifluromethoxyphenyl hydrazone (FCCP) and oligomycin), rises in [Ca2+]i (observed in Ca2+-free perfusate) evoked by hypoxia or by BK, were significantly enhanced, and hypoxia always evoked responses. Our data indicate that hypoxia triggers Ca2+ release from endoplasmic reticulum stores, efficiently buffered by mitochondria. Such liberation of Ca2+ is sufficient to trigger capacitative Ca2+ entry. These findings indicate that the local O2 level is a key determinant of astrocyte Ca2+ signaling, likely modulating Ca2+-dependent astrocyte functions in the central nervous system.  相似文献   

11.
Expression of voltage-gated Ca2+ channel subtypes in cultured astrocytes   总被引:1,自引:0,他引:1  
Latour I  Hamid J  Beedle AM  Zamponi GW  Macvicar BA 《Glia》2003,41(4):347-353
  相似文献   

12.
Galanin activates three receptors, the galanin receptor 1 (GalR1), GalR2, and GalR3. In the gastrointestinal tract, GalR1 mediates the galanin inhibition of cholinergic transmission to the longitudinal muscle and reduction of peristalsis efficiency in the small intestine. Galanin has also been shown to inhibit depolarization‐evoked Ca2+ increases in cultured myenteric neurons. Because GalR1 immunoreactivity is localized to cholinergic myenteric neurons, we hypothesized that this inhibitory action of galanin on myenteric neurons is mediated by GalR1. We investigated the effect of galanin 1‐16, which has high affinity for GalR1 and GalR2, in the presence or absence of the selective GalR1 antagonist, RWJ‐57408, and of galanin 2‐11, which has high affinity for GalR2 and GalR3, on Ca2+ influx through voltage‐dependent Ca2+ channels in cultured myenteric neurons. Myenteric neurons were loaded with fluo‐4 and depolarized by high K+ concentration to activate voltage‐dependent Ca2+ channels. Intracellular Ca2+ levels were quantified with confocal microscopy. Galanin 1‐16 (0.01–1 μM) inhibited the depolarization‐evoked Ca2+ increase in a dose‐dependent manner with an EC50 of 0.172 μM. The selective GalR1 antagonist, RWJ‐57408 (10 μM), blocked the galanin 1‐16 (1 μM)‐mediated inhibition of voltage‐dependent Ca2+ channel. By contrast, the GalR2/GalR3 agonist, galanin 2‐11 did not affect the K+‐evoked Ca2+ influx in myenteric neurons. GalR1 immunoreactivity was localized solely to myenteric neurons in culture, as previously observed in intact tissue. These findings indicate that the inhibition of depolarization‐evoked Ca2+ influx in myenteric neurons in culture is mediated by GalR1 and confirm the presence of functional GalR1 in the myenteric plexus. This is consonant with the hypothesis that GalR1 mediates galanin inhibition of transmitter release from myenteric neurons. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
With mixed cultures of hippocampal astrocytes and neurons, we investigated the influence of nucleotides on cytosolic Ca(2+) level, generation of reactive oxygen species (ROS), and mitochondrial potential. We employed ATP and four purine/pyrimidine derivates, which are P2Y receptor subtype-preferring agonists. Stimulation with ATP, a P2Y(1/2/4) receptor agonist in rat, caused a large cytosolic Ca(2+) increase in astrocytes and a considerably smaller Ca(2+) response in neighboring neurons. The P2Y(1) receptor antagonist MRS2179 completely blocked the ATP-induced Ca(2+) response in astrocytes and neurons. Application of ATP significantly reduced the mitochondrial potential in neurons, which was not inhibited by MRS2179. Interestingly, MRS2179 mediated a mitochondrial depolarization without affecting the cytosolic Ca(2+) level. Stimulation with UDP, a P2Y(6) receptor agonist; UTP, a P2Y(2/4) receptor agonist; 2MeSATP, a P2Y(1) receptor agonist; or 2MeSADP, a P2Y(1/12/13) receptor agonist, evoked significant Ca(2+) responses in astrocytes but small Ca(2+) responses in neurons. In astrocytes, there was an inverse relationship between the amplitude of the cytosolic Ca(2+) peak and the rate of ROS generation in response to nucleotide application. Activation with UDP resulted in the highest ROS generation that we detected, whereas 2MeSADP and 2MeSATP reduced the ROS generation below the basal level. 2MeSADP and UDP caused mitochondrial depolarization of comparable size. Thus, neither in astrocytes nor in neurons did the degree of mitochondrial depolarization correlate with ROS generation. Nucleotides acting via P2Y receptors can modulate ROS generation of hippocampal neurons without acutely changing the cytosolic Ca(2+) level. Thus, ROS might function as a signaling molecule upon nucleotide-induced P2Y receptor activation in brain.  相似文献   

14.
Developing spines are highly dynamic processes that undergo rapid morphologic changes. We have investigated whether basal developmentally regulated spine motility is triggered by spontaneous changes in intracellular Ca(2+) ([Ca(2+)](i)). To address the link between Ca(2+) transients and motility, we have used the cell-permeable chelator BAPTA-AM. Consistent with others, we found that young cultured hippocampal neurons [7-13 days in vitro (DIV)] display significantly more spine motility than older neurons (14-21 days in vitro). Control experiments indicate that BAPTA-AM can lower basal [Ca(2+)](i) as well as block synaptically mediated Ca(2+) transients. However, globally buffering [Ca(2+)](i) by BAPTA-AM treatment failed to significantly alter the basal motility of developing spines measured at either relatively slow (5 min) or faster sampling times (every 20 s). We conclude that the basal spine motility of cultured hippocampal neurons may represent an intrinsic feature of developing neurons and is not necessarily choreographed by ongoing changes in [Ca(2+)](i) levels.  相似文献   

15.
Hypoxic/ischemic (HI) brain injury in newborn full-term and premature infants is a common and pervasive source of life time disabilities in cognitive and locomotor function. In the adult, HI induces glutamate release and excitotoxic cell death dependent on NMDA receptor activation. In animal models of the premature human infant, glutamate is also released following HI, but neurons are largely insensitive to NMDA or AMPA/kainic acid (KA) receptor-mediated damage. Using primary cultured hippocampal neurons we have determined that glutamate increases intracellular calcium much more than kainic acid. Moreover, glutamate induces cell death by activating Type I metabotropic glutamate receptors (mGluRs). Pretreatment of neurons with the gonadal steroid estradiol reduces the level of the Type I metabotropic glutamate receptors and completely prevents cell death, suggesting a novel therapeutic approach to excitotoxic brain damage in the neonate.  相似文献   

16.
Changes in intracellular Ca2+ concentration ([Ca2+]i) induced by [Arg8]-vasopressin (AVP) were studied in cultured rat hippocampal neurons by fura-2 fluorometry. AVP (10-1,000 nM) caused a dose-dependent increase in [Ca2+]i. The selective V1 vasopressin receptor agonist [Phe2, Ile3, Orn8]-vasopressin also induced a significant increase in [Ca2+]i, whereas the selective V2 vasopressin receptor agonist [deamino Cys1, D-Arg8]-vasopressin showed no effect. The AVP-induced increase in [Ca2+]i was inhibited by the selective V1 vasopressin receptor antagonist d(CH2)5[Tyr2(Me), Arg8]-vasopressin and nonpeptide V1 antagonist OPC-21268. On the other hand, no antagonistic effects were observed with the V2 vasopressin antagonist desglycinamide-[d(CH2)5, D-Ile2, Ile4, Arg8]-vasopressin and nonpeptide V2 antagonist OPC-31260. The increase in [Ca2+]i induced by AVP was abolished after removal of extracellular Ca2+. In addition, AVP-induced [Ca2+]i elevation was not affected by treatment with verapamil, which blocked the [Ca2+]i increase induced by an isotonic high K(+)-medium (50 mM). However, omega-conotoxin GVIA completely inhibited the effect of AVP. These results suggested that the AVP-induced [Ca2+]i increase in cultured rat hippocampal neurons is due to influx of Ca2+ through V1 VP receptors coupled with N-type calcium channels.  相似文献   

17.
18.
Cerebral palsy is a common birth disorder that frequently involves ischemic-type injury to developing white matter (WM). Dead glial cells are a common feature of this injury and here we describe a novel form of acute ischemic cell death in developing WM astrocytes. Ischemia, modeled by the withdrawal of oxygen and glucose, evoked [Ca2+]i increases and cell death in astrocytes in post-natal day 10 (P10) rat optic nerve (RON). Removing extracellular Ca2+ prevented increases in [Ca2+]i but increased the amount of cell death. Astrocytes showed rapid [Na+]i increases during ischemia and cell death was reduced to control levels by substitution of extracellular Na+ or Cl- or by perfusion with bumetanide, a selective Na-K-Cl cotransport (NKCC) blocker. Astrocytes showed marked swelling during ischemia in the absence of extracellular Ca2+, which was blocked by bumetanide. Raising the extracellular osmolarity to limit water uptake reduced ischemic astrocyte death to control levels. Ultrastructural examination showed that post-ischemic astrocytes had lost their processes and frequently were necrotic, effects partially prevented by bumetanide. At this point in development, therefore, NKCC activation in astrocytes during ischemia produces an osmo-regulatory challenge. Astrocytes can subsequently regulate their cell volume in a Ca2+-dependent fashion but this will require ATP hydrolysis and does not protect the cells against acute cell death.  相似文献   

19.
The expression and functionality of P2X/P2Y receptor subtypes in multipolar nonpyramidal neurons of mixed cortical cell cultures were investigated by means of immunocytochemistry and fura‐2 microfluorimetry. The morphological studies revealed that most of the neurons are immunoreactive for GABA and express a range of P2X/P2Y receptors, predominantly of the P2X2,4,6 and P2Y1,2 subtypes. P2X1 and P2X7 receptor immunoreactivity (IR) was found on thin axon‐like processes and presynaptic structures, respectively. Application of ATP caused a small concentration‐dependent increase in intracellular Ca2+ concentration ([Ca2+]i) in most investigated neurons, whereas only about the half of these cells responded to 2′,3′‐O‐(benzoyl‐4‐benzoyl)‐ATP (BzATP), ADPβS, 2MeSADP, or 2MeSATP and even fewer cells to UTP. In contrast, α,β‐meATP, UDP, and UDP‐glucose failed to produce any [Ca2+]i signaling. The response to ATP itself was inhibited by pyridoxal‐5′‐phosphate‐6‐azophenyl‐2′,4′‐disulfonic acid (PPADS), Reactive Blue 2, 2′‐deoxy‐N6‐methyl adenosine 3′,5′‐diphosphate (MRS2179), and suramin (300 μM) as well as by a cyclopiazonic acid‐induced depletion of intracellular Ca2+ stores. A Ca2+‐free external medium tended to decrease the ATP‐induced [Ca2+]i transients, although this action did not reach statistical significance. Various blockers of voltage‐sensitive Ca2+ channels and the gap junction inhibitor carbenoxolone did not interfere with the effect of ATP, whereas a combination of the ionotropic glutamate receptor antagonists D(–)‐2‐amino‐5‐phosphonopentanoic acid (AP5) and 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX) decreased it. Cross‐desensitization experiments between ADPβS or UTP and ATP suggested that ATP acts on the one hand via P2Y1,2 receptors and on the other hand by additional signaling mechanisms. These mechanisms may involve the release of glutamate (which in consequence activates ionotropic glutamate receptors) and the entry of Ca2+ via store‐operated Ca2+ channels. Evidence for the presence of functional P2X receptors, in particular P2X7, remains elusive. J. Comp. Neurol. 516:343–359, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
The influence of astrocyte swelling on the cytosolic free calcium concentration [Ca2+]i was studied at the single cell level. Sudden exposure of normo-osmotically (305 mosmol/l) cultured astrocytes to hypo-osmotic medium induced a biphasic increase in cytosolic calcium with an initial peak followed by a sustained plateau. The response was osmolarity dependent and was maximal at 205 mosmol/l with respect to [Ca2+]i and the percentage of responding cells. Other modes of astrocyte swelling [gradual adjustment of hypo-osmolarity, normo-osmotic exposure of hyper-osmotic (405 mosmol/l) maintained cells] produced a much weaker [Ca2+]i response. Change from 405 to 205 mosmol/l, however, resulted in the entire peak and an increased plateau. Experiments with Ca2+-free medium and after pretreatment with BAPTA-AM, thapsigargin, phorbol myristate acetate, or nimodipine revealed that the peak mainly resulted from depletion of intracellular Ca2+ stores, whereas the plateau was probably due to capacitative Ca2+ entry and Ca2+ influx independent of store depletion including a nimodipin-sensitive component. Prior depletion of ryanodine-, bradykinin- or ATP-sensitive stores revealed that the initial hypo-osmolarity-induced Ca2+-release was from a Ca2+ pool also affected by ATP and bradykinin, but not by ryanodine. The recent finding, that the hypo-osmolarity-induced [Ca2+]i response was completely maintained if phospholipase C-mediated phosphatidylinositol hydrolysis was blocked, suggests that hypo-osmolarity may exert an inositol (1,4,5) triphosphate-independent access to these stores. GLIA 20:51-58, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号